|   | 
Details
   web
Records
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title (up) Tuning the superconducting properties of nanomaterials Type H1 Book chapter
Year 2009 Publication Abbreviated Journal
Volume Issue Pages 1-14
Keywords H1 Book chapter; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract Electron continement and its effect on the superconducting-to-normal phase transition driven by a magentic field and/or a current is studied in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We find that in a parallel magneitc field and/or in the presence of a supercurrent the transition from the superconducting to the normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magentic field exhibits quantum-size oscillations with pronounced resonant enhancements as a function of the wire radius.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Dordrecht Editor
Language Wos 000274282900001 Publication Date 2009-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1874-6500; ISBN 978-90-481-3118-1 Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:99226 Serial 3761
Permanent link to this record
 

 
Author Cunha, S.M.; da Costa, D.R.; Pereira, J.M., Jr.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M.
Title (up) Tunneling properties in α-T₃ lattices : effects of symmetry-breaking terms Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 105 Issue 16 Pages 165402-165414
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The alpha-T3 lattice model interpolates a honeycomb (graphene-like) lattice and a T3 (also known as dice) lattice via the parameter alpha. These lattices are made up of three atoms per unit cell. This gives rise to an additional dispersionless flat band touching the conduction and valence bands. Electrons in this model are analogous to Dirac fermions with an enlarged pseudospin, which provides unusual tunneling features like omnidirectional Klein tunneling, also called super-Klein tunneling (SKT). However, it is unknown how small deviations in the equivalence between the atomic sites, i.e., variations in the alpha parameter, and the number of tunnel barriers changes the transmission properties. Moreover, it is interesting to learn how tunneling occurs through regions where the energy spectrum changes from linear with a middle flat band to a hyperbolic dispersion. In this paper we investigate these properties, its dependence on the number of square barriers and the alpha parameter for either gapped and gapless cases. Furthermore, we compare these results to the case where electrons tunnel from a region with linear dispersion to a region with a bandgap. In the latter case, contrary to tunneling through a potential barrier, the SKT is no longer observed. Finally, we find specific cases where transmission is allowed due to a symmetry breaking of sublattice equivalence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000805195200001 Publication Date 2022-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:188614 Serial 7222
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M.
Title (up) Tunneling through a combined magnetic-potential barrier Type A1 Journal article
Year 2001 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 225 Issue Pages 433-441
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited Open Access
Notes Approved Most recent IF: 1.674; 2001 IF: 0.873
Call Number UA @ lucian @ c:irua:37309 Serial 3764
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M.
Title (up) Tunneling, conductance, and wavevector filtering through magnetic barriers in bilayer graphene Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 3 Pages 035409,1-035409,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We evaluate the transmission and conductance through magnetic barrier structures in bilayer graphene. In particular we consider a magnetic step, single and double barriers, -function barriers, as well as barrier structures that have average magnetic field equal to zero. The transmission depends strongly on the direction of the incident electron or hole wavevector and gives the possibility to construct a direction-dependent wavevector filter. The results contrast sharply with previous results on single-layer graphene. In general, the angular range of perfect transmission becomes drastically wider and the gaps narrower. This perfect transmission range decreases with the number of barriers, the barrier width, and the magnetic field. Depending on the structure, a variety of transmission resonances occur that are reflected in the conductance through the structure.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000262978200107 Publication Date 2009-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 80 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:75983 Serial 3762
Permanent link to this record
 

 
Author Peeters, F.M.; Schweigert, V.A.
Title (up) Two electron quantum disks Type A1 Journal article
Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 53 Issue Pages 1468-1474
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996TU29000081 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 204 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15805 Serial 3780
Permanent link to this record
 

 
Author Baelus, B.J.; Kanda, A.; Peeters, F.M.; Ootuka, Y.; Kadowaki, K.
Title (up) Two kinds of vortex states in thin mesoscopic superconductors Type A1 Journal article
Year 2006 Publication Journal of physics : conference series T2 – Journal of physics: conference series Abbreviated Journal
Volume 43 Issue Pages 647-650
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Experimentally, multivortex states and giant vortex states in mesoscopic superconductors can be distinguished directly by using the multiple-small-tunnel-junctions, and indirectly by studying the temperature dependence of the expulsion fields. These experimental results are compared with the theoretical prediction from the nonlinear Ginzburg- Landau theory.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000277479400158 Publication Date 2006-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:82762 Serial 3782
Permanent link to this record
 

 
Author Hassani, N.; Movafegh-Ghadirli, A.; Mahdavifar, Z.; Peeters, F.M.; Neek-Amal, M.
Title (up) Two new members of the covalent organic frameworks family : crystalline 2D-oxocarbon and 3D-borocarbon structures Type A1 Journal article
Year 2024 Publication Computational materials science Abbreviated Journal
Volume 241 Issue Pages 1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Oxocarbons, known for over two centuries, have recently revealed a long-awaited facet: two-dimensional crystalline structures. Employing an intelligent global optimization algorithm (IGOA) alongside densityfunctional calculations, we unearthed a quasi -flat oxocarbon (C 6 0 6 ), featuring an oxygen -decorated hole, and a novel 3D-borocarbon. Comparative analyses with recently synthesized isostructures, such as 2D -porous carbon nitride (C 6 N 6 ) and 2D -porous boroxine (B 6 0 6 ), highlight the unique attributes of these compounds. All structures share a common stoichiometry of X 6 Y 6 (which we call COF-66), where X = B, C, and Y = B, N, O (with X not equal Y), exhibiting a 2D -crystalline structure, except for borocarbon C 6 B 6 , which forms a 3D crystal. In our comprehensive study, we conducted a detailed exploration of the electronic structure of X 6 Y 6 compounds, scrutinizing their thermodynamic properties and systematically evaluating phonon stability criteria. With expansive surface areas, diverse pore sizes, biocompatibility, pi-conjugation, and distinctive photoelectric properties, these structures, belonging to the covalent organic framework (COF) family, present enticing prospects for fundamental research and hold potential for biosensing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001215960700001 Publication Date 2024-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.3 Times cited Open Access
Notes Approved Most recent IF: 3.3; 2024 IF: 2.292
Call Number UA @ admin @ c:irua:206005 Serial 9179
Permanent link to this record
 

 
Author Partoens, B.; Peeters, F.M.
Title (up) Two vertically coupled quantum dots in a magnetic field Type A1 Journal article
Year 2001 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 298 Issue Pages 282-286
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000168992800058 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.386 Times cited 8 Open Access
Notes Approved Most recent IF: 1.386; 2001 IF: 0.663
Call Number UA @ lucian @ c:irua:34350 Serial 3787
Permanent link to this record
 

 
Author Castelano, L.K.; Hai, G.Q.; Partoens, B.; Peeters, F.M.
Title (up) Two vertically coupled quantum rings with tunneling Type A1 Journal article
Year 2006 Publication Brazilian journal of physics Abbreviated Journal Braz J Phys
Volume 36 Issue 3b Pages 936-939
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication São Paulo Editor
Language Wos 000242535600036 Publication Date 2006-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0103-9733; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.732 Times cited 2 Open Access
Notes Approved Most recent IF: 0.732; 2006 IF: 0.494
Call Number UA @ lucian @ c:irua:62133 Serial 3788
Permanent link to this record
 

 
Author Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title (up) Two-band superconductors : extended Ginzburg-Landau formalism by a systematic expansion in small deviation from the critical temperature Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 14 Pages 144514
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We derive the extended Ginzburg-Landau (GL) formalism for a clean s-wave two-band superconductor by employing a systematic expansion of the free-energy functional and the corresponding matrix gap equation in powers of the small deviation from the critical temperature tau = 1 – T/T-c. The two lowest orders of this expansion produce the equation for T-c and the standard GL theory. It is shown that in agreement with previous studies, this two-band GL theory maps onto the single-band GL model and thus fails to describe the difference in the spatial profiles of the two-band condensates. We prove that this difference appears already in the leading correction to the standard GL theory, which constitutes the extended GL formalism. We derive linear differential equations that determine the leading corrections to the band order parameters and magnetic field, discuss the validity of these equations, and consider examples of an important interplay between the band condensates. Finally, we present numerical results for the thermodynamic critical magnetic field and temperature-dependent band gaps for recent materials of interest, which are in very good agreement with those obtained from the full BCS approach in a wide temperature range. To this end, we emphasize the advantages of our extended GL theory in comparison with the often used two-component GL-like model based on an unreconstructed two-band generalization of the Gor'kov derivation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309776800001 Publication Date 2012-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 44 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Authors are indebted to Y. Singh and R. Prozorov for discussions and for providing recent experimental data. A. V. is grateful to W. Pesch for stimulating discussions and critical comments on this work. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101798 Serial 3769
Permanent link to this record
 

 
Author Komendová, L.; Chen, Y.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.
Title (up) Two-band superconductors : hidden criticality deep in the superconducting state Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 108 Issue 20 Pages 207002-207002,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show that two-band superconductors harbor hidden criticality deep in the superconducting state, stemming from the critical temperature of the weaker band taken as an independent system. For sufficiently small interband coupling gamma the coherence length of the weaker band exhibits a remarkable deviation from the conventional monotonic increase with temperature, namely, a pronounced peak close to the hidden critical point. The magnitude of the peak scales as proportional to gamma(-mu), with the Landau critical exponent mu = 1/3, the same as found for the mean-field critical behavior with respect to the source field in ferromagnets and ferroelectrics. Here reported hidden criticality of multiband superconductors can be experimentally observed by, e.g., imaging of the variations of the vortex core in a broader temperature range. Similar effects are expected for the superconducting multilayers.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000304064000017 Publication Date 2012-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 75 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Useful discussions with A. V. Vagov are acknowledged. ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:98945 Serial 3770
Permanent link to this record
 

 
Author Yang, W.; Kong, M.; Milošević, M.V.; Zeng, Z.; Peeters, F.M.
Title (up) Two-dimensional binary clusters in a hard-wall trap: structural and spectral properties Type A1 Journal article
Year 2007 Publication Physical review E Abbreviated Journal Phys Rev E
Volume 76 Issue 4 Pages art.041404:part 1
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000250621900066 Publication Date 2007-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 9 Open Access
Notes Approved Most recent IF: 2.366; 2007 IF: 2.483
Call Number UA @ lucian @ c:irua:67325 Serial 3772
Permanent link to this record
 

 
Author Bafekry, A.; Shayesteh, S.F.; Peeters, F.M.
Title (up) Two-dimensional carbon nitride (2DCN) nanosheets : tuning of novel electronic and magnetic properties by hydrogenation, atom substitution and defect engineering Type A1 Journal article
Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 126 Issue 21 Pages 215104
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By employing first-principles calculations within the framework of density functional theory, we investigated the structural, electronic, and magnetic properties of graphene and various two-dimensional carbon-nitride (2DNC) nanosheets. The different 2DCN gives rise to diverse electronic properties such as metals (C3N2), semimetals (C4N and C9N4), half-metals (C4N3), ferromagnetic-metals (C9N7), semiconductors (C2N, C3N, C3N4, C6N6, and C6N8), spin-glass semiconductors (C10N9 and C14N12), and insulators (C2N2). Furthermore, the effects of adsorption and substitution of hydrogen atoms as well as N-vacancy defects on the electronic and magnetic properties are systematically studied. The introduction of point defects, including N vacancies, interstitial H impurity into graphene and different 2DCN crystals, results in very different band structures. Defect engineering leads to the discovery of potentially exotic properties that make 2DCN interesting for future investigations and emerging technological applications with precisely tailored properties. These properties can be useful for applications in various fields such as catalysis, energy storage, nanoelectronic devices, spintronics, optoelectronics, and nanosensors. Published under license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000504007300023 Publication Date 2019-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 70 Open Access
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:165733 Serial 6329
Permanent link to this record
 

 
Author Sreepal, V.; Yagmurcukardes, M.; Vasu, K.S.; Kelly, D.J.; Taylor, S.F.R.; Kravets, V.G.; Kudrynskyi, Z.; Kovalyuk, Z.D.; Patane, A.; Grigorenko, A.N.; Haigh, S.J.; Hardacre, C.; Eaves, L.; Sahin, H.; Geim, A.K.; Peeters, F.M.; Nair, R.R.
Title (up) Two-dimensional covalent crystals by chemical conversion of thin van der Waals materials Type A1 Journal article
Year 2019 Publication Nano letters Abbreviated Journal Nano Lett
Volume 19 Issue 9 Pages 6475-6481
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Most of the studied two-dimensional (2D) materials have been obtained by exfoliation of van der Waals crystals. Recently, there has been growing interest in fabricating synthetic 2D crystals which have no layered bulk analogues. These efforts have been focused mainly on the surface growth of molecules in high vacuum. Here, we report an approach to making 2D crystals of covalent solids by chemical conversion of van der Waals layers. As an example, we used 2D indium selenide (InSe) obtained by exfoliation and converted it by direct fluorination into indium fluoride (InF3), which has a nonlayered, rhombohedral structure and therefore cannot possibly be obtained by exfoliation. The conversion of InSe into InF3 is found to be feasible for thicknesses down to three layers of InSe, and the obtained stable InF3 layers are doped with selenium. We study this new 2D material by optical, electron transport, and Raman measurements and show that it is a semiconductor with a direct bandgap of 2.2 eV, exhibiting high optical transparency across the visible and infrared spectral ranges. We also demonstrate the scalability of our approach by chemical conversion of large-area, thin InSe laminates obtained by liquid exfoliation, into InF3 films. The concept of chemical conversion of cleavable thin van der Waals crystals into covalently bonded noncleavable ones opens exciting prospects for synthesizing a wide variety of novel atomically thin covalent crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486361900083 Publication Date 2019-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 32 Open Access
Notes ; This work was supported by the Royal Society, the European Research Council (contract 679689 and EvoluTEM 715502), and Engineering and Physical Sciences Research Council, U.K. (EP/N013670/1), The authors acknowledge the use of the facilities at the Henry Royce Institute for Advanced Materials and associated support services. H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. M.Y. acknowledges the Flemish Science Foundation (FWO-Vl) for a postdoctoral fellowship. S.J.H. and D.J.K. acknowledge support from EPSRC (EP/P009050/1) and the NowNANO CDT. ; Approved Most recent IF: 12.712
Call Number UA @ admin @ c:irua:162818 Serial 5431
Permanent link to this record
 

 
Author Ibrahim, I.S.; Peeters, F.M.
Title (up) Two-dimensional electrons in lateral magnetic superlattices Type A1 Journal article
Year 1995 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 52 Issue Pages 17321-17334
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1995TN92700054 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 169 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12191 Serial 3773
Permanent link to this record
 

 
Author Peeters, F.M.; Matulis, A.; Ibrahim, I.S.
Title (up) Two-dimensional electrons in modulated magnetic fields Type A1 Journal article
Year 1996 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 227 Issue Pages 131-137
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1996VR71500035 Publication Date 2003-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.319 Times cited 17 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15811 Serial 3774
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M.; Peeters, F.M.
Title (up) Two-dimensional graphitic carbon nitrides: strain-tunable ferromagnetic ordering Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 16 Pages 165407-165408
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principle calculations, we systematically study strain tuning of the electronic properties of two- dimensional graphitic carbon nitride nanosheets with empirical formula CnNm. We found the following: (i) the ferromagnetic ordered state in the metal-free systems (n, m) = (4,3), (10,9), and (14,12) remains stable in the presence of strain of about 6%. However, the system (9,7) loses its ferromagnetic ordering when increasing strain. This is due to the presence of topological defects in the (9,7) system, which eliminates the asymmetry between spin up and spin down of the p(z) orbitals when strain is applied. (ii) By applying uniaxial strain, a band gap opens in systems which are initially gapless. (iii) In semiconducting systems which have an initial gap of about 1 eV, the band gap is closed with applying uniaxial strain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000523630200012 Publication Date 2020-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 27 Open Access
Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:168560 Serial 6643
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Gonzalez-Hernandez, R.; Rivera-Julio, J.; Espejo, C.; Milošević, M.V.; Peeters, F.M.
Title (up) Two-dimensional hydrogenated buckled gallium arsenide: an ab initio study Type A1 Journal article
Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 32 Issue 14 Pages 145502
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract First-principles calculations have been carried out to investigate the stability, structural and electronic properties of two-dimensional (2D) hydrogenated GaAs with three possible geometries: chair, zigzag-line and boat configurations. The effect of van der Waals interactions on 2D H-GaAs systems has also been studied. These configurations were found to be energetic and dynamic stable, as well as having a semiconducting character. Although 2D GaAs adsorbed with H tends to form a zigzag-line configuration, the energy differences between chair, zigzag-line and boat are very small which implies the metastability of the system. Chair and boat configurations display a – direct bandgap nature, while pristine 2D-GaAs and zigzag-line are indirect semiconductors. The bandgap sizes of all configurations are also hydrogen dependent, and wider than that of pristine 2D-GaAs with both PBE and HSE functionals. Even though DFT-vdW interactions increase the adsorption energies and reduce the equilibrium distances of H-GaAs systems, it presents, qualitatively, the same physical results on the stability and electronic properties of our studied systems with PBE functional. According to our results, 2D buckled gallium arsenide is a good candidate to be synthesized by hydrogen surface passivation as its group III-V partners 2D buckled gallium nitride and boron nitride. The hydrogenation of 2D-GaAs tunes the bandgap of pristine 2D-GaAs, which makes it a potential candidate for optoelectronic applications in the blue and violet ranges of the visible electromagnetic spectrum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000507894400001 Publication Date 2019-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.7 Times cited 2 Open Access
Notes ; This work has been carried out by the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712-Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216. The authors gratefully acknowledge the support from the High Performance Computing core facility CalcUA and the TOPBOF project at the University of Antwerp, Belgium; and the computing time granted on the supercomputer Mogon at Johannes Gutenberg University Mainz (hpc.uni-mainz.de). ; Approved Most recent IF: 2.7; 2020 IF: 2.649
Call Number UA @ admin @ c:irua:165644 Serial 6330
Permanent link to this record
 

 
Author Chen, X.; Li, L.; Peeters, F.M.; Sanyal, B.
Title (up) Two-dimensional oxygen functionalized honeycomb and zigzag dumbbell silicene with robust Dirac cones Type A1 Journal article
Year 2021 Publication New Journal Of Physics Abbreviated Journal New J Phys
Volume 23 Issue 2 Pages 023007
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Dumbbell-like structures are recently found to be energetically favored in group IV two-dimensional (2D) materials, exhibiting rich physics and many interesting properties. In this paper, using first-principles calculations, we have investigated the oxidized form of the hexagonal honeycomb (ODB-h) and zigzag dumbbell silicene (ODB-z). We confirm that both oxidization processes are energetically favorable, and their phonon spectra further demonstrate the dynamic stability. Contrary to the pristine dumbbell silicene structures (PDB-h and PDB-z silicene), these oxidized products ODB-h and ODB-z silicene are both semimetals with Dirac cones at the Fermi level. The Dirac cones of ODB-h and ODB-z silicene are at the K point and between Y and Gamma points respectively, possessing high Fermi velocities of 3.1 x 10(5) m s(-1) (ODB-h) and 2.9-3.4 x 10(5) m s(-1) (ODB-z). The origin of the Dirac cones is further explained by tight-binding models. The semimetallic properties of ODB-h and ODB-z are sensitive to compression due to the self-absorption effect, but quite robust against the tensile strain. These outstanding properties make oxidized dumbbell silicene a promising material for quantum computing and high-speed electronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000616114900001 Publication Date 2021-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 3.786
Call Number UA @ admin @ c:irua:176575 Serial 6741
Permanent link to this record
 

 
Author Yu, Y.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L.
Title (up) Two-dimensional semimetal states in transition metal trichlorides : a first-principles study Type A1 Journal article
Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 121 Issue 11 Pages 112405-112407
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The two-dimensional (2D) transition metal trihalide (TMX3, X = Cl, Br, I) family has attracted considerable attention in recent years due to the realization of CrCl3, CrBr3, and CrI3 monolayers. Up to now, the main focus of the theoretically predicted TMX3 monolayers has been on the Chern insulator states, which can realize the quantum anomalous Hall effect. Here, using first-principles calculations, we theoretically demonstrate that the stable OsCl3 monolayer has a ferromagnetic ground state and a spin-polarized Dirac point without spin-orbit coupling (SOC), which disappears in the band structure of a Janus OsBr1.5Cl1.5 monolayer. We find that OsCl3 exhibits in-plane magnetization when SOC is included. By manipulating the magnetization direction along the C-2 symmetry axis of the OsCl3 structure, a gapless half-Dirac semimetal state with SOC can be achieved, which is different from the gapped Chern insulator state. Both semimetal states of OsCl3 monolayer without and with SOC exhibit a linear half-Dirac point (twofold degenerate) with high Fermi velocities. The achievement of the 2D semimetal state with SOC is expected to be found in other TMX3 monolayers, and we confirm it in a TiCl3 monolayer. This provides a different perspective to study the band structure with SOC of the 2D TMX3 family.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000863219400003 Publication Date 2022-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 4
Call Number UA @ admin @ c:irua:191541 Serial 7223
Permanent link to this record
 

 
Author Matulis, A.; Peeters, F.M.; Vasilopoulos, P.
Title (up) Two-dimensional tunneling through magnetic barriers Type A1 Journal article
Year 1994 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci
Volume 305 Issue Pages 434-437
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1994ND67400082 Publication Date 2002-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.925 Times cited 2 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:9379 Serial 3778
Permanent link to this record
 

 
Author Cabral, L.R.E.; de Aquino, B.R.C.H.T.; de Souza Silva, C.C.; Milošević, M.V.; Peeters, F.M.
Title (up) Two-shell vortex and antivortex dynamics in a Corbino superconducting disk Type A1 Journal article
Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 014515
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We examine theoretically the dynamics of two vortex shells in pinning-free superconducting thin disks in the Corbino geometry. In the first considered case, the inner shell is composed of vortices and the outer one of antivortices, corresponding to a state induced by the stray field of an off-plane magnetic dipole placed on top of the superconductor. In the second considered case, both shells comprise vortices induced by a homogeneous external field. We derive the equation of motion for each shell within the Bardeen-Stephen model and study the dynamics analytically by assuming both shells are rigid and commensurate. In both cases, two distinct regimes for vortex shell motion are identified: For low applied currents the entire configuration rotates rigidly, while above a threshold current the shells decouple from each other and rotate at different angular velocities. Analytical expressions for the decoupling current, the recombination time in the decoupled phases, as well as the voltage-current characteristics are presented. Our analytical results are in excellent agreement with numerical molecular dynamics simulations of the full many-vortex problem.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000368481600003 Publication Date 2016-01-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by the Brazilian Science Agencies CAPES, CNPq, and FACEPE under Grants No. APQ-1381-1.05/12, No. APQ 2017-1.05/12, and No. APQ-0598/1.05-08 and by EU-COST Action No. MP1201 and the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:131541 Serial 4270
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M.
Title (up) Type II quantum dots in magnetic fields: excitonic behaviour Type A1 Journal article
Year 2003 Publication Microelectronics journal Abbreviated Journal Microelectron J
Volume 34 Issue Pages 347-350
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Luton Editor
Language Wos 000183607400007 Publication Date 2003-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.163 Times cited 1 Open Access
Notes Approved Most recent IF: 1.163; 2003 IF: 0.565
Call Number UA @ lucian @ c:irua:62450 Serial 3790
Permanent link to this record
 

 
Author Deo, P.S.; Schweigert, V.A.; Peeters, F.M.; Geim, A.K.
Title (up) Type of phase transitions in a mesoscopic superconducting disc Type A1 Journal article
Year 1997 Publication Physica: E Abbreviated Journal Physica E
Volume 1 Issue Pages 297-300
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000074364500064 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record;
Impact Factor 2.221 Times cited Open Access
Notes Approved Most recent IF: 2.221; 1997 IF: NA
Call Number UA @ lucian @ c:irua:19299 Serial 3791
Permanent link to this record
 

 
Author Wang, W.; Li, L.; Kong, X.; Van Duppen, B.; Peeters, F.M.
Title (up) T4,4,4-graphyne : a 2D carbon allotrope with an intrinsic direct bandgap Type A1 Journal article
Year 2019 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 293 Issue 293 Pages 23-27
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A novel two-dimensional (2D) structurally stable carbon allotrope is proposed using first-principles calculations, which is a promising material for water purification and for electronic devices due to its unique porous structure and electronic properties. Rectangular and hexagonal rings are connected with acetylenic linkages, forming a nanoporous structure with a pore size of 6.41 angstrom, which is known as T-4,T-4,T-4-graphyne. This 2D sheet exhibits a direct bandgap of 0.63 eV at the M point, which originates from the p(z)( )atomic orbitals of carbon atoms as confirmed by a tight-binding model. Importantly, T-4,T-4,T-4-graphyne is found to be energetically more preferable than the experimentally realized beta-graphdiyne, it is dynamically stable and can withstand temperatures up to 1500 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460909600005 Publication Date 2019-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 17 Open Access
Notes ; This work was supported by National Natural Science Foundation of China (Grant Nos. 11404214 and 11455015), the China Scholarship Council (CSC), the Science and Technology Research Foundation of Jiangxi Provincial Education Department (Grant Nos. GJJ180868 and GJJ161062) the Fonds Wetenschappelijk Onderzoek (FWO-V1), and the FLAG-ERA project TRANS2DTMD. BVD was supported by the Research Foundation – Flanders (FWO-V1) through a postdoctoral fellowship. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government department EWI. ; Approved Most recent IF: 1.554
Call Number UA @ admin @ c:irua:158503 Serial 5234
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M.
Title (up) Ultra-small metallic grains : effect of statistical fluctuations of the chemical potential on superconducting correlations and vice versa Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 27 Pages 275701
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superconducting correlations in an isolated metallic grain are governed by the interplay between two energy scales: the mean level spacing delta and the bulk pairing gap Delta(0), which are strongly influenced by the position of the chemical potential with respect to the closest single-electron level. In turn superconducting correlations affect the position of the chemical potential. Within the parity projected BCS model we investigate the probability distribution of the chemical potential in a superconducting grain with randomly distributed single-electron levels. Taking into account statistical fluctuations of the chemical potential due to the pairing interaction, we find that such fluctuations have a significant impact on the critical level spacing delta(c) at which the superconducting correlations cease: the critical ratio delta(c)/Delta(0) at which superconductivity disappears is found to be increased.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000305653100012 Publication Date 2012-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 9 Open Access
Notes ; This work was supported by the European Community under the Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR), the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF network INSTANS. MDC and AAS are grateful to A Vagov for stimulating discussions. ; Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:100280 Serial 3793
Permanent link to this record
 

 
Author Baskurt, M.; Nair, R.R.; Peeters, F.M.; Sahin, H.
Title (up) Ultra-thin structures of manganese fluorides : conversion from manganese dichalcogenides by fluorination Type A1 Journal article
Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys
Volume 23 Issue 17 Pages 10218-10224
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this study, it is predicted by density functional theory calculations that graphene-like novel ultra-thin phases of manganese fluoride crystals, that have nonlayered structures in their bulk form, can be stabilized by fluorination of manganese dichalcogenide crystals. First, it is shown that substitution of fluorine atoms with chalcogens in the manganese dichalcogenide host lattice is favorable. Among possible crystal formations, three stable ultra-thin structures of manganese fluoride, 1H-MnF2, 1T-MnF2 and MnF3, are found to be stable by total energy optimization calculations. In addition, phonon calculations and Raman activity analysis reveal that predicted novel single-layers are dynamically stable crystal structures displaying distinctive characteristic peaks in their vibrational spectrum enabling experimental determination of the corresponding phases. Differing from 1H-MnF2 antiferromagnetic (AFM) large gap semiconductor, 1T-MnF2 and MnF3 single-layers are semiconductors with ferromagnetic (FM) ground state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000641719700001 Publication Date 2021-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:178252 Serial 7043
Permanent link to this record
 

 
Author Misko, V.R.; Lin, N.S.; Peeters, F.M.
Title (up) Unconventional dynamics of vortex shells in mesoscopic superconducting corbino disks Type A1 Journal article
Year 2010 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 470 Issue 19 Pages 939-941
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The dynamics of vortex matter in mesoscopic superconducting Corbino disk is strongly influenced by the discrete vortex structure arranged in shells. While in previous works the vortex dynamics has been studied in large (macroscopic) and in very small mesoscopic disks (containing only few shells), in the intermediate-size regime it is much more complex and unusual, due to: (i) the competition between the vortexvortex interaction and confinement and (ii) (in)commensurability among the vortex shells. We found that the interplay between these effects can result in a very unusual vortex dynamical behavior: (i) unconventional angular melting (i.e., propagating from the boundary, where the shear stress is minimum, towards the center) and (ii) unconventional dynamics of shells (i.e., the inversion of shell velocities with respect to the gradient driving force). This unusual behavior is found for different number of shells.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000282454400059 Publication Date 2010-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 3 Open Access
Notes ; ; Approved Most recent IF: 1.404; 2010 IF: 1.415
Call Number UA @ lucian @ c:irua:85036 Serial 3799
Permanent link to this record
 

 
Author Li, C.; Lyu, Y.-Y.; Yue, W.-C.; Huang, P.; Li, H.; Li, T.; Wang, C.-G.; Yuan, Z.; Dong, Y.; Ma, X.; Tu, X.; Tao, T.; Dong, S.; He, L.; Jia, X.; Sun, G.; Kang, L.; Wang, H.; Peeters, F.M.; Milošević, M.V.; Wu, P.; Wang, Y.-L.
Title (up) Unconventional superconducting diode effects via antisymmetry and antisymmetry breaking Type A1 Journal article
Year 2024 Publication Nano letters Abbreviated Journal
Volume 24 Issue 14 Pages 4108-4116
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Symmetry breaking plays a pivotal role in unlocking intriguing properties and functionalities in material systems. For example, the breaking of spatial and temporal symmetries leads to a fascinating phenomenon: the superconducting diode effect. However, generating and precisely controlling the superconducting diode effect pose significant challenges. Here, we take a novel route with the deliberate manipulation of magnetic charge potentials to realize unconventional superconducting flux-quantum diode effects. We achieve this through suitably tailored nanoengineered arrays of nanobar magnets on top of a superconducting thin film. We demonstrate the vital roles of inversion antisymmetry and its breaking in evoking unconventional superconducting effects, namely a magnetically symmetric diode effect and an odd-parity magnetotransport effect. These effects are nonvolatilely controllable through in situ magnetization switching of the nanobar magnets. Our findings promote the use of antisymmetry (breaking) for initiating unconventional superconducting properties, paving the way for exciting prospects and innovative functionalities in superconducting electronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001193010700001 Publication Date 2024-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record
Impact Factor 10.8 Times cited Open Access
Notes Approved Most recent IF: 10.8; 2024 IF: 12.712
Call Number UA @ admin @ c:irua:205553 Serial 9180
Permanent link to this record
 

 
Author Lin, N.S.; Misko, V.R.; Peeters, F.M.
Title (up) Unconventional vortex dynamics in mesoscopic superconducting corbino disks Type A1 Journal article
Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 102 Issue 19 Pages 197003,1-197003,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The discrete shell structure of vortex matter strongly influences the flux dynamics in mesoscopic superconducting Corbino disks. While the dynamical behavior is well understood in large and in very small disks, in the intermediate-size regime it occurs to be much more complex and unusual, due to (in)commensurability between the vortex shells. We demonstrate unconventional vortex dynamics (inversion of shell velocities with respect to the gradient driving force) and angular melting (propagating from the boundary where the shear stress is minimum, towards the center) in mesoscopic Corbino disks.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000266207700063 Publication Date 2009-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 18 Open Access
Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
Call Number UA @ lucian @ c:irua:77396 Serial 3800
Permanent link to this record