|   | 
Details
   web
Records
Author Berends, A.C.; Rabouw, F.T.; Spoor, F.C.M.; Bladt, E.; Grozema, F.C.; Houtepen, A.J.; Siebbeles, L.D.A.; de Donega, C.M.
Title (down) Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals Type A1 Journal article
Year 2016 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 7 Issue 7 Pages 3503-3509
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Luminescent copper indium sulfide (CIS) nanocrystals are a potential solution to the toxicity issues associated with Cd- and Pb-based nanocrystals. However, the development of high-quality CIS nanocrystals has been complicated by insufficient knowledge of the electronic structure and of the factors that lead to luminescence quenching. Here we investigate the exciton decay pathways in CIS nanocrystals using time resolved photoluminescence and transient absorption spectroscopy. Core-only CIS nanocrystals with low quantum yield are compared to core/shell nanocrystals (CIS/ZnS and CIS/CdS) with higher quantum yield. Our measurements support the model of photoluminescence by radiative recombination of a conduction band electron with a localized hole. Moreover, we find that photoluminescence quenching in low-quantum-yield nanocrystals involves initially uncoupled decay pathways for the electron and hole. The electron decay pathway determines whether the exciton recombines radiatively or nonradiatively. The development of high-quality CIS nanocrystals should therefore focus on the elimination of electron traps.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000382603300037 Publication Date 2016-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.353 Times cited 67 Open Access
Notes Approved Most recent IF: 9.353
Call Number UA @ lucian @ c:irua:135715 Serial 4308
Permanent link to this record
 

 
Author Damla, N.; Čevik, U.; Kobya, A.I.; Celik, A.; Celik, N.; Van Grieken, R.
Title (down) Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey Type A1 Journal article
Year 2010 Publication Journal of hazardous materials Abbreviated Journal
Volume 176 Issue 1/3 Pages 644-649
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Different cement samples commonly used in building construction in Turkey have been analyzed for natural radioactivity using gamma-ray spectrometry. The mean activity concentrations observed in the cement samples were 52, 40 and 324 Bq kg−1 for 226Ra, 232Th and 40K, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and world average limits. The radiological hazard parameters such as radium equivalent activities (Raeq), gamma index (Iγ) and alpha index (Iα) indices as well as terrestrial absorbed dose and annual effective dose rate were calculated and compared with the international data. The Raeq values of cement are lower than the limit of 370 Bq kg−1, equivalent to a gamma dose of 1.5 mSv y−1. Moreover, the mass attenuation coefficients were determined experimentally and calculated theoretically using XCOM in some cement samples. Also, chemical compositions analyses of the cement samples were investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000274839700087 Publication Date 2009-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:80671 Serial 8448
Permanent link to this record
 

 
Author De Meulenaere, P.; Van Tendeloo, G.; van Landuyt, J.; Mommaert, C.; Severne, G.
Title (down) Radiation defects and ordered radiation patterns in Ni and Ni4Mo: a study by electron microscopy Type A1 Journal article
Year 1993 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal
Volume 67 Issue 3 Pages 745-756
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1993 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1993; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:6783 Serial 2808
Permanent link to this record
 

 
Author Piñera, I.; Abreu, Y.; van Espen, P.; Diaz, A.; Leyva, A.; Cruz, C.M.
Title (down) Radiation damage evaluation on LYSO and LuYAP materials through Dpa calculation assisted by Monte Carlo method Type P1 Proceeding
Year 2011 Publication IEEE conference record T2 – IEEE Nuclear Science Symposium/Medical Imaging Conference (NSS/MIC)/18th, International Workshop on Room-Temperature Semiconductor X-Ray and, Gamma-Ray Detectors, OCT 23-29, 2011, Valencia, SPAIN Abbreviated Journal
Volume Issue Pages 1609-1611
Keywords P1 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The aim of the present work is to study the radiation damage induced in LYSO and LuYAP crystals by the gamma radiation and the secondary electrons/positrons generated. The displacements per atom (dpa) distributions inside each material were calculated following the Monte Carlo assisted Classical Method (MCCM) introduced by the authors. As gamma sources were used Sc-44, Na-22 and V-48. Also the energy of gammas from the annihilation processes (511 keV) was included in the study. This procedure allowed studying the in-depth dpa distributions inside each crystal for all four sources. It was also possible to obtain the separate contribution from each atom to the total dpa. The LYSO crystals were found to receive more damage, mainly provoked by the displacements of silicon and oxygen atoms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304755601169 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4673-0120-6 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:113072 Serial 8447
Permanent link to this record
 

 
Author Schweigert, I.V.; Schweigert, V.A.; Peeters, F.M.
Title (down) Radial fluctuations induced stabilization of the ordered state in two-dimensional classical clusters Type A1 Journal article
Year 2000 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 84 Issue Pages 4381-4384
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000086941600032 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 69 Open Access
Notes Approved Most recent IF: 8.462; 2000 IF: 6.462
Call Number UA @ lucian @ c:irua:28518 Serial 2807
Permanent link to this record
 

 
Author Wang, X.; Li, K.; Schryvers, D.; Verlinden, B.; Van Humbeeck, J.
Title (down) R-phase transition and related mechanical properties controlled by low-temperature aging treatment in a Ti50.8 at.% Ni thin wire Type A1 Journal article
Year 2014 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 72-73 Issue Pages 21-24
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A cold-drawn Ti50.8 at.% Ni wire was annealed at 600 °C for 30 min, followed by aging at 250 °C for different times. A microstructure with small grains and nanoscaled precipitates was obtained. The thermally induced martensite transformation is suppressed in the samples aged for 4 h or longer, leaving a one-stage R-phase transition between −150 and +150 °C. The transformation behavior, work output and recovery stress associated with the R-phase transition are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000329148500006 Publication Date 2013-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 27 Open Access
Notes Fwo Approved Most recent IF: 3.747; 2014 IF: 3.224
Call Number UA @ lucian @ c:irua:111847 Serial 2806
Permanent link to this record
 

 
Author Schryvers, D.; Potapov, P.L.
Title (down) R-phase structure refinement using electron diffraction data Type A1 Journal article
Year 2002 Publication Materials transactions Abbreviated Journal Mater Trans
Volume 43 Issue 5 Pages 774-779
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000176212100002 Publication Date 2005-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1345-9678; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.713 Times cited 25 Open Access
Notes Approved Most recent IF: 0.713; 2002 IF: 0.841
Call Number UA @ lucian @ c:irua:48772 Serial 2805
Permanent link to this record
 

 
Author Novoselov, K.S.; Geim, A.K.; Dubonos, S.V.; Cornelissens, Y.G.; Peeters, F.M.; Maan, J.C.
Title (down) Quenching of the Hall effect in localised high magnetic field regions Type A1 Journal article
Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 12 Issue 1/4 Pages 244-247
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report the suppression of the Hall effect in a mesoscopic Hall cross with a strong magnetic field only in the centre and vanishingly small outside, The local magnetic field is produced by placing Dy pillar on top of a structure with a high-mobility two-dimensional electron gas. The effect is found to be due to a sharp increase of the number of back-scattered and quasi-localised electron orbits. The possibility of localising electrons inside the magnetic inhomogeneity region is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000175206300061 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 3 Open Access
Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
Call Number UA @ lucian @ c:irua:94939 Serial 2804
Permanent link to this record
 

 
Author Hannibal, S.; Kettmann, P.; Croitoru, M.D.; Vagov, A.; Axt, V.M.; Kuhn, T.
Title (down) Quench dynamics of an ultracold Fermi gas in the BCS regime : spectral properties and confinement-induced breakdown of the Higgs mode Type A1 Journal article
Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 91 Issue 91 Pages 043630
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Higgs amplitude mode of the order parameter of an ultracold confined Fermi gas in the BCS regime after a quench of the coupling constant is analyzed theoretically. A characteristic feature is a damped oscillation which at a certain transition time changes into a rather irregular dynamics. We compare the numerical solution of the full set of nonlinear equations of motion for the normal and anomalous Bogoliubov quasiparticle excitations with a linearized approximation. In doing so the transition time as well as the difference between resonant systems, i.e., systems where the Fermi energy is close to a sub-band minimum, and off-resonant systems can be well understood and traced back to the system and geometry parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000353448500005 Publication Date 2015-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-1622; 1050-2947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 10 Open Access
Notes ; M.D.C. acknowledges support by the BELSPO Back to Belgium Grant. ; Approved Most recent IF: 2.925; 2015 IF: NA
Call Number UA @ lucian @ c:irua:132509 Serial 4235
Permanent link to this record
 

 
Author Juneja, R.; Thebaud, S.; Pandey, T.; Polanco, C.A.; Moseley, D.H.; Manley, M.E.; Cheng, Y.Q.; Winn, B.; Abernathy, D.L.; Hermann, R.P.; Lindsay, L.
Title (down) Quasiparticle twist dynamics in non-symmorphic materials Type A1 Journal article
Year 2021 Publication Materials Today Physics Abbreviated Journal
Volume 21 Issue Pages 100548
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Quasiparticle physics underlies our understanding of the microscopic dynamical behaviors of materials that govern a vast array of properties, including structural stability, excited states and interactions, dynamical structure factors, and electron and phonon conductivities. Thus, understanding band structures and quasiparticle interactions is foundational to the study of condensed matter. Here we advance a 'twist' dynamical description of quasiparticles (including phonons and Bloch electrons) in nonsymmorphic chiral and achiral materials. Such materials often have structural complexity, strong thermal resistance, and efficient thermoelectric performance for waste heat capture and clean refrigeration technologies. The twist dynamics presented here provides a novel perspective of quasiparticle behaviors in such complex materials, in particular highlighting how non-symmorphic symmetries determine band crossings and anti-crossings, topological behaviors, quasiparticle interactions that govern transport, and observables in scattering experiments. We provide specific context via neutron scattering measurements and first-principles calculations of phonons and electrons in chiral tellurium dioxide. Building twist symmetries into the quasiparticle dynamics of non-symmorphic materials offers intuition into quasi particle behaviors, materials properties, and guides improved experimental designs to probe them. More specifically, insights into the phonon and electron quasiparticle physics presented here will enable materials design strategies to control interactions and transport for enhanced thermoelectric and thermal management applications. (C) 2021 Published by Elsevier Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000708226400009 Publication Date 2021-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:184040 Serial 7016
Permanent link to this record
 

 
Author Saniz, R.; Dixit, H.; Lamoen, D.; Partoens, B.
Title (down) Quasiparticle energies and uniaxial pressure effects on the properties of SnO2 Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 97 Issue Pages 261901-261901,3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We calculate the quasiparticle energy spectrum of SnO2 within the GW approximation, properly taking into account the contribution of core levels to the energy corrections. The calculated fundamental gap is of 3.85 eV. We propose that the difference with respect to the experimental optical gap (3.6 eV) is due to excitonic effects in the latter. We further consider the effect applied on uniaxial pressure along the c-axis. Compared to GW, the effect of pressure on the quasiparticle energies and band gap is underestimated by the local-density approximation. The quasiparticle effective masses, however, appear to be well described by the latter.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000285768100015 Publication Date 2010-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 23 Open Access
Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:85759 Serial 2803
Permanent link to this record
 

 
Author Dixit, H.; Lamoen, D.; Partoens, B.
Title (down) Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions Type A1 Journal article
Year 2013 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 25 Issue 3 Pages 035501-35505
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000313100500010 Publication Date 2012-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 7 Open Access
Notes Fwo Approved Most recent IF: 2.649; 2013 IF: 2.223
Call Number UA @ lucian @ c:irua:105296 Serial 2801
Permanent link to this record
 

 
Author Yang, T.; Kong, Y.; Li, K.; Lu, Q.; Wang, Y.; Du, Y.; Schryvers, D.
Title (down) Quasicrystalline clusters transformed from C14-MgZn₂ nanoprecipitates in Al alloys Type A1 Journal article
Year 2023 Publication Materials characterization Abbreviated Journal
Volume 199 Issue Pages 112772-112777
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ultrafine faulty C14-MgZn2 Laves phase precipitates containing quasicrystalline clusters and demonstrating the formation of binary quasicrystalline precipitates with Penrose-like random-tiling were observed in the over-aged FCC matrix of a commercial 7N01 Al-Zn-Mg alloy, using high angle annular dark field scanning transmission electron microscopy. The evolution from C14-Laves phase to quasicrystalline clusters is illustrated, and five-fold symmetry can be found in both real and reciprocal spaces. Our findings reveal the possibility of quasicrystalline formation from Laves phase in a highly plastic metal matrix like Al and demonstrate the structural relationship between Laves phase and quasicrystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000954788800001 Publication Date 2023-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.7; 2023 IF: 2.714
Call Number UA @ admin @ c:irua:196106 Serial 8446
Permanent link to this record
 

 
Author Masir, M.R.; Matulis, A.; Peeters, F.M.
Title (down) Quasibound states of Schrödinger and Dirac electrons in a magnetic quantum dot Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 15 Pages 155451,1-155451,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The properties of a two-dimensional electron are investigated in the presence of a circular step magnetic-field profile. Both electrons with parabolic dispersion as well as Dirac electrons with linear dispersion are studied. We found that in such a magnetic quantum dot no electrons can be confined. Nevertheless close to the Landau levels quasibound states can exist with a rather long lifetime.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000265944200140 Publication Date 2009-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 55 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77026 Serial 2800
Permanent link to this record
 

 
Author Matulis, A.; Peeters, F.M.
Title (down) Quasibound states of quantum dots in single and bilayer graphene Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue Pages 115423,1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000254542800175 Publication Date 2008-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 153 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:69631 Serial 2799
Permanent link to this record
 

 
Author Baelus, B.J.; Kanda, A.; Vodolazov, D.Y.; Ootuka, Y.; Peeters, F.
Title (down) Quasi-one-dimensional vortex in an asymmetric superconducting ring Type A1 Journal article
Year 2007 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 460 Issue 1 Pages 320-321
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000249870500088 Publication Date 2007-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record
Impact Factor 1.404 Times cited Open Access
Notes Approved Most recent IF: 1.404; 2007 IF: 1.079
Call Number UA @ lucian @ c:irua:66611 Serial 2798
Permanent link to this record
 

 
Author Kolev, S.; Sun, S.; Trenchev, G.; Wang, W.; Wang, H.; Bogaerts, A.
Title (down) Quasi-Neutral Modeling of Gliding Arc Plasmas: Quasi-Neutral Modeling of Gliding Arc Plasmas Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600110
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The modelling of a gliding arc discharge (GAD) is studied by means of the quasineutral (QN) plasma modelling approach. The model is first evaluated for reliability and proper description of a gliding arc discharge at atmospheric pressure, by comparing with a more elaborate non-quasineutral (NQN) plasma model in two different geometries – a 2D axisymmetric and a Cartesian geometry. The NQN model is considered as a reference, since it provides a continuous self-consistent plasma description, including the near electrode regions. In general, the results of the QN model agree very well with those obtained from the NQN model. The small differences between both models are attributed to the approximations in the derivation of the QN model. The use of the QN model provides a substantial reduction of the computation time compared to the NQN model, which is crucial for the development of more complex models in three dimensions or with complicated chemistries. The latter is illustrated for (i) a reverse vortex flow(RVF) GAD in argon, and (ii) a GAD in CO2. The RVF discharge is modelled in three dimensions and the effect of the turbulent heat transport on the plasma and gas characteristics is

discussed. The GAD model in CO2 is in a 1D geometry with axial symmetry and provides results for the time evolution of the electron, gas and vibrational temperature of CO2, as well as for the molar fractions of the different species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403074000011 Publication Date 2016-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access
Notes Methusalem financing of the University of Antwerp; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:142982 Serial 4570
Permanent link to this record
 

 
Author Rezaei, M.; De Pue, J.; Seuntjens, P.; Joris, I.; Cornelis, W.
Title (down) Quasi 3D modelling of vadose zone soil-water flow for optimizing irrigation strategies : challenges, uncertainties and efficiencies Type A1 Journal article
Year 2017 Publication Environmental modelling and software Abbreviated Journal
Volume 93 Issue Pages 59-77
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A quasi 3D modelling approach was developed by integrating a crop growth (LINGRA-N) and a hydrological model (Hydrus-1D) to simulate and visualize water flow, soil-water storage, water stress and crop yield over a heterogeneous sandy field. We assessed computational efficiency and uncertainty with low to high-spatial resolution input factors (soil-hydraulic properties, soil-layer thickness and groundwater level) and evaluated four irrigation scenarios (no, current, optimized and triggered) to find the optimal and cost-effective irrigation scheduling. Numerical results showed that the simulation uncertainty was reduced when using the high-resolution information while a fast performance was maintained. The approach accurately determined the field scale irrigation requirements, taking into account spatial variations of input information. Optimal irrigation scheduling is obtained by triggered-irrigation resulting in saving up to similar to 300% water as compared to the current-irrigation, while yield increased similar to 1%. Overall, the approach can be useful to help decision makers and applicants in precision farming. (C) 2017 Published by Elsevier Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403512500005 Publication Date 2017-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144167 Serial 8445
Permanent link to this record
 

 
Author Worlock, J.M.; Peeters, F.M.; Cox, H.M.; Morais, P.C.
Title (down) Quantum-wire spectroscopy and epitaxial-growth velocities in InxGa1-xAs-InP heterostructures Type A1 Journal article
Year 1991 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 44 Issue Pages 8923-8926
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1991GN30400057 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 12 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:941 Serial 2797
Permanent link to this record
 

 
Author Iyikanat, F.; Senger, R.T.; Peeters, F.M.; Sahin, H.
Title (down) Quantum-Transport Characteristics of a p-n Junction on Single-Layer TiS3 Type A1 Journal article
Year 2016 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 17 Issue 17 Pages 3985-3991
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By using density functional theory and non-equilibrium Green's function-based methods, we investigated the electronic and transport properties of a TiS3 monolayer p-n junction. We constructed a lateral p-n junction on a TiS3 monolayer using Li and F adatoms. An applied bias voltage caused significant variability in the electronic and transport properties of the TiS3 p-n junction. In addition, the spin-dependent current-volt-age characteristics of the constructed TiS3 p-n junction were analyzed. Important device characteristics were found, such as negative differential resistance and rectifying diode behaviors for spin-polarized currents in the TiS3 p-n junction. These prominent conduction properties of the TiS3 p-n junction offer remarkable opportunities for the design of nanoelectronic devices based on a recently synthesized single-layered material.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000389534800018 Publication Date 2016-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 12 Open Access
Notes ; This work was supported by the bilateral project between TUBITAK (through Grant No. 113T050) and the Flemish Science Foundation (FWO-Vl). The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). FI, HS, and RTS acknowledge the support from TUBITAK Project No 114F397. H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 3.075
Call Number UA @ lucian @ c:irua:140245 Serial 4458
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title (down) Quantum-size effects on T-c in superconducting nanofilms Type A1 Journal article
Year 2006 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 76 Issue 3 Pages 498-504
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000241434300022 Publication Date 2006-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 31 Open Access
Notes Approved Most recent IF: 1.957; 2006 IF: 2.229
Call Number UA @ lucian @ c:irua:61463 Serial 2788
Permanent link to this record
 

 
Author Chen, Y.; Hong-Yu, W.; Peeters, F.M.; Shanenko, A.A.
Title (down) Quantum-size effects and thermal response of anti-Kramer-Pesch vortex core Type A1 Journal article
Year 2015 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 27 Issue 27 Pages 125701
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Since the 1960's it has been well known that the basic superconductive quantities can exhibit oscillations as functions of the thickness (diameter) in superconducting nanofilms (nanowires) due to the size quantization of the electronic spectrum. However, very little is known about the effects of quantum confinement on the microscopic properties of vortices. Based on a numerical solution to the Bogoliubov-de Gennes equations, we study the quantum-size oscillations of the vortex core resulting from the sequential interchange of the Kramer-Pesch and anti-Kramer-Pesch regimes with changing nanocylinder radius. The physics behind the anti-Kramer-Pesch anomaly is displayed by utilizing a semi-analytical Anderson approximate solution. We also demonstrate that the anti-Kramer-Pesch vortex core is robust against thermal smearing and results in a distinctive two-maxima structure in the local density of states, which can be used to identify the existence of the anti-Kramer-Pesch vortex.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000351294700018 Publication Date 2015-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 4 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China under Grant No. NSFC-11304134, the Flemish Science Foundation (FWO-Vl), and the Methusalem program. AAS acknowledges the support of the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). WHY acknowledges the support of Scientific Research Fund of Zhejiang Provincial Education Department (Y201120994). ; Approved Most recent IF: 2.649; 2015 IF: 2.346
Call Number c:irua:125460 Serial 2787
Permanent link to this record
 

 
Author Chang, K.; Xia, J.B.; Wu, H.B.; Feng, S.L.; Peeters, F.M.
Title (down) Quantum-confined magneto-Stark effect in diluted magnetic semiconductor coupled quantum wells Type A1 Journal article
Year 2002 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 80 Issue 10 Pages 1788-1790
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The magneto-Stark effect in a diluted magnetic semiconductor (DMS) coupled quantum well (CQW) induced by an in-plane magnetic field is investigate theoretically. Unlike the usual electro-Stark effects, in a DMS CQW the Lorenz force leads to a spatially separated exciton. The in-plane magnetic field can shift the ground state of the magnetoexciton from a zero in-plane center of mass (CM)/momentum to a finite CM momentum, and render the ground state of magnetoexciton stable against radiative recombination due to momentum conservation. (C) 2002 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000174181800036 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access
Notes Approved Most recent IF: 3.411; 2002 IF: 4.207
Call Number UA @ lucian @ c:irua:94932 Serial 2775
Permanent link to this record
 

 
Author Yu, CP.; Vega Ibañez, F.; Béché, A.; Verbeeck, J.
Title (down) Quantum wavefront shaping with a 48-element programmable phase plate for electrons Type A1 Journal Article
Year 2023 Publication SciPost Physics Abbreviated Journal SciPost Phys.
Volume 15 Issue Pages 223
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)
Abstract We present a 48-element programmable phase plate for coherent electron waves produced by a combination of photolithography and focused ion beam. This brings the highly successful concept of wavefront shaping from light optics into the realm of electron optics and provides an important new degree of freedom to prepare electron quantum states. The phase plate chip is mounted on an aperture rod placed in the C2 plane of a transmission electron microscope operating in the 100-300 kV range. The phase plate's behavior is characterized by a Gerchberg-Saxton algorithm, showing a phase sensitivity of 0.075 rad/mV at 300 kV, with a phase resolution of approximately 3x10e−3π. In addition, we provide a brief overview of possible use cases and support it with both simulated and experimental results.
Address
Corporate Author Thesis
Publisher SciPost Place of Publication Editor
Language English Wos 001116838500002 Publication Date 2023-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited 1 Open Access
Notes This project is the result of a long-term effort involving many differ- ent sources of funding: JV acknowledges funding from an ERC proof of concept project DLV- 789598 ADAPTEM, as well as a University IOF proof of concept project towards launching the AdaptEM spin-off and the eBEAM project, supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07-2020: emerging paradigms and com- munities. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3 and via The IMPRESS project from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. FV, JV, and AB acknowledge funding from G042820N ‘Explor- ing adaptive optics in transmission electron microscopy.’ CPY acknowledges funding from a TOP-BOF project from the University of Antwerp. Approved Most recent IF: 5.5; 2023 IF: NA
Call Number EMAT @ emat @c:irua:202037 Serial 8984
Permanent link to this record
 

 
Author Wu, Z.; Zhang, Z.Z.; Chang, K.; Peeters, F.M.
Title (down) Quantum tunneling through graphene nanorings Type A1 Journal article
Year 2010 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 21 Issue 18 Pages 185201
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate theoretically quantum transport through graphene nanorings in the presence of a perpendicular magnetic field. Our theoretical results demonstrate that the graphene nanorings behave like a resonant tunneling device, contrary to the Aharonov-Bohm oscillations found in conventional semiconductor rings. The resonant tunneling can be tuned by the Fermi energy, the size of the central part of the graphene nanorings and the external magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000276672100005 Publication Date 2010-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 34 Open Access
Notes ; This work is partly supported by the NSFC, the project from the Chinese Academy of Sciences, the bilateral project between China and Sweden, the Flemish Science Foundation (FWLO-Vl) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.44; 2010 IF: 3.652
Call Number UA @ lucian @ c:irua:95614 Serial 2796
Permanent link to this record
 

 
Author de Sousa, A.A.; Chaves, A.; Pereira, T.A.S.; Farias, G.A.; Peeters, F.M.
Title (down) Quantum tunneling between bent semiconductor nanowires Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 174301
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the electronic transport properties of two closely spaced L-shaped semiconductor quantum wires, for different configurations of the output channel widths as well as the distance between the wires. Within the effective-mass approximation, we solve the time-dependent Schrodinger equation using the split-operator technique that allows us to calculate the transmission probability, the total probability current, the conductance, and the wave function scattering between the energy subbands. We determine the maximum distance between the quantum wires below which a relevant non-zero transmission is still found. The transmission probability and the conductance show a strong dependence on the width of the output channel for small distances between the wires. (C) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000364584200020 Publication Date 2015-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 7 Open Access
Notes ; A. A. Sousa was financially supported by CAPES, under the PDSE Contract No. BEX 7177/13-5. T. A. S. Pereira was financially supported by PRONEX/CNPq/FAPEMAT 850109/2009 and by CAPES under process BEX 3299/13-9. This work was financially supported by PRONEX/CNPq/FUNCAP, the Science Without Borders program and the bilateral project CNPq-FWO. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number UA @ lucian @ c:irua:129544 Serial 4234
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Sorée, B.; Vandenberghe, W.G.
Title (down) Quantum transport study of contact resistance of edge- and top-contacted two-dimensional materials Type P1 Proceeding
Year 2023 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 27-29, 2023, Kobe, Japan Abbreviated Journal
Volume Issue Pages 45-48
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We calculate the contact resistance for an edge- and top-contacted 2D semiconductor. The contact region consists of a metal contacting a monolayer of MoS2 which is otherwise surrounded by SiO2. We use the quantum transmitting boundary method to compute the contact resistance as a function of the 2D semiconductor doping concentration. An effective mass Hamiltonian is used to describe the properties of the various materials. The electrostatic potentials are obtained by solving the Poisson equation numerically. We incorporate the effects of the image-force barrier lowering on the Schottky barrier and examine the impact on the contact resistance. At low doping concentrations, the contact resistance of the top contact is lower compared to edge contact, while at high doping concentrations, the edge contact exhibits lower resistance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001117703800012 Publication Date 2023-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-4-86348-803-8 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202839 Serial 9079
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P.
Title (down) Quantum transport of a two-dimensional electron gas in a spatially modulated magnetic field Type A1 Journal article
Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 47 Issue 3 Pages 1466-1473
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electrical transport properties of a two-dimensional electron gas axe studied in the presence of a perpendicular magnetic field B modulated weakly and periodically along one direction, B = (B + B0 cos Kx)z, with B0 much less than B, K = 2pi/a, and a being the period of the modulation. B0 is taken constant or proportional to B. The Landau levels broaden into bands and their width, proportional to the modulation strength B0, oscillates with B and gives rise to oscillations in the magnetoresistance at low B. These oscillations reflect the commensurability between the cyclotron diameter at the Fermi level and the period a and consequently hey are distinctly different from the Shubnikov-de Ha.as ones, at higher B, in period and temperature dependence. The bandwidth at the Fermi energy can be one order of magnitude larger, at low B, than that of the electric case for equal modulation strengths. The resulting magnetoresistance oscillations have a much higher amplitude than those of the electric case with which they are out of phase. Explicit asymptotic expressions are derived for the temperature dependence of the transport coefficients. The case when both electric and magnetic modulations are present is also considered. The position of the resulting oscillations depends on the ratio delta between the two modulation strengths. When the modulations are out of phase there is no shift in the position of the oscillations when delta varies and for a particular value of delta the oscillations are suppressed.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1993KJ51800042 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 169 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:5787 Serial 2795
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M.
Title (down) Quantum transport in graphene Hall bars: Effects of vacancy disorder Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages 235413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding model, we investigate the influence of vacancy disorder on electrical transport in graphene Hall bars in the presence of quantizing magnetic fields. Disorder, induced by a random distribution of monovacancies, breaks the graphene sublattice symmetry and creates states localized on the vacancies. These states are observable in the bend resistance, as well as in the total DOS. Their energy is proportional to the square root of the magnetic field, while their localization length is proportional to the cyclotron radius. At the energies of these localized states, the electron current flows around the monovacancies and, as we show, it can follow unexpected paths depending on the particular arrangement of vacancies. We study how these localized states change with the vacancy concentration, and what are the effects of including the next-nearest-neighbor hopping term. Our results are also compared with the situation when double vacancies are present in the system. Double vacancies also induce localized states, but their energy and magnetic field dependencies are different. Their localization energy scales linearly with the magnetic field, and their localization length appears not to depend on the field strength.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000389574200005 Publication Date 2016-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:140237 Serial 4459
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M.
Title (down) Quantum transport in graphene Hall bars : effects of side gates Type A1 Journal article
Year 2017 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 257 Issue 257 Pages 20-26
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Quantum electron transport in side-gated graphene Hall bars is investigated in the presence of quantizing external magnetic fields. The asymmetric potential of four side-gates distorts the otherwise flat bands of the relativistic Landau levels, and creates new propagating states in the Landau spectrum (i.e. snake states). The existence of these new states leads to an interesting modification of the bend and Hall resistances, with new quantizing plateaus appearing in close proximity of the Landau levels. The electron guiding in this system can be understood by studying the current density profiles of the incoming and outgoing modes. From the fact that guided electrons fully transmit without any backscattering (similarly to edge states), we are able to analytically predict the values of the quantized resistances, and they match the resistance data we obtain with our numerical (tight-binding) method. These insights in the electron guiding will be useful in predicting the resistances for other side-gate configurations, and possibly in other system geometries, as long as there is no backscattering of the guided states.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000401101400005 Publication Date 2017-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.554 Times cited Open Access
Notes ; This work was supported by the Methusalem programme of the Flemish government. One of us (F. M. Peeters) acknowledges correspondence with K. Novoselov. ; Approved Most recent IF: 1.554
Call Number UA @ lucian @ c:irua:143761 Serial 4604
Permanent link to this record