|   | 
Details
   web
Records
Author Bagherpour, A.; Baral, P.; Colla, M.-S.; Orekhov, A.; Idrissi, H.; Haye, E.; Pardoen, T.; Lucas, S.
Title (up) Tailoring Mechanical Properties of a-C:H:Cr Coatings Type A1 Journal Article
Year 2023 Publication Coatings Abbreviated Journal Coatings
Volume 13 Issue 12 Pages 2084
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The development of coatings with tunable performances is critical to meet a wide range of technological applications each one with different requirements. Using the plasma-enhanced chemical vapor deposition (PECVD) process, scientists can create hydrogenated amorphous carbon coatings doped with metal (a-C:H:Me) with a broad range of mechanical properties, varying from those resembling polymers to ones resembling diamond. These diverse properties, without clear relations between the different families, make the material selection and optimization difficult but also very rich. An innovative approach is proposed here based on projected performance indices related to fracture energy, strength, and stiffness in order to classify and optimize a-C:H:Me coatings. Four different a-C:H:Cr coatings deposited by PECVD with Ar/C2H2 discharge under different bias voltage and pressures are investigated. A path is found to produce coatings with a selective critical energy release rate between 5–125 J/m2 without compromising yield strength (1.6–2.7 GPa) and elastic limit (≈0.05). Finally, fine-tuned coatings are categorized to meet desired applications under different testing conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001136013600001 Publication Date 2023-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-6412 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Walloon region under the PDR FNRS, C 62/5—PDR/OL 33677636 ; Belgian National Fund for Scientific Research, CDR—J.0113.20 ; National Fund for Scientific Reaserch; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:202390 Serial 8982
Permanent link to this record
 

 
Author Wang, B.; Idrissi, H.; Shi, H.; Colla, M.S.; Michotte, S.; Raskin, J.P.; Pardoen, T.; Schryvers, D.
Title (up) Texture-dependent twin formation in nanocrystalline thin Pd films Type A1 Journal article
Year 2012 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 66 Issue 11 Pages 866-871
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline Pd films were produced by electron-beam evaporation and sputter deposition. The electron-beam-evaporated films reveal randomly oriented nanograins with a relatively high density of growth twins, unexpected in view of the high stacking fault energy of Pd. In contrast, sputter-deposited films show a clear 〈1 1 1〉 crystallographic textured nanostructure without twins. These results provide insightful information to guide the generation of microstructures with enhanced strength/ductility balance in high stacking fault energy nanocrystalline metallic thin films.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000303621900007 Publication Date 2012-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 19 Open Access
Notes Iap; Fwo Approved Most recent IF: 3.747; 2012 IF: 2.821
Call Number UA @ lucian @ c:irua:96955 Serial 3566
Permanent link to this record
 

 
Author Idrissi, H.; Wang, B.; Colla, M.S.; Raskin, J.P.; Schryvers, D.; Pardoen, T.
Title (up) Ultrahigh strain hardening in thin palladium films with nanoscale twins Type A1 Journal article
Year 2011 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 23 Issue 18 Pages 2119-2122
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline Pd thin films containing coherent growth twin boundaries are deformed using on-chip nanomechanical testing. A large work-hardening capacity is measured. The origin of the observed behavior is unraveled using transmission electron microscopy and shows specific dislocations and twin boundaries interactions. The results indicate the potential for large strength and ductility balance enhancement in Pd films, as needed in membranes for H technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000291164200013 Publication Date 2011-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 57 Open Access
Notes Iap Approved Most recent IF: 19.791; 2011 IF: 13.877
Call Number UA @ lucian @ c:irua:90103 Serial 3794
Permanent link to this record