Number of records found: 7537
 | 
Citations
 | 
   web
Compositional changes of Pd-Au bimetallic nanoclusters upon hydrogenation”. di Vece M, Bals S, Lievens P, Van Tendeloo G, Physical review : B : solid state 80, 125420 (2009). http://doi.org/10.1103/PhysRevB.80.125420
toggle visibility
Compositional characterization of nickel silicides by HAADF-STEM imaging”. Verleysen E, Bender H, Richard O, Schryvers D, Vandervorst W, Journal of materials science 46, 2001 (2011). http://doi.org/10.1007/s10853-010-5191-z
toggle visibility
Compositional distinctions between 16th century “Façon-de-Venise&rdquo, and Venetian glass vessels, excavated in Antwerp, Belgium”. Deraedt I, Janssens K, Veeckman J, Journal of analytical atomic spectroscopy 14, 483 (1999). http://doi.org/10.1039/A808385A
toggle visibility
Compositional effects on the growth of Mg(M)O films”. Saraiva M, Georgieva V, Mahieu S, van Aeken K, Bogaerts A, Depla D, Journal of applied physics 107, 034902 (2010). http://doi.org/10.1063/1.3284949
toggle visibility
Compositional study of prehistoric pigments (Carriqueo rock shelter, Argentina) by synchrotron radiation X-ray diffraction”. Vazquez C, Martin Palacios O, Darchuk L, Marco Parra L-M, Powder diffraction 25, 264 (2010). http://doi.org/10.1154/1.3478884
toggle visibility
Compositionally induced phase transition in the Ca2MnGa1-xAlxO5 solid solutions: ordering of tetrahedral chains in brownmillerite structure”. Abakumov AM, Kalyuzhnaya AS, Rozova MG, Antipov EV, Hadermann J, Van Tendeloo G, Solid state sciences 7, 801 (2005). http://doi.org/10.1016/j.solidstatesciences.2005.01.020
toggle visibility
Comprehensive description of a Grimm-type glow discharge source used for optical emission spectrometry: a mathematical simulation”. Bogaerts A, Gijbels R, Spectrochimica acta: part B : atomic spectroscopy 53, 437 (1998). http://doi.org/10.1016/S0584-8547(97)00148-1
toggle visibility
Comprehensive investigation of the extremely low lattice thermal conductivity and thermoelectric properties of BaIn₂Te₄”. Gurel T, Altunay YA, Bulut P, Yildirim S, Sevik C, Physical review B 106, 195204 (2022). http://doi.org/10.1103/PHYSREVB.106.195204
toggle visibility
Comprehensive microanalytical study of welding aerosols with x-ray and Raman based methods”. Worobiec A, Stefaniak EA, Kiro S, Oprya M, Bekshaev A, Spolnik Z, Potgieter-Vermaak SS, Ennan A, Van Grieken R, X-ray spectrometry 36, 328 (2007). http://doi.org/10.1002/XRS.979
toggle visibility
Comprehensive modelling network for dc glow discharges in argon”. Bogaerts A, Plasma sources science and technology 8, 210 (1999). http://doi.org/10.1088/0963-0252/8/2/003
toggle visibility
Comprehensive three-dimensional modeling network for a dc glow discharge plasma”. Bogaerts A, Gijbels R, Plasma physics reports 24, 573 (1998)
toggle visibility
Computation and parametrization of the temperature dependence of Debye-Waller factors for group IV, III-V and II-VI semiconductors”. Schowalter M, Rosenauer A, Titantah JT, Lamoen D, Acta crystallographica: section A: foundations of crystallography 65, 5 (2009). http://doi.org/10.1107/S0108767308031437
toggle visibility
Computation of the thermal expansion coefficient of graphene with Gaussian approximation potentials”. Demiroglu I, Karaaslan Y, Kocabas T, Keceli M, Vazquez-Mayagoitia A, Sevik C, Journal Of Physical Chemistry C 125, 14409 (2021). http://doi.org/10.1021/ACS.JPCC.1C01888
toggle visibility
Computational aspects in quantitative EELS”. Verbeeck J, Van Aert S, Zhang L, Haiyan T, Schattschneider P, Rosenauer A, Microscopy and microanalysis 16, 240 (2010). http://doi.org/10.1017/S143192761005511X
toggle visibility
Computational comparisons between the conventional multislice method and the third-order multislice method for calculating high-energy electron diffraction and imaging”. Chen JH, van Dyck D, op de Beeck M, van Landuyt J, Ultramicroscopy 69, 219 (1997)
toggle visibility
Computational fluid dynamics can detect changes in airway resistance in asthmatics after acute bronchodilation”. de Backer JW, Vos WG, Devolder A, Verhulst SL, Germonpré, P, Wuyts FL, Parizel PM, de Backer W, Journal of biomechanics 41, 106 (2008). http://doi.org/10.1016/j.jbiomech.2007.07.009
toggle visibility
Computational study of plasma sustainability in radio frequency micro-discharges”. Zhang Y, Jiang W, Zhang QZ, Bogaerts A, Journal of applied physics 115, 193301 (2014). http://doi.org/10.1063/1.4878161
toggle visibility
Computational study of the CF4 /CHF3 / H2 /Cl2 /O2 /HBr gas phase plasma chemistry”. Tinck S, Bogaerts A, Journal of physics: D: applied physics 49, 195203 (2016). http://doi.org/10.1088/0022-3727/49/19/195203
toggle visibility
Computationally Driven Discovery of a Family of Layered LiNiB Polymorphs”. Gvozdetskyi V, Bhaskar G, Batuk M, Zhao X, Wang R, Carnahan SL, Hanrahan MP, Ribeiro RA, Canfield PC, Rossini AJ, Wang C-Z, Ho K-M, Hadermann J, Zaikina JV, Angewandte Chemie: international edition in English 58, 15855 (2019). http://doi.org/10.1002/anie.201907499
toggle visibility
Computed electronic and optical properties of SnO2 under compressive stress”. Miglio A, Saniz R, Waroquiers D, Stankovski M, Giantomassi M, Hautier G, Rignanese G-M, Gonze X, Optical materials 38, 161 (2014). http://doi.org/10.1016/j.optmat.2014.10.017
toggle visibility
Computer aided processing of laser microprobe mass spectra”. Wouters L, Michaud D, Van Grieken R, Microchimica acta 110, 31 (1993). http://doi.org/10.1007/BF01243982
toggle visibility
Computer modeling of plasmas and plasma-surface interactions”. Bogaerts A, Bultinck E, Eckert M, Georgieva V, Mao M, Neyts E, Schwaederlé, L, Plasma processes and polymers 6, 295 (2009). http://doi.org/10.1002/ppap.200800207
toggle visibility
Computer modelling of magnetron discharges”. Bogaerts A, Bultinck E, Kolev I, Schwaederlé, L, van Aeken K, Buyle G, Depla D, Journal of physics: D: applied physics 42, 194018 (2009). http://doi.org/10.1088/0022-3727/42/19/194018
toggle visibility
Computer modelling of the plasma chemistry and plasma-based growth mechanisms for nanostructured materials”. Bogaerts A, Eckert M, Mao M, Neyts E, Journal of physics: D: applied physics 44, 174030 (2011). http://doi.org/10.1088/0022-3727/44/17/174030
toggle visibility
Computer simulation of an analytical direct current glow discharge in argon: influence of the cell dimensions on the plasma quantities”. Bogaerts A, Gijbels R, Journal of analytical atomic spectrometry 12, 751 (1997)
toggle visibility
Computer simulations for processing plasmas”. Bogaerts A, de Bleecker K, Georgieva V, Kolev I, Madani M, Neyts E, Plasma processes and polymers 3, 110 (2006). http://doi.org/10.1002/ppap.200500065
toggle visibility
Computer simulations of a dielectric barrier discharge used for analytical spectrometry”. Martens T, Bogaerts A, Brok W, van Dijk J, Analytical and bioanalytical chemistry 388, 1583 (2007). http://doi.org/10.1007/s00216-007-1269-0
toggle visibility
Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition”. Tinck S, Bogaerts A, Plasma sources science and technology 20, 015008 (2011). http://doi.org/10.1088/0963-0252/20/1/015008
toggle visibility
Computer simulations of argon-hydrogen Grimm-type glow discharges”. Bogaerts A, Journal of analytical atomic spectrometry 23, 1476 (2008). http://doi.org/10.1039/b810599e
toggle visibility
Computer simulations of crater profiles in glow discharge optical emission spectrometry: comparison with experiments and investigation of the underlying mechanisms”. Bogaerts A, Verscharen W, Steers E, Spectrochimica acta: part B : atomic spectroscopy 59, 1403 (2004). http://doi.org/10.1016/j.sab.2004.06.005
toggle visibility