toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Milovanovic, S.P.; Peeters, F.M. pdf  url
doi  openurl
  Title (down) Characterization of the size and position of electron-hole puddles at a graphene p-n junction Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 105203  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The effect of an electron-hole puddle on the electrical transport when governed by snake states in a bipolar graphene structure is investigated. Using numerical simulations we show that information on the size and position of the electron-hole puddle can be obtained using the dependence of the conductance on magnetic field and electron density of the gated region. The presence of the scatterer disrupts snake state transport which alters the conduction pattern. We obtain a simple analytical formula that connects the position of the electron-hole puddle with features observed in the conductance. The size of the electron-hole puddle is estimated from the magnetic field and gate potential that maximizes the effect of the puddle on the electrical transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369849200003 Publication Date 2016-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 3 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. We acknowledge interesting correspondence with Thiti Taychatanapat. Approved Most recent IF: 3.44  
  Call Number c:irua:131907 Serial 4025  
Permanent link to this record
 

 
Author Robin, I.-C.; Aichele, T.; Bougerol, C.; André, R.; Tatarenko, S.; Bellet-Amalric, E.; van Daele, B.; Van Tendeloo, G. pdf  doi
openurl 
  Title (down) CdSe quantum dot formation: alternative paths to relaxation of a strained CdSe layer and influence of the capping conditions Type A1 Journal article
  Year 2007 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 18 Issue 26 Pages 265701,1-11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000247103500012 Publication Date 2007-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.44; 2007 IF: 3.310  
  Call Number UA @ lucian @ c:irua:64756 Serial 303  
Permanent link to this record
 

 
Author Llobet, E.; Espinosa, E.H.; Sotter, E.; Ionescu, R.; Vilanova, X.; Torres, J.; Felten, A.; Pireaux, J.J.; Ke, X.; Van Tendeloo, G.; Renaux, F.; Paint, Y.; Hecq, M.; Bittencourt, C.; pdf  doi
openurl 
  Title (down) Carbon nanotube TiO2 hybrid films for detecting traces of O2 Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 19 Issue 37 Pages 375501-375511  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO(2) films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. <= 10 ppm) in a flow of CO(2), which is of interest for the beverage industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000258385600014 Publication Date 2008-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 48 Open Access  
  Notes Pai Approved Most recent IF: 3.44; 2008 IF: 3.446  
  Call Number UA @ lucian @ c:irua:103083 Serial 282  
Permanent link to this record
 

 
Author Singh, V.; Mehta, B.R.; Sengar, S.K.; Karakulina, O.M.; Hadermann, J.; Kaushal, A. pdf  doi
openurl 
  Title (down) Achieving independent control of core diameter and carbon shell thickness in Pd-C core–shell nanoparticles by gas phase synthesis Type A1 Journal article
  Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 28 Issue 29 Pages 295603  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Pd-C core–shell nanoparticles with independently controllable core size and shell thickness are grown by gas phase synthesis. First, the core size is selected by electrical mobility values of charged particles, and second, the shell thickness is controlled by the concentration of carbon precursor gas. The carbon shell grows by adsorption of carbon precursor gas molecules on the surface of nanoparticles, followed by sintering. The presence of a carbon shell on Pd nanoparticles is potentially important in hydrogen-related applications operating at high temperatures or in catalytic reactions in acidic/aqueous environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404633200002 Publication Date 2017-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 1 Open Access Not_Open_Access  
  Notes VS is thankful to the All India Council for Technical Education, India, for providing assistantship under its Quality Improvement Programme. BRM gratefully acknowledges the support of the Nanomission Programme of the Department of Science and Technology (DST), India and Schlumberger Chair Professorship. BRM would also like to acknowledge the support from the project funded by BRNS, DAE, India. Approved Most recent IF: 3.44  
  Call Number EMAT @ emat @c:irua:144831 Serial 4712  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: