|   | 
Details
   web
Records
Author Mortazavi, B.; Bafekry, A.; Shahrokhi, M.; Rabczuk, T.; Zhuang, X.
Title (down) ZnN and ZnP as novel graphene-like materials with high Li-ion storage capacities Type A1 Journal article
Year 2020 Publication Materials today energy Abbreviated Journal
Volume 16 Issue Pages Unsp 100392-8
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract In this work, we employed first-principles density functional theory (DFT) calculations to investigate the dynamical and thermal stability of graphene-like ZnX (X = N, P, As) nanosheets. We moreover analyzed the electronic, mechanical and optical properties of these novel two-dimensional (2D) systems. Acquired phonon dispersion relations reveal the absence of imaginary frequencies and thus confirming the dynamical stability of predicted monolayers. According to ab-initio molecular dynamics results however only ZnN and ZnP exhibit the required thermally stability. The elastic modulus of ZnN, ZnP and ZnAs are estimated to be 31, 21 and 17 N/m, respectively, and the corresponding tensile strengths values are 6.0, 4.9 and 4.0 N/m, respectively. Electronic band structure analysis confirms the metallic electronic character for the predicted monolayers. Results for the optical characteristics also indicate a reflectivity of 100% at extremely low energy levels, which is desirable for photonic and optoelectronic applications. According to our results, graphene-like ZnN and ZnP nanosheets can yield high capacities of 675 and 556 mAh/g for Li-ion storage, respectively. Acquired results confirm the stability and acceptable strength of ZnN and ZnP nanosheets and highlight their attractive application prospects in optical and energy storage systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000539083500049 Publication Date 2020-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-6069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.3 Times cited 13 Open Access
Notes ; B. M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 9.3; 2020 IF: NA
Call Number UA @ admin @ c:irua:169752 Serial 6655
Permanent link to this record
 

 
Author Van Dael, M.; Lizin, S.; Swinnen, G.; Van Passel, S.
Title (down) Young people's acceptance of bioenergy and the influence of attitude strength on information provision Type A1 Journal article
Year 2017 Publication Renewable Energy Abbreviated Journal Renew Energ
Volume 107 Issue Pages 417-430
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This study investigated the effects of using a standardized PowerPoint lecture to provide young people with nuanced information about bioenergy. The studys aim was to understand the relationship between knowledge and participants perception of bioenergy, and the relationship of the latter to participants attitude strength and intention to use and learn about bioenergy. Data were collected from 715 participants using a survey instrument that contained mainly Likert-scale questions. Data were then processed using partial least squares structural equation modelling. Results show that providing such information increases knowledge about bioenergy, but does relatively little to create a more positive perception of bioenergy. In turn, having a more positive view about bioenergy would lead to a higher intention to use bioenergy. Attitude strength was found to mediate the previous relationship and decreases the strength of the relationship between perception and intention to use. Results also show that the lecture weakly contributed to building attitude strength, rendering opinion change less likely in the future. We conclude that listening to a lecture on bioenergy slightly improves peoples perception of bioenergy, makes it more likely that people maintain such a disposition, and translates into a slightly higher intention to use bioenergy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000396946900036 Publication Date 2017-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-1481 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 4.357 Times cited 10 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO; grant number 12G5415N). The authors gratefully acknowledge Sara Leroi-Werelds (Hasselt University) for her valuable comments. ; Approved Most recent IF: 4.357
Call Number UA @ admin @ c:irua:140683 Serial 6280
Permanent link to this record
 

 
Author Milis, K.; Peremans, H.; Springael, J.; Van Passel, S.
Title (down) Win-win possibilities through capacity tariffs and battery storage in microgrids Type A1 Journal article
Year 2019 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 113 Issue 113 Pages 109238
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This paper investigates the impact of capacity tariff design on microgrids. While the possible benefits for utilities of capacity tariffs are well researched, comparatively little work has been done investigating the effects of capacity pricing on prosumers. Through simulating a grid connected microgrid and solving the day-ahead dispatch problem for a calendar year, we show that a well-designed capacity tariff will not only smooth out demand profiles, but could also lead to less erratic charge/discharge cycles in a real-time pricing scenario, lessening battery degradation. These results show that a properly designed capacity tariff has the potential to be beneficial for both the utilities as well as the battery-owning prosumer. Furthermore, we propose a new, heuristic approach to solve the day-ahead economic dispatch problem, which we prove to be effective and efficient. Additionally, we demonstrate that our novel approach does not impose mathematical restrictions such as continuous differentiability of the objective function. We show that the proposed capacity tariff achieves the stated aim of promoting battery storage uptake and that our novel method allows for compression and shorter run times.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000483422600019 Publication Date 2019-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.05 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:160566 Serial 6279
Permanent link to this record
 

 
Author Vermang, B.; Brammertz, G.; Meuris, M.; Schnabel, T.; Ahlswede, E.; Choubrac, L.; Harel, S.; Cardinaud, C.; Arzel, L.; Barreau, N.; van Deelen, J.; Bolt, P.-J.; Bras, P.; Ren, Y.; Jaremalm, E.; Khelifi, S.; Yang, S.; Lauwaert, J.; Batuk, M.; Hadermann, J.; Kozina, X.; Handick, E.; Hartmann, C.; Gerlach, D.; Matsuda, A.; Ueda, S.; Chikyow, T.; Felix, R.; Zhang, Y.; Wilks, R.G.; Baer, M.
Title (down) Wide band gap kesterite absorbers for thin film solar cells: potential and challenges for their deployment in tandem devices Type A1 Journal article
Year 2019 Publication Sustainable Energy & Fuels Abbreviated Journal
Volume 3 Issue 9 Pages 2246-2259
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This work reports on developments in the field of wide band gap Cu2ZnXY4 (with X = Sn, Si or Ge, and Y = S, Se) kesterite thin film solar cells. An overview on recent developments and the current understanding of wide band gap kesterite absorber layers, alternative buffer layers, and suitable transparent back contacts is presented. Cu2ZnGe(S,Se)(4) absorbers with absorber band gaps up to 1.7 eV have been successfully developed and integrated into solar cells. Combining a CdS buffer layer prepared by an optimized chemical bath deposition process with a 1.36 eV band gap absorber resulted in a record Cu2ZnGeSe4 cell efficiency of 7.6%, while the highest open-circuit voltage of 730 mV could be obtained for a 1.54 eV band gap absorber and a Zn(O,S) buffer layer. Employing InZnOx or TiO2 protective top layers on SnO2:In transparent back contacts yields 85-90% of the solar cell performance of reference cells (with Mo back contact). These advances show the potential as well as the challenges of wide band gap kesterites for future applications in high-efficiency and low-cost tandem photovoltaic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000482057500004 Publication Date 2019-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes ; This project has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement No. 640868. The synchrotron radiation experiments were performed at the SPring-8 beamline BL15XU with the approval of the NIMS Synchrotron X-ray Station (Proposals 2016A4600, 2016B4601, and 2017A4600) and at BESSY II with the approval of HZB. B. Vermang has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement no. 715027). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:161785 Serial 5404
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Mayda, S.; Batuk, M.; Reekmans, G.; von Holst, M.; Elen, K.; Abakumov, A.M.; Adriaensens, P.; Lamoen, D.; Partoens, B.; Hadermann, J.; Van Bael, M.K.; Hardy, A.
Title (down) Understanding the Activation of Anionic Redox Chemistry in Ti4+-Substituted Li2MnO3as a Cathode Material for Li-Ion Batteries Type A1 Journal article
Year 2023 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.
Volume 6 Issue 13 Pages 6956-6971
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Layered Li-rich oxides, demonstrating both cationic and anionic redox chemistry being used as positive electrodes for Li-ion batteries,have raised interest due to their high specific discharge capacities exceeding 250 mAh/g. However, irreversible structural transformations triggered by anionic redox chemistry result in pronounced voltagefade (i.e., lowering the specific energy by a gradual decay of discharge potential) upon extended galvanostatic cycling. Activating or suppressing oxygen anionic redox through structural stabilization induced by redox-inactivecation substitution is a well-known strategy. However, less emphasishas been put on the correlation between substitution degree and theactivation/suppression of the anionic redox. In this work, Ti4+-substituted Li2MnO3 was synthesizedvia a facile solution-gel method. Ti4+ is selected as adopant as it contains no partially filled d-orbitals. Our study revealedthat the layered “honeycomb-ordered” C2/m structure is preserved when increasing the Ticontent to x = 0.2 in the Li2Mn1-x Ti (x) O-3 solidsolution, as shown by electron diffraction and aberration-correctedscanning transmission electron microscopy. Galvanostatic cycling hintsat a delayed oxygen release, due to an improved reversibility of theanionic redox, during the first 10 charge-discharge cyclesfor the x = 0.2 composition compared to the parentmaterial (x = 0), followed by pronounced oxygen redoxactivity afterward. The latter originates from a low activation energybarrier toward O-O dimer formation and Mn migration in Li2Mn0.8Ti0.2O3, as deducedfrom first-principles molecular dynamics (MD) simulations for the“charged” state. Upon lowering the Ti substitution to x = 0.05, the structural stability was drastically improvedbased on our MD analysis, stressing the importance of carefully optimizingthe substitution degree to achieve the best electrochemical performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001018266700001 Publication Date 2023-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access: Available from 24.12.2023
Notes Universiteit Hasselt, AUHL/15/2 – GOH3816N ; Russian Science Foundation, 20-43-01012 ; Fonds Wetenschappelijk Onderzoek, AUHL/15/2 – GOH3816N G040116N ; The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 6.4; 2023 IF: NA
Call Number EMAT @ emat @c:irua:198160 Serial 8809
Permanent link to this record
 

 
Author D'Olieslaeger, L.; Pfannmöller, M.; Fron, E.; Cardinaletti, I.; Van der Auweraer, M.; Van Tendeloo, G.; Bals, S.; Maes, W.; Vanderzande, D.; Manca, J.; Ethirajan, A.
Title (down) Tuning of PCDTBT : PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells Type A1 Journal article
Year 2017 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C
Volume 159 Issue 159 Pages 179-188
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We report the controlled preparation of water processable nanoparticles (NPs) employing the push-pull polymer PCDTBT and the fullerene acceptor PC71BM in order to enable solar cell processing using eco-friendly solvent (i.e. water). The presented method provides the possibility to separate the formation of the active layer blend and the deposition of the active layer into two different processes. For the first time, the benefits of aqueous processability for the high-potential class of push-pull polymers, generally requiring high boiling solvents, are made accessible. With our method we demonstrate excellent control over the blend stoichiometry and efficient mixing. Furthermore, we provide visualization of the nano morphology of the different NPs to obtain structural information down to similar to 2 nm resolution using advanced analytical electron microscopy. The imaging directly reveals very small compositional demixing in the PCDTBT:PC71BM blend NPs, in the size range of about <5 nm, indicating fine mixing at the molecular level. The suitability of the proposed methodology and materials towards the aspects of eco-friendly processing of organic solar cells is demonstrated through a processing of lab scale NPs solar cell prototypes reaching a power conversion efficiency of 1.9%. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000388053600021 Publication Date 2016-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 32 Open Access OpenAccess
Notes ; This work was supported by BOF funding of Hasselt University, the Interreg project Organext, and the IAP 7/05 project FS2 (Functional Supramolecular Systems), granted by the Science Policy Office of the Belgian Federal Government (BELSPO). A.E. is a post-doctoral fellow of the Flanders Research Foundation (FWO). M.P. gratefully acknowledges the SIM NanoForce program for financial support. S.B. further acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors are thankful for technical support by J. Smits, T. Vangerven, and J. Baccus. ; ecas_sara Approved Most recent IF: 4.784
Call Number UA @ lucian @ c:irua:139157UA @ admin @ c:irua:139157 Serial 4450
Permanent link to this record
 

 
Author Berthold, T.; Castro, C.R.; Winter, M.; Hoerpel, G.; Kurttepeli, M.; Bals, S.; Antonietti, M.; Fechler, N.
Title (down) Tunable nitrogen-doped carbon nanoparticles from tannic acid and urea and their potential for sustainable soots Type A1 Journal article
Year 2017 Publication ChemNanoMat : chemistry of nanomaterials for energy, biology and more Abbreviated Journal Chemnanomat
Volume 3 Issue 3 Pages 311-318
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nano-sized nitrogen-doped carbon spheres are synthesized from two cheap, readily available and sustainable precursors: tannic acid and urea. In combination with a polymer structuring agent, nitrogen content, sphere size and the surface (up to 400 m(2)g(-1)) can be conveniently tuned by the precursor ratio, temperature and structuring agent content. Because the chosen precursors allow simple oven synthesis and avoid harsh conditions, this carbon nanosphere platform offers a more sustainable alternative to classical soots, for example, as printing pigments or conduction soots. The carbon spheres are demonstrated to be a promising as conductive carbon additive in anode materials for lithium ion batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403299200006 Publication Date 2017-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-692x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.937 Times cited 14 Open Access OpenAccess
Notes ; S.B. is grateful for funding by the European Research Council (ERC starting grant # 335078-COLOURATOMS). ; ecas_Sara Approved Most recent IF: 2.937
Call Number UA @ lucian @ c:irua:144287UA @ admin @ c:irua:144287 Serial 4699
Permanent link to this record
 

 
Author Buytaert, V.; Muys, B.; Devriendt, N.; Pelkmans, L.; Kretzschmar, J.G.; Samson, R.
Title (down) Towards integrated sustainability assessment for energetic use of biomass : a state of the art evaluation of assessment tools Type A1 Journal article
Year 2011 Publication Renewable and sustainable energy reviews Abbreviated Journal
Volume 15 Issue 8 Pages 3918-3933
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Biomass is expected to play an increasingly significant role in the greening of energy supply. Nevertheless, concerns are rising about the sustainability of large-scale energy crop production. Impacts must be assessed carefully before deciding whether and how this industry should be developed, and what technologies, policies and investment strategies should be pursued. There is need for a comprehensive and reliable sustainability assessment tool to evaluate the environmental, social and economic performance of biomass energy production. This paper paves the way for such a tool by analysing and comparing the performance and applicability of a selection of existing tools that are potentially useful for sustainability assessment of bioenergy systems. The selected tools are: Criteria And Indicators (C&I), Life Cycle Assessment (LCA), Environmental Impact Assessment (EIA), Cost Benefit Analysis (CBA), Exergy Analysis (EA) and System Perturbation Analysis (SPA). To evaluate the tools, a framework was constructed that consists of four evaluation levels: sustainability issues, tool attributes, model structure, area of application. The tools were then evaluated using literature data and with the help of a Delphi panel of experts. Finally, a statistical analysis was performed on the resulting data matrix to detect significant differences between tools. It becomes clear that none of the selected tools is able to perform a comprehensive sustainability assessment of bioenergy systems. Every tool has its particular advantages and disadvantages, which means that trade-offs are inevitable and a balance must be found between scientific accuracy and pragmatic decision making. A good definition of the assessment objective is therefore crucial. It seems an interesting option to create a toolbox that combines procedural parts of C&I and EIA, supplemented with calculation algorithms of LCA and CBA for respectively environmental and economic sustainability indicators. Nevertheless, this would require a more comprehensive interdisciplinary approach to align the different tool characteristics and focuses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298764100043 Publication Date 2011-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:96444 Serial 8682
Permanent link to this record
 

 
Author Batuk, M.; Vandemeulebroucke, D.; Ceretti, M.; Paulus, W.; Hadermann, J.
Title (down) Topotactic redox cycling in SrFeO2.5+δ explored by 3D electron diffraction in different gas atmospheres Type A1 Journal article
Year 2022 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract For oxygen conducting materials applied in solid oxide fuel cells and chemical-looping processes, the understanding of the oxygen diffusion mechanism and the materials’ crystal structure at different stages of the redox reactions is a key parameter to control their performance. In this paper we report the first ever in situ 3D ED experiment in a gas environment and with it uncover the structure evolution of SrFeO2.5 as notably different from that reported from in situ X-ray and in situ neutron powder diffraction studies in gas environments. Using in situ 3D ED on submicron sized single crystals obtained from a high quality monodomain SrFeO2.5 single crystal , we observe the transformation under O2 flow of SrFeO2.5 with an intra- and interlayer ordering of the left and right twisted (FeO4) tetrahedral chains (space group Pcmb) into consecutively SrFeO2.75 with space group Cmmm (at 350°C, 33% O2) and SrFeO3-δ with space group Pm3 ̅m (at 400°C, 100% O2). Upon reduction in H2 flow, the crystals return to the brownmillerite structure with intralayer order, but without regaining the interlayer order of the pristine crystals. Therefore, redox cycling of SrFeO2.5 crystals in O2 and H2 introduces stacking faults into the structure, resulting in an I2/m(0βγ)0s symmetry with variable β.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000891928400001 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.9 Times cited Open Access OpenAccess
Notes Financial support is acknowledged from the FWO-Hercules fund I003218N ‘Infrastructure for imaging nanoscale processes in gas/vapor or liquid environments’, from the University of Antwerp through grant BOF TOP 38689. This work was supported by the European Commission Horizon 2020 NanED grant number 956099. Financial support from the French National Research Agency (ANR) through the project “Structural induced Electronic Complexity controlled by low temperature Topotactic Reaction” (SECTOR No. ANR-14-CE36- 0006-01) is gratefully acknowledged. Approved Most recent IF: 11.9
Call Number EMAT @ emat @c:irua:192325 Serial 7229
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Ata, I.; Duche, D.; Gaceur, M.; Koganezawa, T.; Yoshimoto, N.; Simon, J.-J.; Escoubas, L.; Videlot-Ackermann, C.; Margeat, O.; Bals, S.; Bauerle, P.; Ackermann, J.
Title (down) Time evolution studies of dithieno[3,2-b:2 ',3 '-d] pyrrole-based A-D-A oligothiophene bulk heterojunctions during solvent vapor annealing towards optimization of photocurrent generation Type A1 Journal article
Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 5 Issue 5 Pages 1005-1013
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Solvent vapor annealing (SVA) is one of the main techniques to improve the morphology of bulk heterojunction solar cells using oligomeric donors. In this report, we study time evolution of nanoscale morphological changes in bulk heterojunctions based on a well-studied dithienopyrrole-based A-D-A oligothiophene (dithieno[3,2-b: 2',3'-d] pyrrole named here 1) blended with [6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) to increase photocurrent density by combining scanning transmission electron microscopy and low-energy-loss spectroscopy. Our results show that SVA transforms the morphology of 1 : PC71BM blends by a three-stage mechanism: highly intermixed phases evolve into nanostructured bilayers that correspond to an optimal blend morphology. Additional SVA leads to completely phaseseparated micrometer-sized domains. Optical spacers were used to increase light absorption inside optimized 1 : PC71BM blends leading to solar cells of 7.74% efficiency but a moderate photocurrent density of 12.3 mA cm (-2). Quantum efficiency analyses reveal that photocurrent density is mainly limited by losses inside the donor phase. Indeed, optimized 1 : PC71BM blends consist of large donor-enriched domains not optimal for exciton to photocurrent conversion. Shorter SVA times lead to smaller domains; however they are embedded in large mixed phases suggesting that introduction of stronger molecular packing may help us to better balance phase separation and domain size enabling more efficient bulk heterojunction solar cells.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000394430800018 Publication Date 2016-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 19 Open Access Not_Open_Access
Notes ; We acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (Grant number: F1110019V/201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, Grant number: 287594). The synchrotron radiation experiments were performed at BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2016A1568). We further acknowledge financial support via ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:142602UA @ admin @ c:irua:142602 Serial 4695
Permanent link to this record
 

 
Author L. Zhang, J. Kim, J. Zhang, F. Nan, N. Gauquelin, G.A. Botton, P. He, R. Bashyam, S. Knights
Title (down) Ti4O7 supported Ru@Pt core–shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction Type A1 Journal Article
Year 2013 Publication Applied Energy Abbreviated Journal
Volume 103 Issue March 2013 Pages 507-513
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract A new method is developed for synthesizing Ti4O7 supported Ru@Pt core–shell catalyst (Ru@Pt/Ti4O7) through pyrolysis followed by microwave irradiation. The purpose is to improve the Ru durability of PtRu from core–shell structure and strong bonding to Ti4O7 oxide. In this method, the first step is to co-reduce the mixture of ruthenium precursor and TiO2 in a H2 reducing atmosphere under heat-treatment to obtain a Ru core on Ti4O7 support, and the second step is to create a shell of platinum via microwave irradiation. Energy dispersive X-ray spectrometry, X-ray Diffraction, High-resolution Scanning Transmission Electron Microscopy with the high-angle annular dark-field method and Electron Energy-Loss Spectroscopy are used to demonstrate that this catalyst with larger particles has a core–shell structure with a Ru core and a Pt shell. Electrochemical measurements show Ru@Pt/Ti4O7 catalyst has a higher CO-tolerance capability than that of PtRu/C alloy catalyst.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000314669500048 Publication Date 2012-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links
Impact Factor Times cited 33 Open Access
Notes Approved Most recent IF: NA
Call Number EMAT @ emat @ Serial 4547
Permanent link to this record
 

 
Author Quintero-Coronel, D.A.; Lenis-Rodas, Y.A.; Corredor, L.A.; Perreault, P.; Gonzalez-Quiroga, A.
Title (down) Thermochemical conversion of coal and biomass blends in a top-lit updraft fixed bed reactor : experimental assessment of the ignition front propagation velocity Type A1 Journal article
Year 2021 Publication Energy Abbreviated Journal Energy
Volume 220 Issue Pages 119702-119710
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Co-thermochemical conversion of coal and biomass can potentially decrease the use of fossil carbon and pollutant emissions. This work presents experimental results for the so-called top-lit updraft fixed bed reactor, in which the ignition front starts at the top and propagates downward while the gas product flows upwards. The study focuses on the ignition front propagation velocity for the co-thermochemical conversion of palm kernel shell and high-volatile bituminous coal. Within the range of assessed air superficial velocities, the process occurred under gasification and near stoichiometric conditions. Under gasification conditions increasing coal particle size from 7.1 to 22 mm decreased ignition front velocity by around 26% regardless of the coal volume percentage. Furthermore, increasing coal volume percentage and decreasing coal particle size result in product gas with higher energy content. For the operation near stoichiometric conditions, increasing coal volume percentage from 10 to 30% negatively affected the ignition front velocity directly proportional to its particle size. Additional experiments confirmed a linear dependence of ignition front velocity on air superficial velocity. Further steps in the development of the top-lit updraft technology are implementing continuous solids feeding and variable cross-sectional area and optimizing coal particle size distribution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000623087300003 Publication Date 2020-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-5442 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.52 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.52
Call Number UA @ admin @ c:irua:175861 Serial 8664
Permanent link to this record
 

 
Author Lutz, L.; Corte, D.A.D.; Chen, Y.; Batuk, D.; Johnson, L.R.; Abakumov, A.; Yate, L.; Azaceta, E.; Bruce, P.G.; Tarascon, J.-M.; Grimaud, A.
Title (down) The role of the electrode surface in Na-Air batteries : insights in electrochemical product formation and chemical growth of NaO2 Type A1 Journal article
Year 2018 Publication Advanced energy materials Abbreviated Journal Adv Energy Mater
Volume 8 Issue 4 Pages 1701581
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The Na-air battery, because of its high energy density and low charging overpotential, is a promising candidate for low-cost energy storage, hence leading to intensive research. However, to achieve such a battery, the role of the positive electrode material in the discharge process must be understood. This issue is herein addressed by exploring the electrochemical reduction of oxygen, as well as the chemical formation and precipitation of NaO2 using different electrodes. Whereas a minor influence of the electrode surface is demonstrated on the electrochemical formation of NaO2, a strong dependence of the subsequent chemical precipitation of NaO2 is identified. In the origin, this effect stems from the surface energy and O-2/O-2(-) affinity of the electrode. The strong interaction of Au with O-2/O-2(-) increases the nucleation rate and leads to an altered growth process when compared to C surfaces. Consequently, thin (3 mu m) flakes of NaO2 are found on Au, whereas on C large cubes (10 mu m) of NaO2 are formed. This has significant impact on the cell performance and leads to four times higher capacity when C electrodes with low surface energy and O-2/O-2(-) affinity are used. It is hoped that these findings will enable the design of new positive electrode materials with optimized surfaces.
Address
Corporate Author Thesis
Publisher WILEY-VCH Verlag GmbH & Co. Place of Publication Weinheim Editor
Language Wos 000424152200009 Publication Date 2017-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.721 Times cited 13 Open Access Not_Open_Access
Notes ; L.L. thanks ALISTORE-ERI for his PhD grant. P.G.B. is indebted to the EPSRC for financial support, including the Supergen Energy Storage grant. ; Approved Most recent IF: 16.721
Call Number UA @ lucian @ c:irua:149269 Serial 4951
Permanent link to this record
 

 
Author Khelifi, S.; Brammertz, G.; Choubrac, L.; Batuk, M.; Yang, S.; Meuris, M.; Barreau, N.; Hadermann, J.; Vrielinck, H.; Poelman, D.; Neyts, K.; Vermang, B.; Lauwaert, J.
Title (down) The path towards efficient wide band gap thin-film kesterite solar cells with transparent back contact for viable tandem application Type A1 Journal article
Year 2021 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C
Volume 219 Issue Pages 110824
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Wide band gap thin-film kesterite solar cell based on non-toxic and earth-abundant materials might be a suitable candidate as a top cell for tandem configuration in combination with crystalline silicon as a bottom solar cell. For this purpose and based on parameters we have extracted from electrical and optical characterization techniques of Cu2ZnGeSe4 absorbers and solar cells, a model has been developed to describe the kesterite top cell efficiency limitations and to investigate the different possible configurations with transparent back contact for fourterminal tandem solar cell application. Furthermore, we have studied the tandem solar cell performance in view of the band gap and the transparency of the kesterite top cell and back contact engineering. Our detailed analysis shows that a kesterite top cell with efficiency > 14%, a band gap in the range of 1.5-1.7 eV and transparency above 80% at the sub-band gaps photons energies are required to achieve a tandem cell with higher efficiency than with a single silicon solar cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000591683500002 Publication Date 2020-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited Open Access OpenAccess
Notes The authors would like to acknowledge the SWInG project financed by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640868 and the Research Foundation Flanders-Hercules Foundation (FWO-Vlaanderen, project No AUGE/13/16:FT-IMAGER). Approved Most recent IF: 4.784
Call Number EMAT @ emat @c:irua:174337 Serial 6706
Permanent link to this record
 

 
Author Buchmayr, A.; Verhofstadt, E.; Van Ootegem, L.; Sanjuan Delmás, D.; Thomassen, G.; Dewulf, J.
Title (down) The path to sustainable energy supply systems: Proposal of an integrative sustainability assessment framework Type A1 Journal Article
Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 138 Issue Pages 110666
Keywords A1 Journal Article; Engineering Management (ENM) ;
Abstract Energy supply is essential for the functioning and well-being of a society. Decision-makers are faced with the challenge to balance burdens and benefits of energy supply practices with the aim to achieve environmental, economic, and social sustainability. Literature exhibits a broad variety of sustainability assessment frameworks for energy supply technologies. However, there is no consensus on which aspects need to be covered for a comprehensive assessment of sustainability. While some aspects, such as environmental emission damage, receive predominant attention, there is a lack of coverage and adequate quantification for others. This led in the past to an unbalanced basis for decision-making.

Based on an analysis of literature, 12 impact categories were identified for the assessment of energy technologies. The analysis included the judgement of quantification approaches regarding their significance for describing the impact categories and their maturity resulting in the proposal of 12 concrete indicators. A framework is proposed to manage and integrate the assessment of single impact categories. The framework produces normalized and weighted output indicators to use in the form of a dashboard or alternatively a single sustainability index for informed decision-making.

Finally, the proposed sustainability assessment framework relies on life cycle, local impact, and supply chain risks assessment. It consists of both well-established assessment methods as well as suggestions for new indicators in order to allow a full assessment of all impact categories. It thereby goes beyond the isolated assessment of impacts and offers the basis for comparison of complete energy supply mixes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321 ISBN Additional Links
Impact Factor 8.05 Times cited Open Access Not_Open_Access
Notes The authors acknowledge the financial support received from the Special Research Fund (Bijzonder Onderzoeksfonds – BOF) of Ghent University under grant agreement number BOF.24Y.2018.003. Approved Most recent IF: 8.05
Call Number ENM @ enm @ Serial 6680
Permanent link to this record
 

 
Author Van Havenbergh, K.; Turner, S.; Marx, N.; Van Tendeloo, G.
Title (down) The mechanical behavior during (de)lithiation of coated silicon nanoparticles as anode material for lithium-ion batteries studied by InSitu transmission electron microscopy Type A1 Journal article
Year 2016 Publication Energy technology Abbreviated Journal Energy Technol-Ger
Volume 4 Issue 4 Pages 1005-1012
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract One approach to cope with the continuous irreversible capacity loss in Si-based electrodes, attributed to lithiation-induced volume changes and the formation of a solid-electrolyte interface (SEI), is by coating silicon nanoparticles. A coating can improve the conductivity of the electrode, form a chemical shield against the electrolyte, or provide mechanical confinement to reduce the volume increase. The influence of such a coating on the mechanical behavior of silicon nanoparticles during Li insertion and Li extraction was investigated by insitu transmission electron microscopy. The type of coating was shown to influence the size of the unreacted core that remains after reaction of silicon with lithium. Furthermore, two mechanisms to relieve the stress generated during volume expansion are reported: the initiation of cracks and the formation of nanovoids. Both result in a full reaction of the silicon nanoparticles, whereas with the formation of cracks, additional surface area is created, on which an SEI can be formed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000382549500012 Publication Date 2016-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4296; 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.789 Times cited 6 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:137167 Serial 4406
Permanent link to this record
 

 
Author Milis, K.; Peremans, H.; Van Passel, S.
Title (down) The impact of policy on microgrid economics : a review Type A1 Journal article
Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 81 Issue 2 Pages 3111-3119
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This paper investigates the impact of government policy on the optimal design of microgrid systems from an economic cost minimisation perspective, and provides both an overview of the current state of the art of the field, as well as highlighting possible avenues of future research. Integer programming, to select microgrid components and to economically dispatch these components, is the optimisation method of choice in the literature. Using this methodology, a broad range of policy topics is investigated: impact of carbon taxation, economic incentives and mandatory emissions reduction or mandatory minimum percentage participation of renewables in local generation. However, the impact of alternative tariff systems, such as capacity tariffs are still unexplored. Additionally, the investigated possible benefits of microgrids are confined to emissions reduction and a possible decrease in total energy procurement costs. Possible benefits such as increased security of supply, increased power quality or energy independence are not investigated yet. Under the expected policy measures the optimal design of a microgrid will be based on a CHP-unit to provide both heat and electricity, owning to the lower capital costs associated with CHP-units when compared to those associated with renewable technologies. This means that current economic analyses indicate that the adoption of renewable energy sources within microgrids is not economically rational.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000417078200117 Publication Date 2017-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 11 Open Access
Notes ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:145397 Serial 6213
Permanent link to this record
 

 
Author Lizin, S.; Van Passel, S.; De Schepper, E.; Vranken, L.
Title (down) The future of organic photovoltaic solar cells as a direct power source for consumer electronics Type A1 Journal article
Year 2012 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C
Volume 103 Issue Pages 1-10
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract As the search for marketable photovoltaic solar cells continues, organic photovoltaic (OPV) solar cells have been identified as a technology with many attractive features for commercialization. Most photovoltaic technologies on the market today were improved in the consumer electronics market segment. A similar evolution has been envisioned for OPV. Hence this paper investigates consumer preferences for solar cells directly powering consumer electronics. Choice experiments were designed and responses were collected using a random sample of 300 individuals from the Flemish region (northern part of Belgium). Results allow for computation of attribute importance, willingness to pay (WTP), and simulation of theoretical market share. These measures point towards OPV being able to reach considerable market share in the long run, bearing in mind that efforts are first needed in elevating OPV's efficiency and lifetime as they most determine consumers' preferences. Price is found to be the least important product characteristic for OPV solar cells to be incorporated in consumer electronics devices. We therefore warn against generalizing attributes' importance across the boundaries of market segments. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000306044300001 Publication Date 2012-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 25 Open Access
Notes ; The authors would kindly want to express their gratitude towards every survey respondent and participant for their preliminary work. Also the authors are much obliged to INTERREG and the ORGANEXT project for their financial support, without which it would have been impossible to conduct this research. Last but not least, we would like to thank the reviewers for their insightful comments which allowed for fine tuning our work. ; Approved Most recent IF: 4.784; 2012 IF: 4.630
Call Number UA @ admin @ c:irua:127556 Serial 6267
Permanent link to this record
 

 
Author Mooij, L.; Perkisas, T.; Palsson, G.; Schreuders, H.; Wolff, M.; Hjorvarsson, B.; Bals, S.; Dam, B.
Title (down) The effect of microstructure on the hydrogenation of Mg/Fe thin film multilayers Type A1 Journal article
Year 2014 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
Volume 39 Issue 30 Pages 17092-17103
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoconfined magnesium hydride can be simultaneously protected and thermodynamically destabilized when interfaced with materials such as Ti and Fe. We study the hydrogenation of thin layers of Mg (<14 nm) nanoconfined in one dimension within thin film Fe/Mg/Fe/Pd multilayers by the optical technique Hydrogenography. The hydrogenation of nanosized magnesium layers in Fe/Mg/Fe multilayers surprisingly shows the presence of multiple plateau pressures, whose nature is thickness dependent. In contrast, hydrogen desorption occurs via a single plateau which does not depend on the Mg layer thickness. From structural and morphological analyses with X-ray diffraction/reflectometry and cross-section TEM, we find that the Mg layer roughness is large when deposited on Fe and furthermore contains high-angle grain boundaries (GB's). When grown on Ti, the Mg layer roughness is low and no high-angle GB's are detected. From a Ti/Mg/Fe multilayer, in which the Mg layer is flat and has little or no GB's, we conclude that MgH2 is indeed destabilized by the interface with Fe. In this case, both the ab- and desorption plateau pressures are increased by a factor two compared to the hydrogenation of Mg within Ti/Mg/Ti multilayers. We hypothesize that the GB's in the Fe/Mg/Fe multilayer act as diffusion pathways for Pd, which is known to greatly alter the hydrogenation behavior of Mg when the two materials share an interface. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000343839000031 Publication Date 2014-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 15 Open Access Not_Open_Access
Notes COST Action MP1103 Approved Most recent IF: 3.582; 2014 IF: 3.313
Call Number UA @ lucian @ c:irua:121175 Serial 3575
Permanent link to this record
 

 
Author Dingenen, F.; Verbruggen, S.W.
Title (down) Tapping hydrogen fuel from the ocean : a review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater Type A1 Journal article
Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 142 Issue Pages 110866
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues. Direct seawater electrolysis is the most established technology, attaining high current densities in the order of 1–2 A cm−2. Alternatively, light-driven processes such as photocatalytic and photoelectrochemical seawater splitting are particularly promising as well, as they rely on renewable solar power. Solar-to-Hydrogen efficiencies have increased over the past decade from negligible values to about 2%. Especially the absence of large local pH changes (in the order of several tenths of a pH unit compared to up to 9 pH units for electrolysis) is a strong asset for pure photocatalysis. This may lead to less adverse side-reactions such as Cl2 and ClO− formation, (acid or base induced) corrosion and scaling. Besides, additional requirements for electrolytic cells, e.g. membranes and electricity input, are not needed in pure photocatalysis systems. In this review, the state-of-the-art technologies in light-driven seawater splitting are compared to electrochemical approaches with a focus on sustainability and stability. Promising advances are identified at the level of the catalyst as well as the process, and insight is provided in solutions crossing different fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000632316600003 Publication Date 2021-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:175701 Serial 8642
Permanent link to this record
 

 
Author Van Alphen, S.; Jardali, F.; Creel, J.; Trenchev, G.; Snyders, R.; Bogaerts, A.
Title (down) Sustainable gas conversion by gliding arc plasmas: a new modelling approach for reactor design improvement Type A1 Journal article
Year 2021 Publication Sustainable energy & fuels Abbreviated Journal Sustainable Energy Fuels
Volume 5 Issue 6 Pages 1786-1800
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Research in plasma reactor designs is developing rapidly as plasma technology is gaining increasing interest for sustainable gas conversion applications, like the conversion of greenhouse gases into value-added chemicals and renewable fuels, and fixation of N<sub>2</sub>from air into precursors of mineral fertilizer. As plasma is generated by electric power and can easily be switched on/off, these applications allows for efficient conversion and energy storage of intermittent renewable electricity. In this paper, we present a new comprehensive modelling approach for the design and development of gliding arc plasma reactors, which reveals the fluid dynamics, the arc behaviour and the plasma chemistry by solving a unique combination of five complementary models. This results in a complete description of the plasma process, which allows one to efficiently evaluate the performance of a reactor and indicate possible design improvements before actually building it. We demonstrate the capabilities of this method for an experimentally validated study of plasma-based NO<sub>x</sub>formation in a rotating gliding arc reactor, which is gaining increasing interest as a flexible, electricity-driven alternative for the Haber–Bosch process. The model demonstrates the importance of the vortex flow and the presence of a recirculation zone in the reactor, as well as the formation of hot spots in the plasma near the cathode pin and the anode wall that are responsible for most of the NO<sub>x</sub>formation. The model also reveals the underlying plasma chemistry and the vibrational non-equilibrium that exists due to the fast cooling during each arc rotation. Good agreement with experimental measurements on the studied reactor design proves the predictive capabilities of our modelling approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000631643300013 Publication Date 2021-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, GoF9618n ; Vlaamse regering, HBC.2019.0107 ; European Research Council, 810182 ; This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 810182 – SCOPE ERC Synergy project), the 1798 | Sustainable Energy Fuels, 2021, 5, 1786–1800 Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:177540 Serial 6745
Permanent link to this record
 

 
Author Osorio-Tejada, J.; van't Veer, K.; Long, N.V.D.; Tran, N.N.; Fulcheri, L.; Patil, B.S.; Bogaerts, A.; Hessel, V.
Title (down) Sustainability analysis of methane-to-hydrogen-to-ammonia conversion by integration of high-temperature plasma and non-thermal plasma processes Type A1 Journal article
Year 2022 Publication Energy Conversion And Management Abbreviated Journal Energ Convers Manage
Volume 269 Issue Pages 116095
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The Covid era has made us aware of the need for resilient, self-sufficient, and local production. We are likely willing to pay an extra price for that quality. Ammonia (NH3) synthesis accounts for 2 % of global energy production and is an important point of attention for the development of green energy technologies. Therefore, we propose a thermally integrated process for H2 production and NH3 synthesis using plasma technology, and we evaluate its techno-economic performance and CO2 footprint by life cycle assessment (LCA). The key is to integrate energy-wise a high-temperature plasma (HTP) process, with a (low-temperature) non-thermal plasma (NTP) process and to envision their joint economic potential. This particularly means raising the temperature of the NTP process, which is typically below 100 ◦ C, taking advantage of the heat released from the HTP process. For that purpose, we proposed the integrated process and conducted chemical kinetics simulations in the NTP section to determine the thermodynamically feasible operating window of this novel combined plasma process. The results suggest that an NH3 yield of 2.2 mol% can be attained at 302 ◦ C at an energy yield of 1.1 g NH3/kWh. Cost calculations show that the economic performance is far from commercial, mainly because of the too low energy yield of the NTP process. However, when we base our costs on the best literature value and plausible future scenarios for the NTP energy yield, we reach a cost prediction below 452 $/tonne NH3, which is competitive with conventional small-scale Haber-Bosch NH3 synthesis for distributed production. In addition, we demonstrate that biogas can be used as feed, thus allowing the proposed integrated reactor concept to be part of a biogas-to-ammonia circular concept. Moreover, by LCA we demonstrate the environmental benefits of the pro­posed plant, which could cut by half the carbon emissions when supplied by photovoltaic electricity, and even invert the carbon balance when supplied by wind power due to the avoided emissions of the carbon black credits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000880662100007 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0196-8904 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.4 Times cited Open Access OpenAccess
Notes European Research Council; European Commission, 810182 ; The authors acknowledge support from the ERC Synergy Grant “Surface-COnfined fast modulated Plasma for process and Energy intensification” (SCOPE), from the European Commission, with Grant No. 810182. Approved Most recent IF: 10.4
Call Number PLASMANT @ plasmant @c:irua:191785 Serial 7103
Permanent link to this record
 

 
Author Kummamuru, N.B.; Ciocarlan, R.-G.; Houlleberghs, M.; Martens, J.; Breynaert, E.; Verbruggen, S.W.; Cool, P.; Perreault, P.
Title (down) Surface modification of mesostructured cellular foam to enhance hydrogen storage in binary THF/H₂ clathrate hydrate Type A1 Journal article
Year 2024 Publication Sustainable energy & fuels Abbreviated Journal
Volume Issue Pages 1-15
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract This study introduces solid-state tuning of a mesostructured cellular foam (MCF) to enhance hydrogen (H-2) storage in clathrate hydrates. Grafting of promoter-like molecules (e.g., tetrahydrofuran) at the internal surface of the MCF resulted in a substantial improvement in the kinetics of formation of binary H-2-THF clathrate hydrate. Identification of the confined hydrate as sII clathrate hydrate and enclathration of H-2 in its small cages was performed using XRD and high-pressure H-1 NMR spectroscopy respectively. Experimental findings show that modified MCF materials exhibit a similar to 1.3 times higher H-2 storage capacity as compared to non-modified MCF under the same conditions (7 MPa, 265 K, 100% pore volume saturation with a 5.56 mol% THF solution). The enhancement in H-2 storage is attributed to the hydrophobicity originating from grafting organic molecules onto pristine MCF, thereby influencing water interactions and fostering an environment conducive to H-2 enclathration. Gas uptake curves indicate an optimal tuning point for higher H-2 storage, favoring a lower density of carbon per nm(2). Furthermore, a direct correlation emerges between higher driving forces and increased H-2 storage capacity, culminating at 0.52 wt% (46.77 mmoles of H-2 per mole of H2O and 39.78% water-to-hydrate conversions) at 262 K for the modified MCF material with fewer carbons per nm(2). Notably, the substantial H-2 storage capacity achieved without energy-intensive processes underscores solid-state tuning's potential for H-2 storage in the synthesized hydrates. This study evaluated two distinct kinetic models to describe hydrate growth in MCF. The multistage kinetic model showed better predictive capabilities for experimental data and maintained a low average absolute deviation. This research provides valuable insights into augmenting H-2 storage capabilities and holds promising implications for future advancements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001208396000001 Publication Date 2024-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205764 Serial 9232
Permanent link to this record
 

 
Author Snoeckx, R.; Van Wesenbeeck, K.; Lenaerts, S.; Cha, M.S.; Bogaerts, A.
Title (down) Suppressing the formation of NOxand N2O in CO2/N2dielectric barrier discharge plasma by adding CH4: scavenger chemistry at work Type A1 Journal article
Year 2019 Publication Sustainable Energy & Fuels Abbreviated Journal Sustainable Energy Fuels
Volume 3 Issue 6 Pages 1388-1395
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract The need for carbon negative technologies led to the development of a wide array of novel CO<sub>2</sub>conversion techniques. Most of them either rely on high temperatures or generate highly reactive O species, which can lead to the undesirable formation of NO<sub>x</sub>and N<sub>2</sub>O when the CO<sub>2</sub>feeds contain N<sub>2</sub>. Here, we show that, for plasma-based CO<sub>2</sub>conversion, adding a hydrogen source, as a chemical oxygen scavenger, can suppress their formation,<italic>in situ</italic>. This allows the use of low-cost N<sub>2</sub>containing (industrial and direct air capture) feeds, rather than expensive purified CO<sub>2</sub>. To demonstrate this, we add CH<sub>4</sub>to a dielectric barrier discharge plasma used for converting impure CO<sub>2</sub>. We find that when adding a stoichiometric amount of CH<sub>4</sub>, 82% less NO<sub>2</sub>and 51% less NO are formed. An even higher reduction (96 and 63%) can be obtained when doubling this amount. However, in that case the excess radicals promote the formation of by-products, such as HCN, NH<sub>3</sub>and CH<sub>3</sub>OH. Thus, we believe that by using an appropriate amount of chemical scavengers, we can use impure CO<sub>2</sub>feeds, which would bring us closer to ‘real world’ conditions and implementation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000469258600021 Publication Date 2019-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G0F9618N ; Universiteit Antwerpen; King Abdullah University of Science and Technology, BAS/1/1384-01-01 ;The research reported in this publication was supported by funding from the “Excellence of Science Program” (Fund for Scientic Research Flanders (FWO): grant no. G0F9618N; EOS ID: 30505023). The authors R. S. and M. S. C. acknowledge nancial support from King Abdullah University of Science and Technology (KAUST), under award number BAS/1/1384-01-01. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160268 Serial 5188
Permanent link to this record
 

 
Author Lander, L.; Rousse, G.; Abakumov, A.M.; Sougrati, M.; Van Tendeloo, G.; Tarascon, J.-M.
Title (down) Structural, electrochemical and magnetic properties of a novel KFeSO4F polymorph Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 19754-19764
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In the quest for sustainable and low-cost positive electrode materials for Li-ion batteries, we discovered, as reported herein, a new low temperature polymorph of KFeSO4F. Contrary to the high temperature phase crystallizing in a KTiOPO4-like structure, this new phase adopts a complex layer-like structure built on FeO4F2 octahedra and SO4 tetrahedra, with potassium cations located in between the layers, as solved using neutron and synchrotron diffraction experiments coupled with electron diffraction. The detailed analysis of the structure reveals an alternation of edge-and corner-shared FeO4F2 octahedra leading to a large monoclinic cell of 1771.774(7) angstrom(3). The potassium atoms are mobile within the structure as deduced by ionic conductivity measurements and confirmed by the bond valence energy landscape approach thus enabling a partial electrochemical removal of K+ and uptake of Li+ at an average potential of 3.7 V vs. Li+/Li-0. Finally, neutron diffraction experiments coupled with SQUID measurements reveal a long range antiferromagnetic ordering of the Fe2+ magnetic moments below 22 K with a possible magnetoelectric behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000362041300018 Publication Date 2015-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 11 Open Access
Notes Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number UA @ lucian @ c:irua:132566 Serial 4253
Permanent link to this record
 

 
Author Milis, K.; Peremans, H.; Van Passel, S.
Title (down) Steering the adoption of battery storage through electricity tariff design Type A1 Journal article
Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 98 Issue 98 Pages 125-139
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract The economic viability of electricity storage using batteries, under different tariff structures and system configurations, is investigated. The economic outcomes of the different combinations of tariff design and system configuration are evaluated. Based on a discussion of the relevant literature, the following tariff designs are used in the study: (i) fixed energy prices, (ii) real-time energy pricing, (iii) fixed rate capacity tariffs, and (iv) capacity dependent capacity tariffs. Next, the different simulated system configurations are outlined: (i) no battery storage, (ii) battery storage only, and (iii) battery storage and decentralized renewable energy production with PV. Our study provides insights for policy makers, showing that capacity block pricing only incentivises storage as part of an (existing) PV installation, while the combination of real time energy pricing and capacity block pricing promotes a wider adoption of battery storage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000450559100010 Publication Date 2018-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:153327 Serial 6252
Permanent link to this record
 

 
Author Van Havenbergh, K.; Turner, S.; Driesen, K.; Bridel, J.-S.; Van Tendeloo, G.
Title (down) Solidelectrolyte interphase evolution of carbon-coated silicon nanoparticles for lithium-ion batteries monitored by transmission electron microscopy and impedance spectroscopy Type A1 Journal article
Year 2015 Publication Energy technology Abbreviated Journal Energy Technol-Ger
Volume 3 Issue 3 Pages 699-708
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The main drawbacks of silicon as the most promising anode material for lithium-ion batteries (theoretical capacity=3572 mAh g−1) are lithiation-induced volume changes and the continuous formation of a solidelectrolyte interphase (SEI) upon cycling. A recent strategy is to focus on the influence of coatings and composite materials. To this end, the evolution of the SEI, as well as an applied carbon coating, on nanosilicon electrodes during the first electrochemical cycles is monitored. Two specific techniques are combined: Transmission Electron Microscopy (TEM) is used to study the surface evolution of the nanoparticles on a very local scale, whereas electrochemical impedance spectroscopy (EIS) provides information on the electrode level. A TEMEELS fingerprint signal of carbonate structures from the SEI is discovered, which can be used to differentiate between the SEI and a graphitic carbon matrix. Furthermore, the shielding effect of the carbon coating and the thickness evolution of the SEI are described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357869100003 Publication Date 2015-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4288; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.789 Times cited Open Access
Notes IWT Flanders Approved Most recent IF: 2.789; 2015 IF: 2.824
Call Number c:irua:126676 Serial 3051
Permanent link to this record
 

 
Author Vanschoenwinkel, J.; Lizin, S.; Swinnen, G.; Azadi, H.; Van Passel, S.
Title (down) Solar cooking in Senegalese villages : an application of best-worst scaling Type A1 Journal article
Year 2014 Publication Energy Policy Abbreviated Journal Energ Policy
Volume 67 Issue Pages 447-458
Keywords A1 Journal article; Sociology; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Dissemination programs of nontraditional cookstoves often fail. Nontraditional cookstoves aim to solve problems associated with biomass fuel usage in developing countries. Recent studies do not explain what drives user's cookstove choice. This study therefore builds a holistic framework that centralizes product-specific preferences or needs. The case study identifies product-specific factors that influence rural Senegalese inhabitants to switch to solar cooking, using best worst scaling. Looking at the preferences, the case study classified 126 respondents, in three distinct market segments with different solar cooking expectations. The paper identifies socio-demographic characteristics that explain these differences in the respondents' preferences. Finally, the respondent sample is divided in two groups: solar cooker owners and non-owners. When studied with regard to the same issue, solar cooker owners appear to value benefits of the solar cooker lower than non-owners. This is due to program factors (such as formations, after-sales network) and miscommunication (such as a wrong image of the solar cooker) that highly influenced the respondents' cookstove choice. As a conclusion, solar cookers and solar cooking programs are not always adapted to the needs and requirements of the end-users. Needs-oriented and end-user adopted strategies are necessary in order to successfully implement nontraditional cookstoves programs. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332815300043 Publication Date 2014-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4215; 1873-6777 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.14 Times cited 10 Open Access
Notes ; The authors thank the VLIR-UOS for their financial support and the Sol Suffit Program for their co-operation during the research. ; Approved Most recent IF: 4.14; 2014 IF: 2.575
Call Number UA @ admin @ c:irua:127544 Serial 6251
Permanent link to this record
 

 
Author Rafiaani, P.; Kuppens, T.; Van Dael, M.; Azadi, H.; Lebailly, P.; Van Passel, S.
Title (down) Social sustainability assessments in the biobased economy : towards a systemic approach Type A1 Journal article
Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 82 Issue 2 Pages 1839-1853
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract The majority of impact assessments for the biobased economy are primarily focused on the environmental and (techno-)economic aspects, while social aspects are rarely considered. This study proposes a modified systemic approach for a social sustainability impact assessment of the biobased economy, based on a review on the common methodologies for assessing social impacts. Accordingly, the proposed approach follows the four general iterative steps of social life cycle analysis (SLCA) as it considers all life cycle phases of the biobased economy. The systemic approach considers the potential social impacts on local communities, workers, and consumers as the main three groups of the stakeholders. The review showed that the most common social indicators for inventory analysis within the biobased economy include health and safety, food security, income, employment, land- and worker-related concerns, energy security, profitability, and gender issues. Multi-criteria decision analysis (MCDA) was also highlighted as the broadly utilized methodology for aggregating the results of impact assessments within the biobased economy. Taking a life cycle perspective, this study provides a holistic view of the full sustainability of research, design, and innovation in the biobased economy by suggesting the integration of the social aspects with techno-economic and an environmental life cycle assessment. Our proposed systemic approach makes possible to integrate the social impacts that are highly valued by the affected stakeholders into the existing sustainability models that focus only on environmental and techno-economic aspects. We discuss the steps of the proposed systemic approach in order to identify the challenges of applying them within the biobased economy. These challenges refer mainly to the definition of the functional unit and system boundaries, the selection and the analysis of social indicators (inventory analysis), the aggregation of the inventory to impact categories, and the uncertainties associated with the social sustainability evaluation. The result of this review and the proposed systemic approach serve as a foundation for industry and policy makers to gain a better insight into the importance of social sustainability impacts assessment within the biobased economy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000423371300014 Publication Date 2017-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 28 Open Access
Notes ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:149031 Serial 6250
Permanent link to this record
 

 
Author Arisnabarreta, N.; Hao, Y.; Jin, E.; Salame, A.; Muellen, K.; Robert, M.; Lazzaroni, R.; Van Aert, S.; Mali, K.S.; De Feyter, S.
Title (down) Single-layered imine-linked porphyrin-based two-dimensional covalent organic frameworks targeting CO₂ reduction Type A1 Journal article
Year 2024 Publication Advanced energy materials Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The reduction of carbon dioxide (CO2) using porphyrin-containing 2D covalent organic frameworks (2D-COFs) catalysts is widely explored nowadays. While these framework materials are normally fabricated as powders followed by their uncontrolled surface heterogenization or directly grown as thin films (thickness >200 nm), very little is known about the performance of substrate-supported single-layered (approximate to 0.5 nm thickness) 2D-COFs films (s2D-COFs) due to its highly challenging synthesis and characterization protocols. In this work, a fast and straightforward fabrication method of porphyrin-containing s2D-COFs is demonstrated, which allows their extensive high-resolution visualization via scanning tunneling microscopy (STM) in liquid conditions with the support of STM simulations. The as-prepared single-layered film is then employed as a cathode for the electrochemical reduction of CO2. Fe porphyrin-containing s2D-COF@graphite used as a single-layered heterogeneous catalyst provided moderate-to-high carbon monoxide selectivity (82%) and partial CO current density (5.1 mA cm(-2)). This work establishes the value of using single-layered films as heterogene ous catalysts and demonstrates the possibility of achieving high performance in CO2 reduction even with extremely low catalyst loadings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001177577200001 Publication Date 2024-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record
Impact Factor 27.8 Times cited Open Access
Notes N.A. acknowledges a postdoctoral fellowship from the Research Foundation- Flanders (FWO) via grant 12ZS623N. S.D.F. acknowledges support from FWO (G0A4120N, G0H2122N, G0A5U24N), KU Leuven Internal Funds (grants C14/18/06, C14/19/079, C14/23/090), European Union under the Horizon Europe grant 101046231 (FantastiCOF), and M-ERA.NET via FWO (G0K9822N). S.D.F., K.M., Y.H., R.L., and S.V.A. were thankful to the FWO and FNRS for the financial support through the EOS program (grant 30489208, 40007495). Research in Mons was also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif- CÉCI, and by the Walloon Region (ZENOBE and LUCIA Tier-1 supercomputers). E.J. appreciated the support from the Alexander von Humboldt Foundation, the Max Planck Society, the FLAG-ERA Grant OPERA by DFG 437130745, the National Natural Science Foundation of China (22288101), and the 111 Project (B17020). Partial financial support to M.R. from the Institut Universitaire de France (IUF) was warmly thanked. Approved Most recent IF: 27.8; 2024 IF: 16.721
Call Number UA @ admin @ c:irua:204856 Serial 9172
Permanent link to this record