|   | 
Details
   web
Records
Author Szafran, B.; Peeters, F.M.
Title (up) Time-dependent simulations of electron transport through a quantum ring: effect of the Lorentz force Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 72 Issue Pages 165301,1-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000232934900050 Publication Date 2005-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:69617 Serial 3666
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M.; Partoens, B.; Pasek, W.J.
Title (up) Tuning of the spin-orbit interaction in a quantum dot by an in-plane magnetic field Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 24 Pages 245324-245324,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using an exact-diagonalization approach we show that one- and two-electron InAs quantum dots exhibit an avoided crossing in the energy spectra that is induced by the spin-orbit coupling in the presence of an in-plane external magnetic field. The width of the avoided crossings depends strongly on the orientation of the magnetic field, which reveals the intrinsic anisotropy of the spin-orbit-coupling interactions. We find that for specific orientations of the magnetic field avoided crossings vanish. A value of this orientation can be used to extract the ratio of the strength of Rashba and Dresselhaus interactions. The spin-orbit anisotropy effects for various geometries and orientations of the confinement potential are discussed. Our analysis explains the physics behind the recent measurements performed on a gated self-assembled quantum dot [ S. Takahashi et al. Phys. Rev. Lett. 104 246801 (2010)].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000292254000005 Publication Date 2011-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes ; The authors thank S. Takahashi for helpful discussions. This work was supported by the “Krakow Interdisciplinary PhD Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund, the Project No. N N202103938 supported by the Ministry of Science an Higher Education (MNiSW) for 2010-2013, and the Belgian Science Policy (IAP). W. J. P. has been partially supported by the EU Human Capital Operation Program, Polish Project No. POKL.04.0101-00-434/08-00. Calculations were performed in ACK-CYFRONET-AGH on the RackServer Zeus. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90923 Serial 3755
Permanent link to this record
 

 
Author Szafran, B.; Poniedziałek, M.R.; Peeters, F.M.
Title (up) Violation of Onsager symmetry for a ballistic channel Coulomb coupled to a quantum ring Type A1 Journal article
Year 2009 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 87 Issue 4 Pages 47002,1-47002,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate a scattering of electron which is injected individually into an empty ballistic channel containing a cavity that is Coulomb coupled to a quantum ring charged with a single electron. We solve the time-dependent Schrödinger equation for the electron pair with an exact account for the electron-electron correlation. Absorption of energy and angular momentum by the quantum ring is not an even function of the external magnetic field. As a consequence we find that the electron backscattering probability is asymmetric in the magnetic field and thus violates Onsager symmetry.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000270146400017 Publication Date 2009-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 4 Open Access
Notes Approved Most recent IF: 1.957; 2009 IF: 2.893
Call Number UA @ lucian @ c:irua:79734 Serial 3847
Permanent link to this record
 

 
Author Chaves, A.; Farias, G.A.; Peeters, F.M.; Szafran, B.
Title (up) Wave packet dynamics in semiconductor quantum rings of finite width Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 12 Pages 125331,1-125331,14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The time evolution of a wave packet injected into a semiconductor quantum ring is investigated in order to obtain the transmission and reflection probabilities. Within the effective-mass approximation, the time-dependent Schrödinger equation is solved for a system with nonzero width of the ring and leads and finite potential-barrier heights, where we include smooth lead-ring connections. In the absence of a magnetic field, an analysis of the projection of the wave function over the different subband states shows that when the injected wave packet is within a single subband, the junction can scatter this wave packet into different subbands but remarkably at the second junction the wave packet is scattered back into the subband state of the incoming wave packet. If a magnetic field is applied perpendicularly to the ring plane, transmission and reflection probabilities exhibit Aharonov-Bohm (AB) oscillations and the outgoing electrons may end up in different subband states from those of the incoming electrons. Localized impurities, placed in the ring arms, influence the AB oscillation period and amplitude. For a single impurity or potential barrier of sufficiently strong strength, the period of the AB oscillations is halved while for two impurities localized in diametrically opposite points of the ring, the original AB period is recovered. A theoretical investigation of the confined states and time evolution of wave packets in T wires is also made, where a comparison between this system and the lead-ring junction is drawn.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000270383300098 Publication Date 2009-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 40 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:79231 Serial 3906
Permanent link to this record