toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bizindavyi, J.; Verhulst, A.S.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title (up) Thermodynamic equilibrium theory revealing increased hysteresis in ferroelectric field-effect transistors with free charge accumulation Type A1 Journal article
  Year 2021 Publication Communications Physics Abbreviated Journal  
  Volume 4 Issue 1 Pages 86  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract At the core of the theoretical framework of the ferroelectric field-effect transistor (FeFET) is the thermodynamic principle that one can determine the equilibrium behavior of ferroelectric (FERRO) systems using the appropriate thermodynamic potential. In literature, it is often implicitly assumed, without formal justification, that the Gibbs free energy is the appropriate potential and that the impact of free charge accumulation can be neglected. In this Article, we first formally demonstrate that the Grand Potential is the appropriate thermodynamic potential to analyze the equilibrium behavior of perfectly coherent and uniform FERRO-systems. We demonstrate that the Grand Potential only reduces to the Gibbs free energy for perfectly non-conductive FERRO-systems. Consequently, the Grand Potential is always required for free charge-conducting FERRO-systems. We demonstrate that free charge accumulation at the FERRO interface increases the hysteretic device characteristics. Lastly, a theoretical best-case upper limit for the interface defect density D-FI is identified. The ferroelectric field-effect transistor, which has attracted much attention for application as both a highly energy-efficient logic device and a non-volatile memory device, has often been studied within the framework of equilibrium thermodynamics. Here, the authors theoretically demonstrate the importance of utilizing the correct thermodynamic potential and investigate the impact of free charge accumulation on the equilibrium performance of ferroelectric-based systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000645913400001 Publication Date 2021-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2399-3650 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179005 Serial 7031  
Permanent link to this record
 

 
Author Reyntjens, P.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B. pdf  doi
openurl 
  Title (up) Ultrascaled graphene-capped interconnects : a quantum mechanical study Type P1 Proceeding
  Year 2023 Publication Proceedings of the IEEE ... International Interconnect Technology Conference T2 – IEEE International Interconnect Technology Conference (IITC) / IEEE, Materials for Advanced Metallization Conference (MAM), MAY 22-25, 2023, Dresden, Germany Abbreviated Journal  
  Volume Issue Pages 1-3  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract In this theoretical study, we assess the impact of a graphene capping layer on the resistivity of defective, extremely scaled interconnects. We investigate the effect of graphene capping on the electronic transport in ultrascaled interconnects, in the presence of grain boundary defects in the metal layer. We compare the results obtained using our quantum mechanical model to a simple parallel-conductor model and find that the parallel-conductor model does not capture the effect of the graphene cap correctly. At 0.5 nm metal thickness, the parallel-conductor model underestimates the conductivity by 3.0% to 4.0% for single-sided and double sided graphene capping, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001027381700006 Publication Date 2023-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 979-83-503-1097-9 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198343 Serial 8949  
Permanent link to this record
 

 
Author Vandenberghe, W.; Sorée, B.; Magnus, W.; Groeseneken, G. doi  openurl
  Title (up) Zener tunneling in semiconductors under nonuniform electric fields Type A1 Journal article
  Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 107 Issue 5 Pages 054520,1-054520,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, a renewed interest in Zener tunneling has arisen because of its increasing impact on semiconductor device performance at nanometer dimensions. In this paper we evaluate the tunnel probability under the action of a nonuniform electric field using a two-band model and arrive at significant deviations from the commonly used Kanes model, valid for weak uniform fields only. A threshold on the junction bias where Kanes model for Zener tunneling breaks down is determined. Comparison with Kanes model particularly shows that our calculation yields a higher tunnel probability for intermediate electric fields and a lower tunnel probability for high electric fields. When performing a current calculation comparing to the WKB approximation for the case of an abrupt p-n junction significant differences concerning the shape of the I-V curve are demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000275657500136 Publication Date 2010-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 22 Open Access  
  Notes ; William Vandenberghe gratefully acknowledges the support of a Ph. D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). These authors acknowledge the support from IMEC's Industrial Affiliation Program and the authors would like to thank Anne Verhulst for useful comments. ; Approved Most recent IF: 2.068; 2010 IF: 2.079  
  Call Number UA @ lucian @ c:irua:82450 Serial 3929  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: