|   | 
Details
   web
Records
Author Javdani, Z.; Hassani, N.; Faraji, F.; Zhou, R.; Sun, C.; Radha, B.; Neyts, E.; Peeters, F.M.; Neek-Amal, M.
Title (up) Clogging and unclogging of hydrocarbon-contaminated nanochannels Type A1 Journal article
Year 2022 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 13 Issue 49 Pages 11454-11463
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The recent advantages of the fabrication of artificial nanochannels enabled new research on the molecular transport, permeance, and selectivity of various gases and molecules. However, the physisorption/chemisorption of the unwanted molecules (usually hydrocarbons) inside nanochannels results in the alteration of the functionality of the nanochannels. We investigated contamination due to hydrocarbon molecules, nanochannels made of graphene, hexagonal boron nitride, BC2N, and molybdenum disulfide using molecular dynamics simulations. We found that for a certain size of nanochannel (i.e., h = 0.7 nm), as a result of the anomalous hydrophilic nature of nanochannels made of graphene, the hydrocarbons are fully adsorbed in the nanochannel, giving rise to full uptake. An increasing temperature plays an important role in unclogging, while pressure does not have a significant role. The results of our pioneering work contribute to a better understanding and highlight the important factors in alleviating the contamination and unclogging of nanochannels, which are in good agreement with the results of recent experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000893147700001 Publication Date 2022-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.7
Call Number UA @ admin @ c:irua:192815 Serial 7263
Permanent link to this record
 

 
Author Krugel, A.; Axt, V.M.; Kuhn, T.; Vagov, A.; Peeters, F.M.
Title (up) Coherent nonlinear optical response of excitons and biexcitons in quantum dots coupled to phonons Type A1 Journal article
Year 2006 Publication Physica status solidi B – basic solid state physics Abbreviated Journal Phys Status Solidi B
Volume 243 Issue 10 Pages 2241-2246
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000239932300006 Publication Date 2006-08-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 1 Open Access
Notes Approved Most recent IF: 1.674; 2006 IF: 0.967
Call Number UA @ lucian @ c:irua:60892 Serial 380
Permanent link to this record
 

 
Author Leadley, D.R.; Nicholas, R.J.; Singleton, J.; Xu, W.; Peeters, F.M.; Devreese, J.T.; Perenboom, J.A.A.J.; van Bockstal, L.; Herlach, F.; Harris, J.J.; Foxon, C.T.
Title (up) Collapse of high field magnetophonon resonance in GaAs-GaAlAs heterojunctions Type A1 Journal article
Year 1994 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 73 Issue Pages 589-592
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1994NZ23700021 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.512 Times cited 24 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:9278 Serial 383
Permanent link to this record
 

 
Author Homm, P.; Dillemans, L.; Menghini, M.; Van Bilzen, B.; Bakalov, P.; Su, C.Y.; Lieten, R.; Houssa, M.; Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.; Seo, J.W.; Locquet, J.P.;
Title (up) Collapse of the low temperature insulating state in Cr-doped V2O3 thin films Type A1 Journal article
Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 107 Issue 107 Pages 111904
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We have grown epitaxial Cr-doped V2O3 thin films with Cr concentrations between 0% and 20% on (0001)-Al2O3 by oxygen-assisted molecular beam epitaxy. For the highly doped samples (>3%), a regular and monotonous increase of the resistance with decreasing temperature is measured. Strikingly, in the low doping samples (between 1% and 3%), a collapse of the insulating state is observed with a reduction of the low temperature resistivity by up to 5 orders of magnitude. A vacuum annealing at high temperature of the films recovers the low temperature insulating state for doping levels below 3% and increases the room temperature resistivity towards the values of Cr-doped V2O3 single crystals. It is well-know that oxygen excess stabilizes a metallic state in V2O3 single crystals. Hence, we propose that Cr doping promotes oxygen excess in our films during deposition, leading to the collapse of the low temperature insulating state at low Cr concentrations. These results suggest that slightly Cr-doped V2O3 films can be interesting candidates for field effect devices. (C) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000361639200020 Publication Date 2015-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes ; The authors acknowledge financial support from the FWO Project No. G052010N10 as well as the EU-FP7 SITOGA Project. P.H. acknowledges support from Becas Chile-CONICYT. ; Approved Most recent IF: 3.411; 2015 IF: 3.302
Call Number UA @ lucian @ c:irua:128728 Serial 4149
Permanent link to this record
 

 
Author Cole, B.E.; Peeters, F.M.; Ardavan, A.; Hill, S.O.; Singleton, J.; Batty, W.; Chamberlain, J.M.; Polisskii, A.; Henini, M.; Cheng, T.
Title (up) Collective cyclotron modes in high mobility two-dimensional hole systems in GaAs-(Ga,Al)As heterojunctions: 1: experiments at low magnetic fields and theory Type A1 Journal article
Year 1997 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 9 Issue Pages 3163-3179
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1997WV06600009 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 20 Open Access
Notes Approved Most recent IF: 2.649; 1997 IF: 1.479
Call Number UA @ lucian @ c:irua:19293 Serial 384
Permanent link to this record
 

 
Author Cole, B.E.; Batty, W.; Singleton, J.; Chamberlain, J.M.; Li, L.; van Bockstal, L.; Imanaka, Y.; Shimamoto, Y.; Miura, N.; Peeters, F.M.; Henini, M.; Cheng, T.
Title (up) Collective cyclotron modes in high mobility two-dimensional hole systems in GaAs-(Ga,Al)As heterojunctions: 2: experiments at magnetic fields of up to forty Tesla Type A1 Journal article
Year 1997 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 9 Issue Pages 4887-4896
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1997XE20300012 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 5 Open Access
Notes Approved Most recent IF: 2.649; 1997 IF: 1.479
Call Number UA @ lucian @ c:irua:19292 Serial 385
Permanent link to this record
 

 
Author Pogosov, W.V.; Misko, V.R.; Zhao, H.J.; Peeters, F.M.
Title (up) Collective vortex phases in periodic plus random pinning potential Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 1 Pages 014504,1-014504,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study theoretically the simultaneous effect of regular and random pinning potentials on the vortex lattice structure at filling factor of 1. This structure is determined by a competition between the square symmetry of regular pinning array, by the intervortex interaction favoring a triangular symmetry, and by the randomness trying to depin vortices from their regular positions. Both analytical and molecular-dynamics approaches are used. We construct a phase diagram of the system in the plane of regular and random pinning strengths and determine typical vortex lattice defects appearing in the system due to the disorder. We find that the total disordering of the vortex lattice can occur either in one step or in two steps. For instance, in the limit of weak pinning, a square lattice of pinned vortices is destroyed in two steps. First, elastic chains of depinned vortices appear in the film; but the vortex lattice as a whole remains still pinned by the underlying square array of regular pinning sites. These chains are composed into fractal-like structures. In a second step, domains of totally depinned vortices are generated and the vortex lattice depins from regular array.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000262977900092 Publication Date 2009-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:75982 Serial 386
Permanent link to this record
 

 
Author Wendelen, W.; Dzhurakhalov, A.A.; Peeters, F.M.; Bogaerts, A.
Title (up) Combined molecular dynamics: continuum study of phase transitions in bulk metals under ultrashort pulsed laser irradiation Type A1 Journal article
Year 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 114 Issue 12 Pages 5652-5660
Keywords A1 Journal article; Integrated Molecular Plant Physiology Research (IMPRES); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The phase transition processes induced by ultrashort, 100 fs pulsed laser irradiation of Au, Cu, and Ni are studied by means of a combined atomistic-continuum approach. A moderately low absorbed laser fluence range, from 200 to 600 J/m2 is considered to study phase transitions by means of a local and a nonlocal order parameter. At low laser fluences, the occurrence of layer-by-layer evaporation has been observed, which suggests a direct solid to vapor transition. The calculated amount of molten material remains very limited under the conditions studied, especially for Ni. Therefore, our results show that a kinetic equation that describes a direct solid to vapor transition might be the best approach to model laser-induced phase transitions by continuum models. Furthermore, the results provide more insight into the applicability of analytical superheating theories that were implemented in continuum models and help the understanding of nonequilibrium phase transitions.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000275855600044 Publication Date 2010-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 2 Open Access
Notes ; A.D. gratefully acknowledges Professor M. Hot (ULB, Brussels) for the basic MD-code that was modified further for the laser-induced melting processes. W.W, and A.D. are thankful to Professor L.V. Zhigilei for useful discussions and advices. The calculations were performed on the CALCUA computing facility of the University of Antwerp. This work was supported by the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524
Call Number UA @ lucian @ c:irua:81391 Serial 402
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.; Grigorieva, I.V.; Geim, A.K.
Title (up) Commensurability Effects in Viscosity of Nanoconfined Water Type A1 Journal article
Year 2016 Publication ACS nano Abbreviated Journal Acs Nano
Volume 10 Issue 10 Pages 3685-3692
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The rate of water flow through hydrophobic nanocapillaries is greatly enhanced as compared to that expected from macroscopic hydrodynamics. This phenomenon is usually described in terms of a relatively large slip length, which is in turn defined by such microscopic properties as the friction between water and capillary surfaces and the viscosity of water. We show that the viscosity of water and, therefore, its flow rate are profoundly affected by the layered structure of confined water if the capillary size becomes less than 2 nm. To this end, we study the structure and dynamics of water confined between two parallel graphene layers using equilibrium molecular dynamics simulations. We find that the shear viscosity is not only greatly enhanced for subnanometer capillaries, but also exhibits large oscillations that originate from commensurability between the capillary size and the size of water molecules. Such oscillating behavior of viscosity and, consequently, the slip length should be taken into account in designing and studying graphene-based and similar membranes for desalination and filtration.
Address School of Physics and Astronomy, University of Manchester , Manchester M13 9PL, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000372855400073 Publication Date 2016-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 160 Open Access
Notes ; M.N.A. was support by Shahid Rajaee Teacher Training University under contract number 29605. ; Approved Most recent IF: 13.942
Call Number c:irua:133237 Serial 4012
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title (up) Commensurate vortex configurations in thin superconducting films nanostructured by square lattice of magnetic dots Type A1 Journal article
Year 2004 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 404 Issue Pages 246-250
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000221211500045 Publication Date 2004-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 6 Open Access
Notes Approved Most recent IF: 1.404; 2004 IF: 1.072
Call Number UA @ lucian @ c:irua:44979 Serial 407
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M.
Title (up) Comment on “Chiral tunneling in trilayer graphene” [Appl. Phys. Lett. 100, 163102 (2012)] Type Editorial
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 101 Issue 22 Pages 226101-1
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos 000311967000107 Publication Date 2012-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:105999 Serial 408
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B.
Title (up) Comment on “Creating in-plane pseudomagnetic fields in excess of 1000 T by misoriented stacking in a graphene bilayer” Type Editorial
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 247401
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract In a recent paper [Phys. Rev. B 89, 125418 (2014)], the authors argue that it is possible to map the electronic properties of twisted bilayer graphene to those of bilayer graphene in an in-plane magnetic field. However, their description of the low-energy dynamics of twisted bilayer graphene is restricted to the extended zone scheme and therefore neglects the effects of the superperiodic structure. If the energy spectrum is studied in the supercell Brillouin zone, we find that the comparison with an in-plane magnetic field fails because (i) the energy spectra of the two situations exhibit different symmetries and (ii) the low-energy spectra are very different.
Address
Corporate Author Thesis
Publisher Amer physical soc Place of Publication College pk Editor
Language Wos 000377802200009 Publication Date 2016-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:134601 Serial 4151
Permanent link to this record
 

 
Author Van Pottelberge, R.; Zarenia, M.; Peeters, F.M.
Title (up) Comment on “Impurity spectra of graphene under electric and magnetic fields” Type Editorial
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 20 Pages 207403
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract In a recent paper [Phys. Rev. B 89, 155403 (2014)], the authors investigated the spectrum of a Coulomb impurity in graphene in the presence of magnetic and electric fields using the coupled series expansion approach. In the first part of their paper, they investigated how Coulomb impurity states collapse in the presence of a perpendicular magnetic field. We argue that the obtained spectrum does not give information about the atomic collapse and that their interpretation of the spectrum regarding atomic collapse is not correct. We also argue that the obtained results are only valid up to the dimensionless charge vertical bar alpha vertical bar = 0.5 and, to obtain correct results for alpha > 0.5, a proper regularization of the Coulomb interaction is required. Here we present the correct numerical results for the spectrum for arbitrary values of alpha.
Address
Corporate Author Thesis
Publisher Amer physical soc Place of Publication College pk Editor
Language Wos 000433288800015 Publication Date 2018-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:152042UA @ admin @ c:irua:152042 Serial 5017
Permanent link to this record
 

 
Author Silhanek, A.V.; van de Vondel, J.; Moshchalkov, V.V.; Metlushko, V.; Ilic, B.; Misko, V.R.; Peeters, F.M.
Title (up) Comment on “Transverse rectification in superconducting thin films with arrays of asymmetric defects” Type Editorial
Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 92 Issue 17 Pages
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos 000255524000100 Publication Date 2008-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 20 Open Access
Notes Approved Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:68867 Serial 412
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M.
Title (up) Comment on “Tunable spin-injection and magnetoconductance in a novel 2DEG-ferromagnet structure” [phys. stat. sol. (b) 235, No. 1, 157-161 (2003)] Type A1 Journal article
Year 2004 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 241 Issue 1 Pages 222-223
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We point out that the predicted strong spin-injection effect by Jiang and Jalil [phys. stat. sol. (b) 235, 157 (2003)] for a double magnetic barrier structure is based on a wrong calculation of the transmission probability. We corrected the result and found no significant spin-injection.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000188585200028 Publication Date 2003-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 11 Open Access
Notes Approved Most recent IF: 1.674; 2004 IF: 0.982
Call Number UA @ lucian @ c:irua:103257 Serial 413
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
Title (up) Comment on “Misinterpretation of the Shuttleworth equation” Type A1 Journal Article
Year 2024 Publication Scripta Materialia Abbreviated Journal Scripta Materialia
Volume 250 Issue Pages 116186
Keywords A1 Journal Article; CMT
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462 ISBN Additional Links
Impact Factor 6 Times cited Open Access
Notes Research Foundation Flanders; Approved Most recent IF: 6; 2024 IF: 3.747
Call Number UA @ lucian @ CMT Serial 9116
Permanent link to this record
 

 
Author Gee, P.J.; Peeters, F.M.; Singleton, J.; Uji, S.; Aoki, H.; Foxon, C.T.B.; Harris, J.J.
Title (up) Composite fermions in tilded magnetic fields and the effect of the confining potential width on the composite fermion effective mass Type A1 Journal article
Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 54 Issue Pages R14313-R14316
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996VX71700024 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 15 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15787 Serial 440
Permanent link to this record
 

 
Author Wang, Z.; Wang, Y.B.; Yin, J.; Tovari, E.; Yang, Y.; Lin, L.; Holwill, M.; Birkbeck, J.; Perello, D.J.; Xu, S.; Zultak, J.; Gorbachev, R.V.; Kretinin, A.V.; Taniguchi, T.; Watanabe, K.; Morozov, S.V.; Andelkovic, M.; Milovanović, S.P.; Covaci, L.; Peeters, F.M.; Mishchenko, A.; Geim, A.K.; Novoselov, K.S.; Fal'ko, V.I.; Knothe, A.; Woods, C.R.
Title (up) Composite super-moiré lattices in double-aligned graphene heterostructures = Composite super-moire lattices in double-aligned graphene heterostructures Type A1 Journal article
Year 2019 Publication Science Advances Abbreviated Journal
Volume 5 Issue 12 Pages eaay8897
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract When two-dimensional (2D) atomic crystals are brought into close proximity to form a van der Waals heterostructure, neighbouring crystals may influence each other's properties. Of particular interest is when the two crystals closely match and a moire pattern forms, resulting in modified electronic and excitonic spectra, crystal reconstruction, and more. Thus, moire patterns are a viable tool for controlling the properties of 2D materials. However, the difference in periodicity of the two crystals limits the reconstruction and, thus, is a barrier to the low-energy regime. Here, we present a route to spectrum reconstruction at all energies. By using graphene which is aligned to two hexagonal boron nitride layers, one can make electrons scatter in the differential moire pattern which results in spectral changes at arbitrarily low energies. Further, we demonstrate that the strength of this potential relies crucially on the atomic reconstruction of graphene within the differential moire super cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000505069600089 Publication Date 2019-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 71 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:165754 Serial 6289
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title (up) Composite vortex ordering in superconducting films with arrays of blind holes Type A1 Journal article
Year 2009 Publication New journal of physics Abbreviated Journal New J Phys
Volume 11 Issue Pages 013025,1-013025,20
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The pinning properties of a superconducting thin film with a square array of blind holes are studied using the nonlinear GinzburgLandau theory. Although blind holes provide a weaker pinning potential than holes (also called antidots), several novel vortex structures are predicted for different size and thickness of the blind holes. Orientational dimer and trimer vortex states as well as concentric vortex shells can nucleate in the blind holes. In addition, we predict the stabilization of giant vortices that may be located both in the pinning centers and/or at the interstitial sites, as well as the combination of giant vortices with sets of individual vortices. For large blind holes, local vortex shell structures inside the blind holes may transfer their symmetry to interstitial vortices as well. The subtle interplay of shell formation and traditional Abrikosov vortex lattices inside the blind holes is also studied for different numbers of trapped vortices.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000262932600002 Publication Date 2009-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 33 Open Access
Notes Approved Most recent IF: 3.786; 2009 IF: 3.312
Call Number UA @ lucian @ c:irua:75987 Serial 441
Permanent link to this record
 

 
Author Sahin, H.; Torun, E.; Bacaksiz, C.; Horzum, S.; Kang, J.; Senger, R.T.; Peeters, F.M.
Title (up) Computing optical properties of ultra-thin crystals Type A1 Journal article
Year 2016 Publication Wiley Interdisciplinary Reviews: Computational Molecular Science Abbreviated Journal Wires Comput Mol Sci
Volume 6 Issue 6 Pages 351-368
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An overview is given of recent advances in experimental and theoretical understanding of optical properties of ultra-thin crystal structures (graphene, phosphorene, silicene, MoS2 , MoSe2, WS2, WSe2, h-AlN, h-BN, fluorographene, and graphane). Ultra-thin crystals are atomically thick-layered crystals that have unique properties which differ from their 3D counterpart. Because of the difficulties in the synthesis of few-atom-thick crystal structures, which are thought to be the main building blocks of future nanotechnology, reliable theoretical predictions of their electronic, vibrational, and optical properties are of great importance. Recent studies revealed the reliable predictive power of existing theoretical approaches based on density functional theory. (C) 2016 John Wiley & Sons, Ltd WIREs Comput Mol Sci 2016, 6:351-368. doi: 10.1002/wcms.1252 For further resources related to this article, please visit the .
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379267300002 Publication Date 2016-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1759-0876 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 14.016 Times cited 14 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. J.K. is supported by a FWO Pegasus short Marie Curie Fellowship. ; Approved Most recent IF: 14.016
Call Number UA @ lucian @ c:irua:134649 Serial 4155
Permanent link to this record
 

 
Author Michotte, S.; Mátéfi-Tempfli, S.; Piraux, L.; Vodolazov, D.Y.; Peeters, F.M.
Title (up) Condition for the occurrence of phase slip centers in superconducting nanowires under applied current or voltage Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 69 Issue Pages 094512,1-12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000220812800111 Publication Date 2004-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 61 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:69383 Serial 475
Permanent link to this record
 

 
Author Chaves, A.; Komendová, L.; Milošević, M.V.; Andrade, J.S.; Farias, G.A.; Peeters, F.M.
Title (up) Conditions for nonmonotonic vortex interaction in two-band superconductors Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 21 Pages 214523-214523,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We describe a semianalytic approach to the two-band Ginzburg-Landau theory, which predicts the behavior of vortices in two-band superconductors. We show that the character of the short-range vortex-vortex interaction is determined by the sign of the normal domain-superconductor interface energy, in analogy with the conventional differentiation between type I and type II superconductors. However, we also show that the long-range interaction is determined by a modified Ginzburg-Landau parameter κ*, different from the standard κ of a bulk superconductor. This opens the possibility for nonmonotonic vortex-vortex interaction, which is temperature dependent, and can be further tuned by alterations of the material on the microscopic scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000292252300009 Publication Date 2011-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; Discussions with A. Moreira, A. Shanenko, R. Prozorov, and A. Golubov are gratefully acknowledged. This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the bilateral project FWO-CNPq, CAPES, and PRONEX/CNPq/FUNCAP. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90922 Serial 477
Permanent link to this record
 

 
Author Aslani, Z.; Sisakht, E.T.; Fazileh, F.; Ghorbanfekr-Kalashami, H.; Peeters, F.M.
Title (up) Conductance fluctuations of monolayer GeSnH2$ in the topological phase using a low-energy effective tight-binding Hamiltonian Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 11 Pages 115421
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An effective tight-binding (TB) Hamiltonian for monolayer GeSnH2 is constructed which has an inversion-asymmetric honeycomb structure. The low-energy band structure of our TB model agrees very well with previous ab initio calculations even under biaxial tensile strain. Our model predicts a phase transition at 7.5% biaxial tensile strain in agreement with DFT calculations. Upon 8.5% strain the system exhibits a band gap of 134 meV, suitable for room temperature applications. It is shown that an external applied magnetic field produces a special phase which is a combination of the quantum Hall (QH) and quantum spin Hall (QSH) phases; and at a critical magnetic field strength the QSH phase completely disappears. The topological nature of the phase transition is confirmed from: (1) the calculation of the Z(2) topological invariant, and (2) quantum transport properties of disordered GeSnH2 nanoribbons which allows us to determine the universality class of the conductance fluctuations. The application of an external applied magnetic field reduces the conductance fluctuations by a factor of root 2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461958900006 Publication Date 2019-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:158538 Serial 5199
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M.; Chaves, A.; Farias, G.A.
Title (up) Conductance maps of quantum rings due to a local potential perturbation Type A1 Journal article
Year 2013 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 25 Issue 49 Pages 495301-495309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We performed a numerical simulation of the dynamics of a Gaussian shaped wavepacket inside a small sized quantum ring, smoothly connected to two leads and exposed to a perturbing potential of a biased atomic force microscope tip. Using the Landauer formalism, we calculated conductance maps of this system in the case of single and two subband transport. We explain the main features in the conductance maps as due to the AFM tip influence on the wavepacket phase and amplitude. In the presence of an external magnetic field, the tip modifies the phi(0) periodic Aharonov-Bohm oscillation pattern into a phi(0)/2 periodic Al'tshuler-Aronov-Spivak oscillation pattern. Our results in the case of multiband transport suggest tip selectivity to higher subbands, making them more observable in the total
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000327181400002 Publication Date 2013-11-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 12 Open Access
Notes ; This work was supported by the Methusalem programme of the Flemish government, the CNPq-FWO bilateral programme and PNPD and FUNCAP/PRONEX grants. ; Approved Most recent IF: 2.649; 2013 IF: 2.223
Call Number UA @ lucian @ c:irua:112694 Serial 478
Permanent link to this record
 

 
Author Deo, P.S.; Gupta, B.C.; Jayannavar, A.M.; Peeters, F.M.
Title (up) Conductance quantization in a periodically modulated quantum channel: backscattering and mode mixing Type A1 Journal article
Year 1998 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 58 Issue Pages 10784-10788
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000076716500104 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes Approved Most recent IF: 3.836; 1998 IF: NA
Call Number UA @ lucian @ c:irua:24162 Serial 480
Permanent link to this record
 

 
Author de Oliveira, E.L.; Albuquerque, E.L.; de Sousa, J.S.; Farias, G.A.; Peeters, F.M.
Title (up) Configuration-interaction excitonic absorption in small Si/Ge and Ge/Si core/shell nanocrystals Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 7 Pages 4399-4407
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The excitonic properties of Si(core)/Ge(shell) and Ge(core)/Si(shell) nanocrystals (NC's) with diameters of similar to 1.9 nm are investigated using a combination density functional ab initio method to obtain the single particle wave functions and a configuration interaction method to compute the exciton fine structure and absorption coefficient. These core/shell structures exhibit type II confinement, which is more pronounced for the Si/Ge NC as a consequence of strain. The absorption coefficients of these NC's exhibit a single dominant peak, which has a much larger oscillator strength than the multipeaks found for pure Si and Ge NC's. The exciton lifetime in Si, Ge, and Ge/Si shows a small i:emperature dependence in the range 10-300 K, whereas in Si/Ge, the exciton lifetime decreases more than an order of magnitude in the same temperature range.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000301156500007 Publication Date 2012-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 44 Open Access
Notes ; The authors acknowledge financial support from CNPq and the bilateral program between Flanders and Brazil and the Belgian Science Foundation (IAP). ; Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:113045 Serial 482
Permanent link to this record
 

 
Author Topalovic, D.B.; Arsoski, V.V.; Tadic, M.Z.; Peeters, F.M.
Title (up) Confined electron states in two-dimensional HgTe in magnetic field : quantum dot versus quantum ring behavior Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 12 Pages 125304
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the electron states and optical absorption in square- and hexagonal-shaped two-dimensional (2D) HgTe quantum dots and quantum rings in the presence of a perpendicular magnetic field. The electronic structure is modeled by means of the sp(3)d(5)s* tight-binding method within the nearest-neighbor approximation. Both bulklike and edge states appear in the energy spectrum. The bulklike states in quantum rings exhibit Aharonov-Bohm oscillations in magnetic field, whereas no such oscillations are found in quantum dots, which is ascribed to the different topology of the two systems. When magnetic field varies, all the edge states in square quantum dots appear as quasibands composed of almost fully flat levels, whereas some edge states in quantum rings are found to oscillate with magnetic field. However, the edge states in hexagonal quantum dots are localized like in rings. The absorption spectra of all the structures consist of numerous absorption lines, which substantially overlap even for small line broadening. The absorption lines in the infrared are found to originate from transitions between edge states. It is shown that the magnetic field can be used to efficiently tune the optical absorption of HgTe 2D quantum dot and quantum ring systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486638400007 Publication Date 2019-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; This work was supported by Projects No. III 41028, No. III 42008, and No. III 45003 funded by the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:162787 Serial 5409
Permanent link to this record
 

 
Author Reijniers, J.; Matulis, A.; Chang, K.; Peeters, F.M.; Vasilopoulos, P.
Title (up) Confined magnetic guiding orbit states Type A1 Journal article
Year 2002 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 59 Issue 5 Pages 749-753
Keywords A1 Journal article; Engineering Management (ENM); Condensed Matter Theory (CMT)
Abstract We show how snake-orbit states which run along a magnetic edge can be confined electrically. We consider a two-dimensional electron gas (2DEG) confined into a quantum wire, subjected to a strong perpendicular and steplike magnetic field B/ − B. Close to this magnetic step, new, spatially confined bound states arise as a result of the lateral confinement and the magnetic-field step. The number of states, with energy below the first Landau level, increases as B becomes stronger or as the wire width becomes larger. These bound states can be understood as an interference between two counter-propagating one-dimensional snake-orbit states.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000177761700018 Publication Date 2003-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 26 Open Access
Notes Approved Most recent IF: 1.957; 2002 IF: 2.360
Call Number UA @ lucian @ c:irua:92387 Serial 483
Permanent link to this record
 

 
Author Milton Pereira, J.; Mlinar, V.; Peeters, F.M.; Vasilopoulos, P.
Title (up) Confined states and direction-dependent transmission in graphene quantum wells Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue 4 Pages 045424,1-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000239426800116 Publication Date 2006-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 212 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:60091 Serial 484
Permanent link to this record
 

 
Author Abdullah, H.M.; Bahlouli, H.; Peeters, F.M.; Van Duppen, B.
Title (up) Confined states in graphene quantum blisters Type A1 Journal article
Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 30 Issue 38 Pages 385301
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bilayer graphene samples may exhibit regions where the two layers are locally delaminated forming a so-called quanttun blister in the graphene sheet. Electron and hole states can be confined in this graphene quantum blisters (GQB) by applying a global electrostatic bias. We scrutinize the electronic properties of these confined states under the variation of interlayer bias, coupling, and blister's size. The spectra display strong anti-crossings due to the coupling of the confined states on upper and lower layers inside the blister. These spectra are layer localized where the respective confined states reside on either layer or equally distributed. For finite angular momentum, this layer localization can be at the edge of the blister and corresponds to degenerate modes of opposite momenta. Furthermore, the energy levels in GQB exhibit electron-hole symmetry that is sensitive to the electrostatic bias. Finally, we demonstrate that confinement in GQB persists even in the presence of a variation in the interlayer coupling.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000443135000001 Publication Date 2018-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 6 Open Access
Notes ; HMA and HB acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group projects RG1502-1 and RG1502-2. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (BVD). ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:153620UA @ admin @ c:irua:153620 Serial 5086
Permanent link to this record