|   | 
Details
   web
Records
Author Filippousi, M.; Turner, S.; Katsikini, M.; Pinakidou, F.; Zamboulis, D.; Pavlidou, E.; Van Tendeloo, G.
Title (down) Direct observation and structural characterization of natural and metal ion-exchanged HEU-type zeolites Type A1 Journal article
Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 210 Issue 210 Pages 185-193
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The atomic structure of natural HEU-type zeolite and two ion-exchanged variants of the zeolite, Ag+ (Ag-HEU) and Zn2+ (Zn-HEU) ion exchanged HEU-type zeolites, are investigated using advanced transmission electron microscopy techniques in combination with X-ray powder diffraction and X-ray absorption fine structure measurements. In both ion-exchanged materials, loading of the natural HEU zeolite is confirmed. Using low-voltage, aberration-corrected transmission electron microscopy at low-dose conditions, the local crystal structure of natural HEU-type zeolite is determined and the interaction of the ion-exchanged natural zeolites with the Ag+ and Zn2+ ions is studied. In the case of Ag-HEU, the presence of Ag+ ions and clusters at extra-framework sites as well as Ag nanoparticles has been confirmed. The Ag nanoparticles are preferentially positioned at the zeolite surface. For Zn-HEU, no large Zn(O) nanopartides are present, instead, the HEU channels are evidenced to be decorated by small Zn(O) clusters. (c) 2015 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000353733300024 Publication Date 2015-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 5 Open Access
Notes 246791 Countatoms; Iap-Pai; Fwo Approved Most recent IF: 3.615; 2015 IF: 3.453
Call Number c:irua:126006 Serial 715
Permanent link to this record
 

 
Author Hoang, D.-Q.; Korneychuk, S.; Sankaran, K.J.; Pobedinskas, P.; Drijkoningen, S.; Turner, S.; Van Bael, M.K.; Verbeeck, J.; Nicley, S.S.; Haenen, K.
Title (down) Direct nucleation of hexagonal boron nitride on diamond : crystalline properties of hBN nanowalls Type A1 Journal article
Year 2017 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 127 Issue Pages 17-24
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hexagonal boron nitride (hBN) nanowalls were deposited by unbalanced radio frequency sputtering on (100)-oriented silicon, nanocrystalline diamond films, and amorphous silicon nitride (Si3N4) membranes. The hBN nanowall structures were found to grow vertically with respect to the surface of all of the substrates. To provide further insight into the nucleation phase and possible lattice distortion of the deposited films, the structural properties of the different interfaces were characterized by transmission electron microscopy. For Si and Si3N4 substrates, turbostratic and amorphous BN phases form a clear transition zone between the substrate and the actual hBN phase of the bulk nanowalls. However, surprisingly, the presence of these phases was suppressed at the interface with a nanocrystalline diamond film, leading to a direct coupling of hBN with the diamond surface, independent of the vertical orientation of the diamond grain. To explain these observations, a growth mechanism is proposed in which the hydrogen terminated surface of the nanocrystalline diamond film leads to a rapid formation of the hBN phase during the initial stages of growth, contrary to the case of Si and Si3N4 substrates. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.301
Call Number UA @ lucian @ c:irua:142398 Serial 4645
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Schroeder, F.; Fischer, R.A.; Van Tendeloo, G.
Title (down) Direct imaging of loaded metal-organic framework materials (metal@MOF-5) Type A1 Journal article
Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 20 Issue 17 Pages 5622-5627
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We illustrate the potential of advanced transmission electron microscopy for the characterization of a new class of soft porous materials: metal@Zn4O(bdc)3 (metal@MOF-5; bdc = 1,4-benzenedicarboxylate). By combining several electron microscopy techniques (transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and electron tomography) and by carefully reducing the electron dose to avoid beam damage, it is possible to simultaneously characterize the MOF-5 framework material and the loaded metal nanoparticles. We also demonstrate that electron tomography can be used to accurately determine the position and distribution of the particles within the MOF-5 framework. To demonstrate the implementation of these microscopy techniques and what kind of results can be expected, measurements on gas-phase-loaded metal−organic framework materials Ru@MOF-5 and Pd@MOF-5 are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000258941400021 Publication Date 2008-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 112 Open Access
Notes Esteem 026019 Approved Most recent IF: 9.466; 2008 IF: 5.046
Call Number UA @ lucian @ c:irua:76595 Serial 714
Permanent link to this record
 

 
Author Turner, S.; Idrissi, H.; Sartori, A.F.; Korneychuck, S.; Lu, Y.-G.; Verbeeck, J.; Schreck, M.; Van Tendeloo, G.
Title (down) Direct imaging of boron segregation at dislocations in B:diamond heteroepitaxial films Type A1 Journal article
Year 2016 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 8 Issue 8 Pages 2212-2218
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A thin film of heavily B-doped diamond has been grown epitaxially by microwave plasma chemical vapor deposition on an undoped diamond layer, on top of a Ir/YSZ/Si(001) substrate stack, to study the boron segregation and boron environment at the dislocations present in the film. The density and nature of the dislocations were investigated by conventional and weak-beam dark-field transmission electron microscopy techniques, revealing the presence of two types of dislocations: edge and mixed-type 45 degrees dislocations. The presence and distribution of B in the sample was studied using annular dark-field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy. Using these techniques, a segregation of B at the dislocations in the film is evidenced, which is shown to be intermittent along the dislocation. A single edge-type dislocation was selected to study the distribution of the boron surrounding the dislocation core. By imaging this defect at atomic resolution, the boron is revealed to segregate towards the tensile strain field surrounding the edge-type dislocations. An investigation of the fine structure of the B-K edge at the dislocation core shows that the boron is partially substitutionally incorporated into the diamond lattice and partially present in a lower coordination (sp(2)-like hybridization).
Address EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. stuart.turner@uantwerpen.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000368860900053 Publication Date 2015-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 15 Open Access
Notes S. T. acknowledges the fund for scien tific research Flanders (FWO) for a post-doctoral scholarship and under contract number G.0044.13N Approved Most recent IF: 7.367
Call Number c:irua:131597UA @ admin @ c:irua:131597 Serial 4121
Permanent link to this record
 

 
Author Meledina, M.; Turner, S.; Filippousi, M.; Leus, K.; Lobato, I.; Ramachandran, R.K.; Dendooven, J.; Detavernier, C.; Van Der Voort, P.; Van Tendeloo, G.
Title (down) Direct Imaging of ALD Deposited Pt Nanoclusters inside the Giant Pores of MIL-101 Type A1 Journal article
Year 2016 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 33 Issue 33 Pages 382-387
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract MIL-101 giant-pore metal-organic framework (MOF) materials have been loaded with Pt nanoparticles using atomic layer deposition. The final structure has been investigated by aberration-corrected annular dark-field scanning transmission electron microscopy under strictly controlled low dose conditions. By combining the acquired experimental data with image simulations, the position of the small clusters within the individual pores of a metal-organic framework has been determined. The embedding of the Pt nanoparticles is confirmed by electron tomography, which shows a distinct ordering of the highly uniform Pt nanoparticles. The results show that atomic layer deposition is particularly well-suited for the deposition of individual nanoparticles inside MOF framework pores and that, upon proper regulation of the incident electron dose, annular dark-field scanning transmission electron microscopy is a powerful tool for the characterization of this type of materials at a local scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379970000006 Publication Date 2016-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 11 Open Access
Notes S.T. and J.D. gratefully acknowledge the FWO Vlaanderen for a postdoctoral scholarship. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the Belgian IAP-PAI network. K.L. acknowledges the financial support from the Ghent University BOF postdoctoral Grant 01P06813T and UGent GOA Grant 01G00710. C.D. thanks the FWO Vlaanderen, BOF-UGent (GOA 01G01513), and the Hercules Foundation (AUGE/09/014) for financial support. Approved Most recent IF: 4.474
Call Number c:irua:131913 Serial 4028
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Shenderova, O.; Vlasov, I.I.; Verbeeck, J.; Van Tendeloo, G.
Title (down) Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy Type A1 Journal article
Year 2009 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 19 Issue 13 Pages 2116-2124
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Size, morphology, and nitrogen impurity location, all of which are all thought to be related to the luminescent properties of detonation nanodiamonds, are determined in several detonation nanodiamond samples using a combination of transmission electron microscopy techniques. Results obtained from annealed and cleaned detonation nanodiamond samples are compared to results from conventionally purified detonation nanodiamond. Detailed electron energy loss spectroscopy combined with model-based quantification provides direct evidence for the sp3 like embedding of nitrogen impurities into the diamond cores of all the studied nanodiamond samples. Simultaneously, the structure and morphology of the cleaned detonation nanodiamond particles are studied using high resolution transmission electron microscopy. The results show that the size and morphology of detonation nanodiamonds can be modified by temperature treatment and that by applying a special cleaning procedure after temperature treatment, nanodiamond particles with clean facets almost free from sp2 carbon can be prepared. These clean facets are clear evidence that nanodiamond cores are not necessarily in coexistence with a graphitic shell of non-diamond carbon.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000268297800012 Publication Date 2009-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X;1616-3028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 100 Open Access
Notes Esteem 026019 Approved Most recent IF: 12.124; 2009 IF: 6.990
Call Number UA @ lucian @ c:irua:78261UA @ admin @ c:irua:78261 Serial 674
Permanent link to this record
 

 
Author Philippaerts, A.; Goossens, S.; Vermandel, W.; Tromp, M.; Turner, S.; Geboers, J.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F.
Title (down) Design of Ru-zeolites for hydrogen-free production of conjugated linoleic acid Type A1 Journal article
Year 2011 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 4 Issue 6 Pages 757-767
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract While conjugated vegetable oils are currently used as additives in the drying agents of oils and paints, they are also attractive molecules for making bio-plastics. Moreover, conjugated oils will soon be accepted as nutritional additives for functional food products. While current manufacture of conjugated vegetable oils or conjugated linoleic acids (CLAs) uses a homogeneous base as isomerisation catalyst, a heterogeneous alternative is not available today. This contribution presents the direct production of CLAs over Ru supported on different zeolites, varying in topology (ZSM-5, BETA, Y), Si/Al ratio and countercation (H+, Na+, Cs+). Ru/Cs-USY, with a Si/Al ratio of 40, was identified as the most active and selective catalyst for isomerisation of methyl linoleate (cis-9,cis-12 (C18:2)) to CLA at 165 °C. Interestingly, no hydrogen pre-treatment of the catalyst or addition of hydrogen donors is required to achieve industrially relevant isomerisation productivities, namely, 0.7 g of CLA per litre of solvent per minute. Moreover, the biologically most active CLA isomers, namely, cis-9,trans-11, trans-10,cis-12 and trans-9,trans-11, were the main products, especially at low catalyst concentrations. Ex situ physicochemical characterisation with CO chemisorption, extended X-ray absorption fine structure measurements, transmission electron microscopy analysis, and temperature-programmed oxidation reveals the presence of highly dispersed RuO2 species in Ru/Cs-USY(40).
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000292214000009 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 24 Open Access
Notes Fwo Approved Most recent IF: 7.226; 2011 IF: 6.827
Call Number UA @ lucian @ c:irua:90352 Serial 660
Permanent link to this record
 

 
Author Ray, S.; Kolen'ko, Y.V.; Kovnir, K.A.; Lebedev, O.I.; Turner, S.; Chakraborty, T.; Erni, R.; Watanabe, T.; Van Tendeloo, G.; Yoshimura, M.; Itoh, M.
Title (down) Defect controlled room temperature ferromagnetism in Co-doped barium titanate nanocrystals Type A1 Journal article
Year 2012 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 23 Issue 2 Pages 025702,1-025702,10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Defect mediated high temperature ferromagnetism in oxide nanocrystallites is the central feature of this work. Here, we report the development of room temperature ferromagnetism in nanosized Co-doped barium titanate particles with a size of around 14 nm, synthesized by a solvothermal drying method. A combination of x-ray diffraction with state-of-the-art electron microscopy techniques confirms the intrinsic doping of Co into BaTiO3. The development of the room temperature ferromagnetism was tracked down to the different donor defects, namely hydroxyl groups at the oxygen site (\mathrm {OH}\mathrm {(O)}
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000298409000011 Publication Date 2011-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 19 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 3.44; 2012 IF: 3.842
Call Number UA @ lucian @ c:irua:93636 Serial 614
Permanent link to this record
 

 
Author Schryvers, D.; Van Aert, S.; Delville, R.; Idrissi, H.; Turner, S.; Salje, E.K.H.
Title (down) Dedicated TEM on domain boundaries from phase transformations and crystal growth Type A1 Journal article
Year 2013 Publication Phase transitions Abbreviated Journal Phase Transit
Volume 86 Issue 1 Pages 15-22
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Investigating domain boundaries and their effects on the behaviour of materials automatically implies the need for detailed knowledge on the structural aspects of the atomic configurations at these interfaces. Not only in view of nearest neighbour interactions but also at a larger scale, often surpassing the unit cell, the boundaries can contain structural elements that do not exist in the bulk. In the present contribution, a number of special boundaries resulting from phase transformations or crystal growth and those recently investigated by advanced transmission electron microscopy techniques in different systems will be reviewed. These include macrotwins between microtwinned martensite plates in NiAl, austenite-single variant martensite habit planes in low hysteresis NiTiPd, nanotwins in non-textured nanostructured Pd and ferroelastic domain boundaries in CaTiO3. In all discussed cases these boundaries play an essential role in the properties of the respective materials.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000312586700003 Publication Date 2012-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.06 Times cited Open Access
Notes Fwo; Iap Approved Most recent IF: 1.06; 2013 IF: 1.044
Call Number UA @ lucian @ c:irua:101222 Serial 612
Permanent link to this record
 

 
Author Dharanipragada, N.V.R.A.; Meledina, M.; Galvita, V.V.; Poelman, H.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B.
Title (down) Deactivation study of Fe2O3-CeO2 during redox cycles for CO production from CO2 Type A1 Journal article
Year 2016 Publication Industrial and engineering chemistry research Abbreviated Journal Ind Eng Chem Res
Volume 55 Issue 55 Pages 5911-5922
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Deactivation was investigated in Fe2O3-CeO2 oxygen storage materials during repeated H-2-reduction and CO2-reoxidation. In situ XRD, XAS, and TEM were used to identify phases, crystallite sizes, and morphological changes upon cycling operation. The effect of redox cycling was investigated both in Fe-rich (80 wt % Fe2O3-CeO2) and Ce-rich (10 wt %Fe2O3-CeO2) materials. The former consisted of 100 nm Fe2O3 particles decorated with 5-10 nm Ce1-xFexO2-x. The latter presented CeO2 with incorporated Fe, i.e. a solid solution of Ce1-xFexO2-x, as the main oxygen carrier. By modeling the EXAFS Ce-K signal for as-prepared 10 wt %Fe2O3-CeO2, the amount of Fe in CeO2 was determined as 21 mol %, corresponding to 86% of the total iron content. Sintering and solid solid transformations, the latter including both new phase formation and element segregation, were identified as deactivation pathways upon redox cycling. In Ce-rich material, perovskite (CeFeO3) was identified by XRD. This phase remained inert during reduction and reoxidation, resulting in an overall lower oxygen storage capacity. Further, Fe segregated from the solid solution, thereby decreasing its reducibility. In addition, an increase in crystallite size occurred for all phases. In Fe-rich material, sintering is the main deactivation pathway, although Fe segregation from the solid solution and perovskite formation cannot be excluded.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000376825300013 Publication Date 2016-04-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 26 Open Access
Notes Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:134214 Serial 4158
Permanent link to this record
 

 
Author Tang, X.; Reckinger, N.; Poncelet, O.; Louette, P.; Urena, F.; Idrissi, H.; Turner, S.; Cabosart, D.; Colomer, J.-F.; Raskin, J.-P.; Hackens, B.; Francis, L.A.
Title (down) Damage evaluation in graphene underlying atomic layer deposition dielectrics Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 5 Issue 5 Pages 13523
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Based on micro-Raman spectroscopy (muRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, muRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors.
Address ICTEAM Institute, Universite catholique de Louvain, Place du Levant 3, 1348 Louvain-la-Neuve, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000360147400001 Publication Date 2015-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 18 Open Access
Notes The authors thank the staff of UCL’s Winfab and Welcome for technical support. Xiaohui Tang is a senior research of UCL. This work is financially supported by the Multi-Sensor-Platform for Smart Building Management project (No. 611887) and the Action de Recherche Concertée (ARC) “StressTronics”, Communauté française de Belgique. Part of this work is financially supported by the Belgian Fund for Scientific Research (FRS-FNRS) under FRFC contract “Chemographene” (No. 2.4577.11). J.-F. Colomer and B. Hackens are Research Associates of FRS-FNRS. This research used resources of the Electron Microscopy Service located at the University of Namur (“Plateforme Technologique Morphologie – Imagerie”). This research used resources of the ELISE Service of the University of Namur. This Service is member of the “Plateforme Technologique SIAM”. The research leading to this work has received partial funding from the European Union Seventh Framework Program under grant agreement No 604391 Graphene Flagship. Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number c:irua:129193 Serial 3958
Permanent link to this record
 

 
Author Degutis, G.; Pobedinskas, P.; Turner, S.; Lu, Y.-G.; Al Riyami, S.; Ruttens, B.; Yoshitake, T.; D'Haen, J.; Haenen, K.; Verbeeck, J.; Hardy, A.; Van Bael, M.K.
Title (down) CVD diamond growth from nanodiamond seeds buried under a thin chromium layer Type A1 Journal article
Year 2016 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 64 Issue 64 Pages 163-168
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work presents a morphological and structural analysis of CVD diamond growth on silicon from nanodiamond seeds covered by a 50 nm thick chromium layer. The role of carbon diffusion as well as chromium and carbon silicide formation is analyzed. The local diamond environment is investigated by scanning transmission electron microscopy in combination with electron energy-loss spectroscopy. The evolution of the diamond phase composition (sp3/sp2) is evaluated by micro-Raman spectroscopy. Raman and X-ray diffraction analysis are used to identify the interfacial phases formed during CVD growth. Based upon the observed morphological and structural evolution, a diamond growth model from nanodiamond seeds buried beneath a thin Cr layer is proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000374608100020 Publication Date 2016-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 11 Open Access
Notes The authors acknowledge financial support provided by Research Program FWO G.056.810 and G0044.13N. A.H. and M.K.V.B are grateful to Hercules Foundation Flanders for financial support. P.P. and S.T. are Postdoctoral Fellows of the Research Foundation – Flanders (FWO). The Titan microscope used for this work was partially funded by the Hercules Foundation. Approved Most recent IF: 2.561
Call Number c:irua:133624UA @ admin @ c:irua:133624 Serial 4091
Permanent link to this record
 

 
Author Boulay, E.; Nakano, J.; Turner, S.; Idrissi, H.; Schryvers, D.; Godet, S.
Title (down) Critical assessments and thermodynamic modeling of BaO-SiO2 and SiO2-TiO2 systems and their extensions into liquid immiscibility in the BaO-SiO2-TiO2 system Type A1 Journal article
Year 2014 Publication Calphad computer coupling of phase diagrams and thermochemistry Abbreviated Journal Calphad
Volume 47 Issue Pages 68-82
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study discusses rational reproduction of liquid immiscibility in the BaO-SiO2-TiO2 system. While a ternary assessment requires sub-binary descriptions in the same thermodynamic model, the related sub-binary systems BaO-SiO2, BaO-TiO2 and SiO2-TiO2 liquid and solid phases have been evaluated using different thermodynamic models in the literature. In this study, BaO-SiO2 and SiO2-TiO2 were assessed using the Ionic Two Sublattice model (I2SL) based on experimental data from the literature. BaO-TiO2 was already assessed using this model. Binary descriptions developed were then used for the assessment of liquid immiscibility in the BaO-SiO2-TiO2 system. Ternary interaction parameters were found necessary for rational reproduction of the new ternary experimental data gathered in the present work. The model parameters for each system were evaluated using a CAPLHAD approach. A set of parameters is proposed. They show good agreement between the calculated and experimental equilibrium liquidus, liquid immiscibility and thermochemical properties in the BaO-SiO2-TiO2 system. (C) 2014 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000346224700008 Publication Date 2014-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0364-5916; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.6 Times cited 9 Open Access
Notes Approved Most recent IF: 1.6; 2014 IF: 1.370
Call Number UA @ lucian @ c:irua:122776 Serial 540
Permanent link to this record
 

 
Author Wee, L.H.; Wiktor, C.; Turner, S.; Vanderlinden, W.; Janssens, N.; Bajpe, S.R.; Houthoofd, K.; Van Tendeloo, G.; De Feyter, S.; Kirschhock, C.E.A.; Martens, J.A.;
Title (down) Copper benzene tricarboxylate metal-organic framework with wide permanent mesopores stabilized by keggin polyoxometallate ions Type A1 Journal article
Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 134 Issue 26 Pages 10911-10919
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Porous solids with organized multiple porosity are of scientific and technological importance for broadening the application range from traditional areas of catalysis and adsorption/separation to drug release and biomedical imaging. Synthesis of crystalline porous materials offering a network of uniform micro- and mesopores remains a major scientific challenge. One strategy is based on variation of synthesis parameters of microporous networks, such as, for example, zeolites or metal organic frameworks (MOFs). Here, we show the rational development of an hierarchical variant of the microporous cubic Cu-3(BTC)(2) (BTC = 1,3,5-benzenetricarboxylate) HKUST-1 MOF having strictly repetitive S inn wide mesopores separated by uniform microporous walls in a single crystal structure. This new material coined COK-15 (COK = Centrum voor Oppervlaktechemie en Katalyse) was synthesized via a dual-templating approach. Stability was enhanced by Keggin type phosphotungstate (HPW) systematically occluded in the cavities constituting the walls between the mesopores.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000305863900037 Publication Date 2012-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 83 Open Access
Notes Iap; Fwo Approved Most recent IF: 13.858; 2012 IF: 10.677
Call Number UA @ lucian @ c:irua:100330 Serial 514
Permanent link to this record
 

 
Author Barreca, D.; Gasparotto, A.; Lebedev, O.I.; Maccato, C.; Pozza, A.; Tondello, E.; Turner, S.; Van Tendeloo, G.
Title (down) Controlled vapor-phase synthesis of cobalt oxide nanomaterials with tuned composition and spatial organization Type A1 Journal article
Year 2010 Publication CrystEngComm Abbreviated Journal Crystengcomm
Volume 12 Issue 7 Pages 2185-2197
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000279627700040 Publication Date 2010-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-8033; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.474 Times cited 85 Open Access
Notes Approved Most recent IF: 3.474; 2010 IF: 4.006
Call Number UA @ lucian @ c:irua:83686 Serial 503
Permanent link to this record
 

 
Author Stambula, S.; Gauquelin, N.; Bugnet, M.; Gorantla, S.; Turner, S.; Sun, S.; Liu, J.; Zhang, G.; Sun, X.; Botton, G.A.
Title (down) Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 8 Pages 3890-3900
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A platform for producing stabilized Pt atoms and clusters through the combination of an N-doped graphene support and atomic layer deposition (ALD) for the Pt catalysts was investigated using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). It was determined, using imaging and spectroscopy techniques, that a wide range of N-dopant types entered the graphene lattice through covalent bonds without largely damaging its structure. Additionally and most notably, Pt atoms and atomic clusters formed in the absence of nanoparticles. This work provides a new strategy for experimentally producing stable atomic and subnanometer cluster catalysts, which can greatly assist the proton exchange membrane fuel cell (PEMFC) development by producing the ultimate surface area to volume ratio catalyst.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000332188100004 Publication Date 2014-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 57 Open Access
Notes Fwo Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:115571 Serial 352
Permanent link to this record
 

 
Author Paolella, A.; Bertoni, G.; Hovington, P.; Feng, Z.; Flacau, R.; Prato, M.; Colombo, M.; Marras, S.; Manna, L.; Turner, S.; Van Tendeloo, G.; Guerfi, A.; Demopoulos, G.P.; Zaghib, K.;
Title (down) Cation exchange mediated elimination of the Fe-antisites in the hydrothermal synthesis of LiFePO4 Type A1 Journal article
Year 2015 Publication Nano energy Abbreviated Journal Nano Energy
Volume 16 Issue 16 Pages 256-267
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In this work we elucidate the elimination of mechanism Fe-antisite defects in lithium iron phosphate (LiFePO4) during the hydrothermal synthesis. Compelling evidence of this effect is provided by combining Neutron Powder Diffraction (NPD), High Resolution (Scanning) Transmission Electron Microscopy (HR-(S)TEM), Electron Energy Loss Spectroscopy (EELS), X-Ray Photoelectron Spectroscopy (XPS) and calculations. We found: i) the first intermediate vivianite inevitably creates Fe-antisite defects in LiFePO4; ii) the removal of these antisite defects by cation exchange is assisted by a nanometer-thick amorphous layer, rich in Li, that enwraps the LiFePO4 crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000364579300027 Publication Date 2015-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.343 Times cited 27 Open Access
Notes The authorswanttoacknowledgeVincentGariepy,Cathe- rine Gagnon,JulieTrottier,DanielClement,Dr.CyrilFaure of IREQ,Dr.GaiaTomaselloofInstitutfürTheoretische PhysikFreieUniversitätBerlinandProf.MichelArmandof CICenergigune forhelpfuldiscussionsandtechnical supports. Approved Most recent IF: 12.343; 2015 IF: 10.325
Call Number c:irua:127688 Serial 296
Permanent link to this record
 

 
Author Zhao, Q.; Lorenz, H.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Rameshan, C.; Klötzer, B.; Konzett, J.; Penner, S.
Title (down) Catalytic characterization of pure SnO2 and GeO2 in methanol steam reforming Type A1 Journal article
Year 2010 Publication Applied catalysis : A : general Abbreviated Journal Appl Catal A-Gen
Volume 375 Issue 2 Pages 188-195
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Structural changes of a variety of different SnO, SnO2 and GeO2 catalysts upon reduction in hydrogen were correlated with associated catalytic changes in methanol steam reforming. Studied systems include SnO, SnO2 and GeO2 thin film model catalysts prepared by vapour phase deposition and growth on polycrystalline NaCl surfaces and, for comparison, the corresponding pure oxide powder catalysts. Reduction of both the SnO2 thin film and powder at around 673 K in 1 bar hydrogen leads to a substantial reduction of the bulk structure and yields a mixture of SnO2 and metallic β-Sn. On the powder catalyst this transformation is fully reversible upon oxidation in 1 bar O2 at 673 K. Strongly reduced thin films, however, can only be re-transformed to SnO2 if the reduction temperature did not exceed 573 K. For GeO2, the situation is more complex due to its polymorphism. Whereas the tetragonal phase is structurally stable during reduction, oxidation or catalytic reaction, a small part of the hexagonal phase is always transformed into the tetragonal at 673 K independent of the gas phase used. SnO2 is highly active and CO2 selective in methanol steam reforming, but the initial high activity drops considerably upon reduction between 373 and 573 K and almost complete catalyst deactivation is observed after reduction at 673 K, which is associated with the parallel formation of β-Sn. In close correlation to the structural results, the catalytic activity and selectivity can be restored upon an oxidative catalyst regeneration at 673 K. Tetragonal GeO2 exhibits only a small activity and no pronounced selectivity to either CO or CO2, at least after reduction. In its fully oxidized state release of surface/lattice oxygen results in a non-catalytic formation of CO2 by oxidation of CO originating from catalytic dehydrogenation.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000275580600002 Publication Date 2010-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-860X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.339 Times cited 20 Open Access
Notes Esteem 026019 Approved Most recent IF: 4.339; 2010 IF: 3.384
Call Number UA @ lucian @ c:irua:81741 Serial 292
Permanent link to this record
 

 
Author Shenderova, O.; Hens, S.; Vlasov, I.; Turner, S.; Lu, Y.-G.; Van Tendeloo, G.; Schrand, A.; Burikov, S.A.; Dolenko, T.A.
Title (down) Carbon-dot-decorated nanodiamonds Type A1 Journal article
Year 2014 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 31 Issue 5 Pages 580-590
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The synthesis of a new class of fluorescent carbon nanomaterials, carbon-dot-decorated nanodiamonds (CDD-ND), is reported. These CDD-NDs are produced by specific acid treatment of detonation soot, forming tiny rounded sp2 carbon species (carbon dots), 12 atomic layers thick and 12 nm in size, covalently attached to the surface of the detonation diamond nanoparticles. A combination of nanodiamonds bonded with a graphitic phase as a starting material and the application of graphite intercalated acids for oxidation of the graphitic carbon is necessary for the successful production of CDD-ND. The CDD-ND photoluminescence (PL) is stable, 20 times more intense than the intrinsic PL of well-purified NDs and can be tailored by changing the oxidation process parameters. Carbon-dot-decorated DNDs are shown to be excellent probes for bioimaging applications and inexpensive additives for PL nanocomposites.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000335518900008 Publication Date 2014-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 30 Open Access
Notes Fwo; 262348 Esmi; 246791 Countatoms Approved Most recent IF: 4.474; 2014 IF: 3.081
Call Number UA @ lucian @ c:irua:117332 Serial 280
Permanent link to this record
 

 
Author Lu, Y.-G.; Turner, S.; Ekimov, E.A.; Verbeeck, J.; Van Tendeloo, G.
Title (down) Boron-rich inclusions and boron distribution in HPHT polycrystalline superconducting diamond Type A1 Journal article
Year 2015 Publication Carbon Abbreviated Journal Carbon
Volume 86 Issue 86 Pages 156-162
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline boron-doped superconducting diamond, synthesized at high pressure and high temperature (HPHT) via a reaction of a single piece of crystalline boron with monolithic graphite, has been investigated by analytical transmission electron microscopy. The local boron distribution and boron environment have been studied by a combination of (scanning) transmission electron microscopy ((S)TEM) and spatially resolved electron energy-loss spectroscopy (EELS). High resolution TEM imaging and EELS elemental mapping have established, for the first time, the presence of largely crystalline diamond-diamond grain boundaries within the material and have evidenced the presence of substitutional boron dopants within individual diamond grains. Confirmation of the presence of substitutional B dopants has been obtained through comparison of acquired boron K-edge EELS fine structures with known references. This confirmation is important to understand the origin of superconductivity in polycrystalline B-doped diamond. In addition to the substitutional boron doping, boron-rich inclusions and triple-points, both amorphous and crystalline, with chemical compositions close to boron carbide B4C, are evidenced. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000352922700019 Publication Date 2015-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 20 Open Access
Notes FWO; 246791 COUNTATOMS; 278510 VORTEX; Hercules ECASJO_; Approved Most recent IF: 6.337; 2015 IF: 6.196
Call Number c:irua:125994UA @ admin @ c:irua:125994 Serial 250
Permanent link to this record
 

 
Author Filippousi, M.; Turner, S.; Leus, K.; Siafaka, P.I.; Tseligka, E.D.; Vandichel, M.; Nanaki, S.G.; Vizirianakis, I.S.; Bikiaris, D.N.; Van Der Voort, P.; Van Tendeloo, G.
Title (down) Biocompatible Zr-based nanoscale MOFs coated with modified poly(epsilon-caprolactone) as anticancer drug carriers Type A1 Journal article
Year 2016 Publication International journal of pharmaceutics Abbreviated Journal Int J Pharmaceut
Volume 509 Issue 509 Pages 208-218
Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)
Abstract Nanoscale Zr-based metal organic frameworks (MOFs) UiO-66 and UiO-67 were studied as potential anticancer drug delivery vehicles. Two model drugs were used, hydrophobic paclitaxel and hydrophilic cisplatin, and were adsorbed onto/into the nano MOFs (NMOFs). The drug loaded MOFs were further encapsulated inside a modified poly(epsilon-caprolactone) with d-alpha-tocopheryl polyethylene glycol succinate polymeric matrix, in the form of microparticles, in order to prepare sustained release formulations and to reduce the drug toxicity. The drugs physical state and release rate was studied at 37 degrees C using Simulated Body Fluid. It was found that the drug release depends on the interaction between the MOFs and the drugs while the controlled release rates can be attributed to the microencapsulated formulations. The in vitro antitumor activity was assessed using HSC-3 (human oral squamous carcinoma; head and neck) and U-87 MG (human glioblastoma grade IV; astrocytoma) cancer cells. Cytotoxicity studies for both cell lines showed that the polymer coated, drug loaded MOFs exhibited better anticancer activity compared to free paclitaxel and cisplatin solutions at different concentrations.
Address EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000378949800022 Publication Date 2016-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-5173 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.649 Times cited 37 Open Access
Notes This work is performed within the framework of the IAP-P7/05. S.T. Gratefully acknowledges the Fund for Scientific Research Flanders (FWO). K.L. acknowledges the financial support from the Ghent University BOF postdoctoral grant 01P06813T and UGent GOA Grant 01G00710. Approved Most recent IF: 3.649
Call Number c:irua:134039 Serial 4088
Permanent link to this record
 

 
Author Esken, D.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Fischer, R.A.
Title (down) Au@ZIFs: stabilization and encapsulation of cavity-size matching gold clusters inside functionalized Zeolite Imidazolate Frameworks, ZIFs Type A1 Journal article
Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 22 Issue 23 Pages 6393-6401
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The selective formation and stabilization of very small, naked metal particles inside the cavities of metal organic frameworks (MOFs) and the simultaneous realization of an even distribution of the particles throughout the crystalline MOF host matrix over a wide range of metal loading are challenging goals. MOFs reveal high specific surface areas, tunable pore sizes, and organic linkers, which are able to interact with guests. The chemically very robust zeolite imidazolate frameworks (ZIFs) are a subclass of MOFs. We chose the microporous sodalite-like ZIF-8 (Zn(MelM)(2); IM = imidazolate) and ZIF-90 (Zn(ICA)(2); ICA = imidazolate-2-carboxyaldehyde) as host matrices to influence the dispersion of imbedded gold nanoparticles (Au NPs). The metal loading was achieved via gas phase infiltration of [Au(CO)Cl] followed by a thermal hydrogenation step to form the Au NPs. Low-dose high-resolution transmission electron microscopy ((HR)TEM) and electron tomography reveal a homogeneous distribution of Au NPs throughout the ZIF matrix. The functional groups of ZIF-90 direct the anchoring of intermediate Au species and stabilize drastically smaller and quite monodisperse Au NPs in contrast to the parent not functionalized ZIF-8. The particles can be very small, match the cavity size and approach defined molecular clusters of magic numbers, i.e., Au(55), independently from the level of loading. Post-synthetic oxidation of the aldehyde groups to yield alkyl esters by the adjacent, catalytically active metal NPs is presented as a new concept of encapsulating nanoparticles inside MOFs and allows multiple steps of metal loadings without decomposition of the MOF.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000284975100025 Publication Date 2010-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 194 Open Access
Notes Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400
Call Number UA @ lucian @ c:irua:95530 Serial 208
Permanent link to this record
 

 
Author Leus, K.; Concepcion, P.; Vandichel, M.; Meledina, M.; Grirrane, A.; Esquivel, D.; Turner, S.; Poelman, D.; Waroquier, M.; Van Speybroeck, V.; Van Tendeloo, G.; García, H.; Van Der Voort, P.;
Title (down) Au@UiO-66 : a base free oxidation catalyst Type A1 Journal article
Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 5 Issue 5 Pages 22334-22342
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present the in situ synthesis of Au nanoparticles within the Zr based Metal Organic Framework, UiO-66. The resulting Au@UiO-66 materials were characterized by means of N-2 sorption, XRPD, UV-Vis, XRF, XPS and TEM analysis. The Au nanoparticles (NP) are homogeneously distributed along the UiO-66 host matrix when using NaBH4 or H-2 as reducing agents. The Au@UiO-66 materials were evaluated as catalysts in the oxidation of benzyl alcohol and benzyl amine employing O-2 as oxidant. The Au@MOF materials exhibit a very high selectivity towards the ketone (up to 100%). Regenerability and stability tests demonstrate that the Au@UiO-66 catalyst can be recycled with a negligible loss of Au species and no loss of crystallinity. In situ IR measurements of UiO-66 and Au@UiO-66-NaBH4, before and after treatment with alcohol, showed an increase in IR bands that can be assigned to a combination of physisorbed and chemisorbed alcohol species. This was confirmed by velocity power spectra obtained from the molecular dynamics simulations. Active peroxo and oxo species on Au could be visualized with Raman analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000350643700005 Publication Date 2015-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 38 Open Access
Notes FWO; Hercules; 246791 COUNTATOMS; IAP-PAI Approved Most recent IF: 3.108; 2015 IF: 3.840
Call Number c:irua:125431 Serial 207
Permanent link to this record
 

 
Author Müller, M.; Turner, S.; Lebedev, O.I.; Wang, Y.; Van Tendeloo, G.; Fischer, R.A.
Title (down) Au@MOF-5 and Au/Mox@MOF-5 (M = Zn, Ti; x = 1, 2) : preparation and microstructural characterisation Type A1 Journal article
Year 2011 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume Issue 12 Pages 1876-1887
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Zn-carboxylate-based porous coordination polymer MOF-5 [Zn4O(bdc)3] and the metal oxide loaded materials ZnO@MOF-5 and TiO2@MOF-5 were loaded in a second step with the precursor [ClAuCO] to yield intermediate materials denoted as [ClAuCO]@MOF-5, [ClAuCO]/ZnO@MOF-5 and [ClAuCO]/TiO2@MOF-5. These composites were decomposed to Au@MOF-5, Au/ZnO@MOF-5 and Au/TiO2@MOF-5 under hydrogen at 100 °C. The nanoparticle-loaded hybrid materials were characterised by powder X-ray diffraction (PXRD), IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and N2 sorption measurements, which reveal an intact MOF-5 structure that maintains a high specific surface area. For Au@MOF-5, crystalline Au nanoparticles were distributed over the MOF matrix in a homogeneous fashion with a size of ca. 13 nm, evidenced by high resolution transmission electron microscopy. In the case of Au/ZnO@MOF-5, the Au and metal oxide particles of a few nm in size were coexistent in a given volume of the MOF-5 matrix and were not separated in different crystalline MOF particles. For the TiO2 loaded materials the oxide is preferentially located near the outer surface of the MOF particles, leading to an increase of larger exterior Au particles in comparison to very small interior Au particles as observed for the other materials. Au@MOF-5, Au/ZnO@MOF-5 and Au/TiO2@MOF-5 were tested in liquid-phase oxidation of alcohols. Preliminary results show a high activity for the Au loaded materials in this reaction. This observation is attributed to the microstructure of the composites with very small Au particles distributed homogeneously over the MOF matrix.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000289644300004 Publication Date 2011-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 75 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.444; 2011 IF: 3.049
Call Number UA @ lucian @ c:irua:88644 Serial 205
Permanent link to this record
 

 
Author Idrissi, H.; Ghidelli, M.; Béché, A.; Turner, S.; Gravier, S.; Blandin, J.-J.; Raskin, J.-P.; Schryvers, D.; Pardoen, T.
Title (down) Atomic-scale viscoplasticity mechanisms revealed in high ductility metallic glass films Type A1 Journal article
Year 2019 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 9 Issue 1 Pages 13426
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The fundamental plasticity mechanisms in thin freestanding Zr65Ni35 metallic glass films are investigated in order to unravel the origin of an outstanding strength/ductility balance. The deformation process is homogenous until fracture with no evidence of catastrophic shear banding. The creep/relaxation behaviour of the films was characterized by on-chip tensile testing, revealing an activation volume in the range 100–200 Å3. Advanced high-resolution transmission electron microscopy imaging and spectroscopy exhibit a very fine glassy nanostructure with well-defined dense Ni-rich clusters embedded in Zr-rich clusters of lower atomic density and a ~2–3 nm characteristic length scale. Nanobeam electron diffraction analysis reveals that the accumulation of plastic deformation at roomtemperature

correlates with monotonously increasing disruption of the local atomic order. These results provide experimental evidences of the dynamics of shear transformation zones activation in metallic glasses. The impact of the nanoscale structural heterogeneities on the mechanical properties including the rate dependent behaviour is discussed, shedding new light on the governing plasticity mechanisms in metallic glasses with initially heterogeneous atomic arrangement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486139700008 Publication Date 2019-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited Open Access
Notes H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T.0178.19. FWO project G093417N (‘Compressed sensing enabling low dose imaging in transmission electron microscopy’) and Hercules fund ‘Direct electron detector for soft matter TEM’ from Flemish Government are acknowledged. Approved Most recent IF: 4.259
Call Number EMAT @ emat @c:irua:162786 Serial 5375
Permanent link to this record
 

 
Author Kundu, P.; Turner, S.; Van Aert, S.; Ravishankar, N.; Van Tendeloo, G.
Title (down) Atomic structure of quantum gold nanowires : quantification of the lattice strain Type A1 Journal article
Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue 1 Pages 599-606
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Theoretical studies exist to compute the atomic arrangement in gold nanowires and the influence on their electronic behavior with decreasing diameter. Experimental studies, e.g., by transmission electron microscopy, on chemically synthesized ultrafine wires are however lacking owing to the unavailability of suitable protocols for sample preparation and the stability of the wires under electron beam irradiation. In this work, we present an atomic scale structural investigation on quantum single crystalline gold nanowires of 2 nm diameter, chemically prepared on a carbon film grid. Using low dose aberration-corrected high resolution (S)TEM, we observe an inhomogeneous strain distribution in the crystal, largely concentrated at the twin boundaries and the surface along with the presence of facets and surface steps leading to a noncircular cross section of the wires. These structural aspects are critical inputs needed to determine their unique electronic character and their potential as a suitable catalyst material. Furthermore, electron-beam-induced structural changes at the atomic scale, having implications on their mechanical behavior and their suitability as interconnects, are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000330542900061 Publication Date 2013-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 20 Open Access
Notes FWO; Countatoms; Hercules Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:113856 Serial 199
Permanent link to this record
 

 
Author Batuk, M.; Turner, S.; Abakumov, A.M.; Batuk, D.; Hadermann, J.; Van Tendeloo, G.
Title (down) Atomic structure of defects in anion-deficient perovskite-based ferrites with a crystallographic shear structure Type A1 Journal article
Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 53 Issue 4 Pages 2171-2180
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Crystallographic shear (CS) planes provide a new structure-generation mechanism in the anion-deficient perovskites containing lone-pair cations. Pb2Sr2Bi2Fe6O16, a new n = 6 representative of the AnBnO3n2 homologous series of the perovskite-based ferrites with the CS structure, has been synthesized using the solid-state technique. The structure is built of perovskite blocks with a thickness of four FeO6 octahedra spaced by double columns of FeO5 edge-sharing distorted tetragonal pyramids, forming 1/2[110](101)p CS planes (space group Pnma, a = 5.6690(2) Å, b = 3.9108(1) Å, c = 32.643(1) Å). Pb2Sr2Bi2Fe6O16 features a wealth of microstructural phenomena caused by the flexibility of the CS planes due to the variable ratio and length of the constituting fragments with {101}p and {001}p orientation. This leads to the formation of waves, hairpins, Γ-shaped defects, and inclusions of the hitherto unknown layered anion-deficient perovskites Bi2(Sr,Pb)Fe3O8.5 and Bi3(Sr,Pb)Fe4O11.5. Using a combination of diffraction, imaging, and spectroscopic transmission electron microscopy techniques this complex microstructure was fully characterized, including direct determination of positions, chemical composition, and coordination number of individual atomic species. The complex defect structure makes these perovskites particularly similar to the CS structures in ReO3-type oxides. The flexibility of the CS planes appears to be a specific feature of the Sr-based system, related to the geometric match between the SrO perovskite layers and the {100}p segments of the CS planes.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000332144100039 Publication Date 2014-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 6 Open Access
Notes Countatoms; FWO Approved Most recent IF: 4.857; 2014 IF: 4.762
Call Number UA @ lucian @ c:irua:113507 Serial 198
Permanent link to this record
 

 
Author Turner, S.; Verbeeck, J.; Ramezanipour, F.; Greedan, J.E.; Van Tendeloo, G.; Botton, G.A.
Title (down) Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 10 Pages 1904-1909
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Using a combination of high-angle annular dark field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy at high energy resolution in an aberration-corrected electron microscope, we demonstrate the capability of coordination mapping in complex oxides. Brownmillerite compound Ca2FeCoO5, consisting of repetitive octahedral and tetrahedral coordination layers with Fe and Co in a fixed 3+ valency, is selected to demonstrate the principle of atomic resolution coordination mapping. Analysis of the Co-L2,3 and the Fe-L2,3 edges shows small variations in the fine structure that can be specifically attributed to Co/Fe in tetrahedral or in octahedral coordination. Using internal reference spectra, we show that the coordination of the Fe and Co atoms in the compound can be mapped at atomic resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000304237500024 Publication Date 2012-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 33 Open Access
Notes A.M. Abakumov is thanked for fruitful discussions. S.T. gratefully acknowledges the Fund for Scientific Research Flanders (FWO). J.E.G. and GAB. acknowledge the support of the NSERC of Canada through Discovery Grants. The Canadian Centre for Electron Microscopy is a National Facility supported by NSERC and McMaster University and was funded by the Canada Foundation for Innovation and the Ontario Government. Part of this work was supported by funding from the European Research Council under the FP7, ERC Grant N 246791 COUNTATOMS and ERC Starting Grant N 278510 VORTEX. The EMAT microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:98379UA @ admin @ c:irua:98379 Serial 175
Permanent link to this record
 

 
Author Leus, K.; Dendooven, J.; Tahir, N.; Ramachandran, R.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Goeman, J.; Van der Eycken, J.; Detavernier, C.; Van Der Voort, P.
Title (down) Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst Type A1 Journal article
Year 2016 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 6 Issue 6 Pages 45
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier) by means of atomic layer deposition (ALD). The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD) measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF) and transmission electron microscopy (TEM) analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373533300009 Publication Date 2016-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 19 Open Access
Notes Karen Leus acknowledges the financial support from the Ghent University “Bijzonder Onderzoeksfonds” BOF post-doctoral Grant 01P06813T and UGent “Geconcentreeerde Onderzoekacties” GOA Grant 01G00710. Jolien Dendooven and Stuart Turner gratefully acknowledges the “Fonds Wetenschappelijk Onderzoek” FWO Vlaanderen for a post-doctoral scholarship. Christophe Detavernier thanks the FWO Vlaanderen, BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014) for financial support. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the “Belgian Interuniversitaire Attractie Pool-Pôle d'Attraction Interuniversitaire” IAP-PAI network. Approved Most recent IF: 3.553
Call Number c:irua:131902 Serial 4015
Permanent link to this record
 

 
Author Molina-Luna, L.; Duerrschnabel, M.; Turner, S.; Erbe, M.; Martinez, G.T.; Van Aert, S.; Holzapfel, B.; Van Tendeloo, G.
Title (down) Atomic and electronic structures of BaHfO3-doped TFA-MOD-derived YBa2Cu3O7−δthin films Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 115009
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Tailoring the properties of oxide-based nanocomposites is of great importance for a wide range of materials relevant for energy technology. YBa2Cu3O7−δ (YBCO) superconducting thin films containing nanosized BaHfO3 (BHO) particles yield a significant improvement of the magnetic flux pinning properties and a reduced anisotropy of the critical current density. These films were prepared by chemical solution deposition (CSD) on (100) SrTiO3 (STO) substrates yielding critical current densities up to 3.6 MA cm−2 at 77 K and self-field. Transport in-field J c measurements demonstrated a high pinning force maximum of around 6 GN/m3 for a sample annealed at T = 760 °C that has a doping of 12 mol% of BHO. This sample was investigated by scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) yielding strain and spectral maps. Spherical BHO nanoparticles of 15 nm in size were found in the matrix, whereas the particles at the interface were flat. A 2 nm diffusion layer containing Ti was found at the YBCO (BHO)/STO interface. Local lattice deformation mapping at the atomic scale revealed crystal defects induced by the presence of both sorts of BHO nanoparticles, which can act as pinning centers for magnetic flux lines. Two types of local lattice defects were identified and imaged: (i) misfit edge dislocations and (ii) Ba-Cu-Cu-Ba stacking faults (Y-248 intergrowths). The local electronic structure and charge transfer were probed by high energy resolution monochromated electron energy-loss spectroscopy. This technique made it possible to distinguish superconducting from non-superconducting areas in nanocomposite samples with atomic resolution in real space, allowing the identification of local pinning sites on the order of the coherence length of YBCO (~1.5 nm) and the determination of 0.25 nm dislocation cores.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366193000018 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 4 Open Access
Notes The authors thank financial support from the European Union under the Framework 6 program as a contract for an Integrated Infrastructure Initiative (References No. 026019 ESTEEM) and by the EUFP6 Research Project “NanoEngineered Superconductors for Power Applications” NESPA no. MRTN-CT-2006-035619. This work was supported by funding from the European Research Council under the Seventh Framework Programme (FP7). L.M.L, S.T. and G.V.T acknowledge ERC grant N°246791 – COUNTATOMS and funding under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2, as well as the EC project EUROTAPES. G.T.M. and S.V.A acknowledge financial support from the Fund for Scientific Research-Flanders (Reference G.0064.10N and G.0393.11N). M.D. acknowledges financial support from the LOEWE research cluster RESPONSE (Hessen, Germany). M.E. has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement n° NMP-LA-2012-280432.; esteem2jra2; esteem2jra3 Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:129199 c:irua:129199 Serial 3942
Permanent link to this record