|   | 
Details
   web
Records
Author Bogaerts, A.; Neyts, E.C.; Rousseau, A.
Title (up) Special issue on fundamentals of plasmasurface interactions Type Editorial
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 220301
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000336207900001 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 2 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116917 Serial 3068
Permanent link to this record
 

 
Author Buffière, M.; Brammertz, G.; Oueslati, S.; El Anzeery, H.; Bekaert, J.; Ben Messaoud, K.; Köble, C.; Khelifi, S.; Meuris, M.; Poortmans, J.
Title (up) Spectral current-voltage analysis of kesterite solar cells Type A1 Journal article
Year 2014 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 17 Pages 175101-175105
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract Current-voltage analysis using different optical band pass filters has been performed on Cu2ZnSnSe4 and Cu2ZnSn(S, Se)(4) thin-film solar cells. When using red or orange light (i.e. wavelengths above 600 nm), a distortion appears in the I-V curve of the Cu2ZnSnSe4 solar cell, indicating an additional potential barrier to the current flow in the device for these conditions of illumination. This barrier is reduced when using a Cu2ZnSn(S, Se)(4) absorber. Numerical simulations demonstrate that the barrier visible under red light could be explained by a positive conduction band offset at the front interface coupled with compensating defects in the buffer layer.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000334504800003 Publication Date 2014-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 25 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:117170 Serial 3070
Permanent link to this record
 

 
Author Georgieva, V.; Saraiva, M.; Jehanathan, N.; Lebelev, O.I.; Depla, D.; Bogaerts, A.
Title (up) Sputter-deposited Mg-Al-O thin films: linking molecular dynamics simulations to experiments Type A1 Journal article
Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 42 Issue 6 Pages 065107,1-065107,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using a molecular dynamics model the crystallinity of MgxAlyOz thin films with a variation in the stoichiometry of the thin film is studied at operating conditions similar to the experimental operating conditions of a dual magnetron sputter deposition system. The films are deposited on a crystalline or amorphous substrate. The Mg metal content in the film ranged from 100% (i.e. MgO film) to 0% (i.e. Al2O3 film). The radial distribution function and density of the films are calculated. The results are compared with x-ray diffraction and transmission electron microscopy analyses of experimentally deposited thin films by the dual magnetron reactive sputtering process. Both simulation and experimental results show that the structure of the MgAlO film varies from crystalline to amorphous when the Mg concentration decreases. It seems that the crystalline MgAlO films have a MgO structure with Al atoms in between.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000263824200024 Publication Date 2009-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 37 Open Access
Notes Iwt Approved Most recent IF: 2.588; 2009 IF: 2.083
Call Number UA @ lucian @ c:irua:73246 Serial 3110
Permanent link to this record
 

 
Author Van der Paal, J.; Verlackt, C.C.; Yusupov, M.; Neyts, E.C.; Bogaerts, A.
Title (up) Structural modification of the skin barrier by OH radicals : a reactive molecular dynamics study for plasma medicine Type A1 Journal article
Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 48 Issue 48 Pages 155202
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000351856600007 Publication Date 2015-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 20 Open Access
Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
Call Number c:irua:124230 Serial 3242
Permanent link to this record
 

 
Author Ghica, C.; Nistor, L.C.; Bender, H.; Richard, O.; Van Tendeloo, G.; Ulyashin, A.
Title (up) TEM characterization of extended defects induced in Si wafers by H-plasma treatment Type A1 Journal article
Year 2007 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 40 Issue 2 Pages 395-400
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000243725800017 Publication Date 2007-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 10 Open Access
Notes Bil 01/73 Approved Most recent IF: 2.588; 2007 IF: 2.200
Call Number UA @ lucian @ c:irua:62601 Serial 3476
Permanent link to this record
 

 
Author Adamovich, I.; Baalrud, S.D.; Bogaerts, A.; Bruggeman, P.J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J.G.; Favia, P.; Graves, D.B.; Hamaguchi, S.; Hieftje, G.; Hori, M.; Kaganovich, I.D.; Kortshagen, U.; Kushner, M.J.; Mason, N.J.; Mazouffre, S.; Thagard, S.M.; Metelmann, H.-R.; Mizuno, A.; Moreau, E.; Murphy, A.B.; Niemira, B.A.; Oehrlein, G.S.; Petrovic, Z.L.; Pitchford, L.C.; Pu, Y.-K.; Rauf, S.; Sakai, O.; Samukawa, S.; Starikovskaia, S.; Tennyson, J.; Terashima, K.; Turner, M.M.; van de Sanden, M.C.M.; Vardelle, A.
Title (up) The 2017 Plasma Roadmap: Low temperature plasma science and technology Type A1 Journal article
Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 50 Issue 50 Pages 323001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012

consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405553800001 Publication Date 2017-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 246 Open Access OpenAccess
Notes Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @ c:irua:144626 Serial 4629
Permanent link to this record
 

 
Author Bogaerts, A.; Tu, X.; Whitehead, J.C.; Centi, G.; Lefferts, L.; Guaitella, O.; Azzolina-Jury, F.; Kim, H.-H.; Murphy, A.B.; Schneider, W.F.; Nozaki, T.; Hicks, J.C.; Rousseau, A.; Thevenet, F.; Khacef, A.; Carreon, M.
Title (up) The 2020 plasma catalysis roadmap Type A1 Journal article
Year 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 53 Issue 44 Pages 443001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, CH4 activation into hydrogen, higher hydrocarbons or oxygenates, and NH3 synthesis. Other applications are already more established, such as for air pollution control, e.g. volatile organic compound remediation, particulate matter and NOx removal. In addition, plasma is also very promising for catalyst synthesis and treatment. Plasma catalysis clearly has benefits over ‘conventional’ catalysis, as outlined in the Introduction. However, a better insight into the underlying physical and chemical processes is crucial. This can be obtained by experiments applying diagnostics, studying both the chemical processes at the catalyst surface and the physicochemical mechanisms of plasma-catalyst interactions, as well as by computer modeling. The key challenge is to design cost-effective, highly active and stable catalysts tailored to the plasma environment. Therefore, insight from thermal catalysis as well as electro- and photocatalysis is crucial. All these aspects are covered in this Roadmap paper, written by specialists in their field, presenting the state-of-the-art, the current and future challenges, as well as the advances in science and technology needed to meet these challenges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000563194400001 Publication Date 2020-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes U.S. Department of Energy, DE-FE0031862 DE-FG02-06ER15830 ; U.S. Air Force Office of Scientific Research, FA9550-18-1-0157 ; University of Antwerp, 32249 ; JSPS KAKENSHI, JP18H01208 ; UK EPSRC Impact Acceleration Account; National Science Foundation, EEC-1647722 ; H2020 Marie Skłodowska-Curie Actions, 823745 ; Horizon 2020 Framework Programme, 810182 – SCOPE ERC Synergy pr ; This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182—SCOPE ERC Synergy project). Approved Most recent IF: 3.4; 2020 IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:171915 Serial 6408
Permanent link to this record
 

 
Author Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.J.; Canal, C.; Choi, E.H.; Coulombe, S.; Donkó, Z.; Graves, D.B.; Hamaguchi, S.; Hegemann, D.; Hori, M.; Kim, H.-h; Kroesen, G.M.W.; Kushner, M.J.; Laricchiuta, A.; Li, X.; Magin, T.E.; Mededovic Thagard, S.; Miller, V.; Murphy, A.B.; Oehrlein, G.S.; Puac, N.; Sankaran, R.M.; Samukawa, S.; Shiratani, M.; Šimek, M.; Tarasenko, N.; Terashima, K.; Thomas Jr, E.; Trieschmann, J.; Tsikata, S.; Turner, M.M.; van der Walt, I.J.; van de Sanden, M.C.M.; von Woedtke, T.
Title (up) The 2022 Plasma Roadmap: low temperature plasma science and technology Type A1 Journal article
Year 2022 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 55 Issue 37 Pages 373001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The 2022 Roadmap is the next update in the series of Plasma Roadmaps published by<italic>Journal of Physics</italic>D with the intent to identify important outstanding challenges in the field of low-temperature plasma (LTP) physics and technology. The format of the Roadmap is the same as the previous Roadmaps representing the visions of 41 leading experts representing 21 countries and five continents in the various sub-fields of LTP science and technology. In recognition of the evolution in the field, several new topics have been introduced or given more prominence. These new topics and emphasis highlight increased interests in plasma-enabled additive manufacturing, soft materials, electrification of chemical conversions, plasma propulsion, extreme plasma regimes, plasmas in hypersonics, data-driven plasma science and technology and the contribution of LTP to combat COVID-19. In the last few decades, LTP science and technology has made a tremendously positive impact on our society. It is our hope that this roadmap will help continue this excellent track record over the next 5–10 years.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000821410400001 Publication Date 2022-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes Grants-in-Aid for Scientific Research, 15H05736 ; FCT-Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Russian Foundation for Basic Research, 20-02-00320 ; Lam Research Corporation; National Office for Research, Development, and Innovation of Hungary, K-134462 ; Czech Science Foundation, GA 18-04676S ; Japan Society for the Promotion of Science, 20H00142 ; MESTD of Republic of Serbia, 451-03-68/2021-14/200024 ; NASA; Dutch Foundation for Scientific Research; U.S. National Science Foundation, CBET 1703439 ; U.S. Department of Energy, DE-SC-0001234 ; Grantová Agentura České Republiky, GA 18-04676S ; Army Research Office, W911NF-20-1-0105 ; National Natural Science Foundation of China, 51825702 ; European Research Council, Starting Grant #259354 ; European Space Agency, GSTP ; U.S. Air Force Office of Scientific Research, FA9550-17-1-0370 ; Safran Aircraft Engines, POSEIDON ; Agence Nationale de la Recherche, ANR-16-CHIN-003–01 ; H2020 European Research Council, ERC Synergy Grant 810182 SCOPE ; JST CREST, JPMJCR19R3 ; Federal German Ministry of Education and Research, 03Z22DN11 ; National Research Foundation of Korea, 2016K1A4A3914113 ; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 200021_169180 ; Departament d’Innovació, Universitats i Empresa, Generalitat de Catalunya, SGR2017-1165 ; Ministerio de Economía, Industria y Competitividad, Gobierno de España, PID2019-103892RB-I00/AEI/10.13039/501100011033 ; Deutsche Forschungsgemeinschaft, 138690629 – TRR 87 ; Grant-in-Aid for Exploratory Research, 18K18753 ; Approved Most recent IF: 3.4
Call Number PLASMANT @ plasmant @c:irua:189203 Serial 7075
Permanent link to this record
 

 
Author Bultinck, E.; Bogaerts, A.
Title (up) The effect of the magnetic field strength on the sheath region of a dc magnetron discharge Type A1 Journal article
Year 2008 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 41 Issue Pages 202007,1-5
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A 2d3v particle-in-cell/Monte Carlo collisions model was applied to study the influence of the magnetic field strength on the cathode sheath region of a direct current (dc) magnetron discharge. When applying a magnetic field of 520-730 G, the cathode sheath width decreases with magnetic field strength, whereas, if a stronger magnetic field is applied (i. e. from 730 to 2600 G), the sheath width increases. This is explained by studying the structure of the sheath in different magnetic field strengths in terms of the electron and ion densities. The consequences of sheath structure on the sputter deposition process are also investigated. It is found that the magnetic field strength can control the erosion profile and the sputter rate.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000260131700007 Publication Date 2008-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 16 Open Access
Notes Approved Most recent IF: 2.588; 2008 IF: 2.104
Call Number UA @ lucian @ c:irua:70630 Serial 847
Permanent link to this record
 

 
Author Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A.
Title (up) The origin of Bohm diffusion, investigated by a comparison of different modelling methods Type A1 Journal article
Year 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 43 Issue 29 Pages 292001,1-292001,5
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract 'Bohm diffusion' causes the electrons to diffuse perpendicularly to the magnetic field lines. However, its origin is not yet completely understood: low and high frequency electric field fluctuations are both named to cause Bohm diffusion. The importance of including this process in a Monte Carlo (MC) model is demonstrated by comparing calculated ionization rates with particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations. A good agreement is found with a Bohm diffusion parameter of 0.05, which corresponds well to experiments. Since the PIC/MCC method accounts for fast electric field fluctuations, we conclude that Bohm diffusion is caused by fast electric field phenomena.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000279638700001 Publication Date 2010-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 16 Open Access
Notes Approved Most recent IF: 2.588; 2010 IF: 2.109
Call Number UA @ lucian @ c:irua:83109 Serial 2521
Permanent link to this record
 

 
Author Wang, H.; Wang, W.; Yan, J.D.; Qi, H.; Geng, J.; Wu, Y.
Title (up) Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications Type A1 Journal article
Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 50 Issue 39 Pages 395204
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al's derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto's electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000410390100001 Publication Date 2017-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 3 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.588
Call Number UA @ lucian @ c:irua:145603 Serial 4754
Permanent link to this record
 

 
Author Wang, H.; Cuppens, J.; Biermans, E.; Bals, S.; Fernandez-Ballester, L.; Kvashnina, K.O.; Bras, W.; van Bael, M.J.; Temst, K.; Vantomme, A.
Title (up) Tuning of the size and the lattice parameter of ion-beam synthesized Pb nanoparticles embedded in Si Type A1 Journal article
Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 45 Issue 3 Pages 035301-035301,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The size and lattice constant evolution of Pb nanoparticles (NPs) synthesized by high fluence implantation in crystalline Si have been studied with a variety of experimental techniques. Results obtained from small-angle x-ray scattering showed that the Pb NPs grow with increasing implantation fluence and annealing duration. The theory of NP growth kinetics can be applied to qualitatively explain the size evolution of the Pb NPs during the implantation and annealing processes. Moreover, the lattice constant of the Pb NPs was evaluated by conventional x-ray diffraction. The lattice dilatation was observed to decrease with increasing size of the Pb NPs. Such lattice constant tuning can be attributed to the pseudomorphism caused by the lattice mismatch between the Pb NPs and the Si matrix.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000299308400008 Publication Date 2011-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 5 Open Access
Notes Fwo; Iap Approved Most recent IF: 2.588; 2012 IF: 2.528
Call Number UA @ lucian @ c:irua:94208 Serial 3754
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
Title (up) Understanding plasma catalysis through modelling and simulation : a review Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 224010
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis holds great promise for environmental applications, provided that the process viability can be maximized in terms of energy efficiency and product selectivity. This requires a fundamental understanding of the various processes taking place and especially the mutual interactions between plasma and catalyst. In this review, we therefore first examine the various effects of the plasma on the catalyst and of the catalyst on the plasma that have been described in the literature. Most of these studies are purely experimental. The urgently needed fundamental understanding of the mechanisms underpinning plasma catalysis, however, may also be obtained through modelling and simulation. Therefore, we also provide here an overview of the modelling efforts that have been developed already, on both the atomistic and the macroscale, and we identify the data that can be obtained with these models to illustrate how modelling and simulation may contribute to this field. Last but not least, we also identify future modelling opportunities to obtain a more complete understanding of the various underlying plasma catalytic effects, which is needed to provide a comprehensive picture of plasma catalysis.
Address
Corporate Author Thesis
Publisher Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000336207900011 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 130 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116920 Serial 3803
Permanent link to this record
 

 
Author Dufour, T.; Minnebo, J.; Abou Rich, S.; Neyts, E.C.; Bogaerts, A.; Reniers, F.
Title (up) Understanding polyethylene surface functionalization by an atmospheric He/O2 plasma through combined experiments and simulations Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 224007
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract High density polyethylene surfaces were exposed to the atmospheric post-discharge of a radiofrequency plasma torch supplied in helium and oxygen. Dynamic water contact angle measurements were performed to evaluate changes in surface hydrophilicity and angle resolved x-ray photoelectron spectroscopy was carried out to identify the functional groups responsible for wettability changes and to study their subsurface depth profiles, up to 9 nm in depth. The reactions leading to the formation of CO, C = O and OC = O groups were simulated by molecular dynamics. These simulations demonstrate that impinging oxygen atoms do not react immediately upon impact but rather remain at or close to the surface before eventually reacting. The simulations also explain the release of gaseous species in the ambient environment as well as the ejection of low molecular weight oxidized materials from the surface.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000336207900008 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 13 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116919 Serial 3804
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Akgenc, B.; Ghergherehchi, M.; Nguyen, C.
Title (up) Van der Waals heterostructures of MoS₂ and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC₃, C₃N, C₃N₄ and C₄N₃) nanosheets: a first-principles study Type A1 Journal article
Year 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume Issue Pages 1-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this work, we extensively investigate the structural and electronic properties of van der Waals heterostructures (HTs) constructed by MoS${2}$/$BC3$, MoS${2}$/$C3N$, MoS${2}$/$C3N4$, MoS${2}$/$C4N3$ and those using Janus MoSSe instead of MoS$2$ by performing density functional theory calculations. The electronic band structure calculations and the corresponding partial density of states reveal that the significant changes are driven by quite strong layer-layer interaction between the constitutive layers. Our results show that although all monolayers are semiconductors as free-standing layers, the MoS${2}$/$C3N$ and MoS${2}$/$C4N3$ bilayer HTs display metallic behavior as a consequence of transfer of charge carriers between two constituent layers. In addition, it is found that in MoSSe/$C3N$ bilayer HT, the degree of metallicity is affected by the interface chalcogen atom type when Se atoms are facing to $C3N$ layer, the overlap of the bands around the Fermi level is smaller. Moreover, the half-metallic magnetic $C4N3$ is shown to form magnetic half-metallic trilayer HT with MoS$2$ independent of the stacking sequence, i.e. whether it is sandwiched or two $C4N3$ layer encapsulate MoS$2$ layer. We further analyze the trilayer HTs in which MoS$2$ is encapsulated by two different monolayers and it is revealed that at least with one magnetic monolayer, it is possible to construct a magnetic trilayer. While the trilayer of $C4N3$/MoS${2}$/$BC3$ and $C4N3$/MoS${2}$/$C3N4$ exhibit half-metallic characteristics, $C4N3$/MoS${_2}$/$C3$N possesses a magnetic metallic ground state. Overall, our results reveal that holly structures of BCN crystals are suitable for heterostructure formation even over van der Waals type interaction which significantly changes electronic nature of the constituent layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000543344800001 Publication Date 2020-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2020 IF: 2.588
Call Number UA @ admin @ c:irua:169754 Serial 6651
Permanent link to this record
 

 
Author Wang, W.; Kong, L.; Geng, J.; Wei, F.; Xia, G.
Title (up) Wall ablation of heated compound-materials into non-equilibrium discharge plasmas Type A1 Journal article
Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 50 Issue 7 Pages 074005
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results show a non-equilibrium region near the plasma-wall interaction region and this indicates the need for the consideration of the influence of the possible departure from LTE in the plasma bulk on the determination of ablation rate.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000394097200001 Publication Date 2017-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 19 Open Access OpenAccess
Notes Approved Most recent IF: 2.588
Call Number UA @ lucian @ c:irua:141965 Serial 4702
Permanent link to this record