|   | 
Details
   web
Records
Author Fatermans, J.; den Dekker, A. J.; Müller-Caspary, K.; Lobato, I.; O’Leary, C. M.; Nellist, P. D.; Van Aert, S.
Title Single Atom Detection from Low Contrast-to-Noise Ratio Electron Microscopy Images Type A1 Journal article
Year 2018 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 121 Issue 5 Pages 056101
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Single atom detection is of key importance to solving a wide range of scientific and technological problems. The strong interaction of electrons with matter makes transmission electron microscopy one of the most promising techniques. In particular, aberration correction using scanning transmission electron microscopy has made a significant step forward toward detecting single atoms. However, to overcome radiation damage, related to the use of high-energy electrons, the incoming electron dose should be kept low enough. This results in images exhibiting a low signal-to-noise ratio and extremely weak contrast, especially for light-element nanomaterials. To overcome this problem, a combination of physics-based model fitting and the use of a model-order selection method is proposed, enabling one to detect single atoms with high reliability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440143200007 Publication Date 2018-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited (down) 6 Open Access OpenAccess
Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Project fundings (No. WO.010.16N, No. G.0368.15N, No. G.0502.18N). The authors are grateful to M. Van Bael and P. Lievens (KU Leuven) and to L. M. Liz-Marzán (CIC biomaGUNE and Ikerbasque) for providing the samples. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 770887). Approved Most recent IF: 8.462
Call Number EMAT @ emat @c:irua:152819 Serial 5004
Permanent link to this record
 

 
Author Shi, W.; Callewaert, V.; Barbiellini, B.; Saniz, R.; Butterling, M.; Egger, W.; Dickmann, M.; Hugenschmidt, C.; Shakeri, B.; Meulenberg, R. W.; Brück, E.; Partoens, B.; Bansil, A.; Eijt, S.W. H.
Title Nature of the Positron State in CdSe Quantum Dots Type A1 Journal article
Year 2018 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 121 Issue 5 Pages 057401
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Previous studies have shown that positron-annihilation spectroscopy is a highly sensitive probe of the electronic structure and surface composition of ligand-capped semiconductor quantum dots (QDs) embedded in thin films. The nature of the associated positron state, however, whether the positron is confined inside the QDs or localized at their surfaces, has so far remained unresolved. Our positron-annihilation lifetime spectroscopy studies of CdSe QDs reveal the presence of a strong lifetime component in the narrow range of 358–371 ps, indicating abundant trapping and annihilation of positrons at the surfaces of the QDs. Furthermore, our ab initio calculations of the positron wave function and lifetime employing a recent formulation of the weighted density approximation demonstrate the presence of a positron surface state and predict positron lifetimes close to experimental values. Our study thus resolves the long-standing question regarding the nature of the positron state in semiconductor QDs and opens the way to extract quantitative information on surface composition and ligand-surface interactions of colloidal semiconductor QDs through highly sensitive positron-annihilation techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440635300012 Publication Date 2018-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited (down) 6 Open Access
Notes The work at Delft University of Technology was supported by the China Scholarship Council (CSC) grant of W. S. We acknowledge financial support for this research from ADEM, A green Deal in Energy Materials of the Ministry of Economic Affairs of The Netherlands. The PALS study is based upon experiments performed at the PLEPS instrument of the NEPOMUC facility at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany, and was supported by the European Commission under the 7th Framework Program, Key Action: Strengthening the European Research Area, Research Infrastructures, Contract No. 226507, NMI3. The work at the University of Maine was supported by the National Science Foundation under Grant No. DMR-1206940. V. C. and R. S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. Computational resources and services used in this work were in part provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government (EWI Department). The work at Northeastern University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences Grant No. DE-FG02-07ER46352 (core research), and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), the National Energy Research Scientific Computing Center (NERSC) through DOE Grant No. DE-AC02-05CH11231, and support (functionals for modeling positron spectros- copies of layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575. Approved Most recent IF: 8.462
Call Number CMT @ cmt @c:irua:152999UA @ admin @ c:irua:152999 Serial 5009
Permanent link to this record
 

 
Author Schweigert, I.V.; Schweigert, V.A.; Peeters, F.M.
Title Reply to Rinn and Maass Type A1 Journal article
Year 2001 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 86 Issue 20 Pages 4712
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000168623500075 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited (down) 5 Open Access
Notes Approved Most recent IF: 8.462; 2001 IF: 6.668
Call Number UA @ lucian @ c:irua:37308 Serial 2877
Permanent link to this record
 

 
Author Valkering, A.M.C.; Sommerfeld, P.K.H.; van de Ven, R.A.M.; van der Heijden, R.W.; Blom, F.A.P.; Lea, M.J.; Peeters, F.M.
Title Hall magnetocapitance in two-dimensional electron systems Type A1 Journal article
Year 1998 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 81 Issue Pages 5398-5401
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000077511700036 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited (down) 4 Open Access
Notes Approved Most recent IF: 8.462; 1998 IF: 6.017
Call Number UA @ lucian @ c:irua:24153 Serial 1402
Permanent link to this record
 

 
Author Van Aert, S.; De Backer, A.; Jones, L.; Martinez, G.T.; Béché, A.; Nellist, P.D.
Title Control of Knock-On Damage for 3D Atomic Scale Quantification of Nanostructures: Making Every Electron Count in Scanning Transmission Electron Microscopy Type A1 Journal article
Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 122 Issue 6 Pages 066101
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Understanding nanostructures down to the atomic level is the key to optimizing the design of advancedmaterials with revolutionary novel properties. This requires characterization methods capable of quantifying the three-dimensional (3D) atomic structure with the highest possible precision. A successful approach to reach this goal is to count the number of atoms in each atomic column from 2D annular dark field scanning transmission electron microscopy images. To count atoms with single atom sensitivity, a minimum electron dose has been shown to be necessary, while on the other hand beam damage, induced by the high energy electrons, puts a limit on the tolerable dose. An important challenge is therefore to develop experimental strategies to optimize the electron dose by balancing atom-counting fidelity vs the risk of knock-on damage. To achieve this goal, a statistical framework combined with physics-based modeling of the dose-dependent processes is here proposed and experimentally verified. This model enables an investigator to theoretically predict, in advance of an experimental measurement, the optimal electron dose resulting in an unambiguous quantification of nanostructures in their native state with the highest attainable precision.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458824200008 Publication Date 2019-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited (down) 3 Open Access OpenAccess
Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (WO.010.16N, G.0934.17N, G.0502.18N, G.0267.18N), and a grant to A. D. B. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement No. 312483— ESTEEM2 (Integrated Infrastructure Initiative-I3) and the UK EPSRC (Grant No. EP/M010708/1). Approved Most recent IF: 8.462
Call Number EMAT @ emat @UA @ admin @ c:irua:157175 Serial 5156
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yucelen, E.; Verbeeck, J.; Van Tendeloo, G.
Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy : reply Type Editorial
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 108 Issue 25 Pages 259702
Keywords Editorial; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305568700038 Publication Date 2012-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.462 Times cited (down) Open Access
Notes Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ admin @ c:irua:100293 Serial 5370
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Novel commensurability effects in superconducting films with antidot arrays Type A1 Journal article
Year 2006 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 96 Issue Pages 1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract http://dx.doi.org/doi:10.1103/PhysRevLett.96.207001
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited (down) Open Access
Notes Approved Most recent IF: 8.462; 2006 IF: 7.072
Call Number UA @ lucian @ c:irua:58360 Serial 2372
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Jones, L.; Varambhia, A.; Nellist, P.D.; Van Aert, S.
Title Measuring Dynamic Structural Changes of Nanoparticles at the Atomic Scale Using Scanning Transmission Electron Microscopy Type A1 Journal article
Year 2020 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 124 Issue 10 Pages 106105
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We propose a new method to measure atomic scale dynamics of nanoparticles from experimental high-resolution annular dark field scanning transmission electron microscopy images. By using the so-called hidden Markov model, which explicitly models the possibility of structural changes, the number of atoms in each atomic column can be quantified over time. This newly proposed method outperforms the current atom-counting procedure and enables the determination of the probabilities and cross sections for surface diffusion. This method is therefore of great importance for revealing and quantifying the atomic structure when it evolves over time via adatom dynamics, surface diffusion, beam effects, or during in situ experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519718100015 Publication Date 2020-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited (down) Open Access OpenAccess
Notes This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N and EOS 30489208. L.J. acknowledges the SFI AMBER Centre for support. A.V. and P.D.N. acknowledge the UK Engineering and Physical Sciences Council (EPSRC) for support (EP/K040375/1 and 1772738). A.V. also acknowledges Johnson-Matthey for support. We would like to thank Brian Theobald and Jonathan Sharman from JMTC Sonning for provision of the Pt sample. Approved Most recent IF: 8.6; 2020 IF: 8.462
Call Number EMAT @ emat @c:irua:167148 Serial 6347
Permanent link to this record
 

 
Author Li, C.; Sanli, E.S.; Barragan-Yani, D.; Stange, H.; Heinemann, M.-D.; Greiner, D.; Sigle, W.; Mainz, R.; Albe, K.; Abou-Ras, D.; van Aken, P. A.
Title Secondary-Phase-Assisted Grain Boundary Migration in CuInSe2 Type A1 Journal article
Year 2020 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 124 Issue 9 Pages 095702
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Significant structural evolution occurs during the deposition of CuInSe2 solar materials when the Cu content increases. We use in situ heating in a scanning transmission electron microscope to directly observe how grain boundaries migrate during heating, causing nondefected grains to consume highly defected grains. Cu substitutes for In in the near grain boundary regions, turning them into a Cu-Se phase topotactic with the CuInSe2 grain interiors. Together with density functional theory and molecular dynamics calculations, we reveal how this Cu-Se phase makes the grain boundaries highly mobile.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000518464200009 Publication Date 2020-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited (down) Open Access OpenAccess
Notes Horizon 2020 Framework Programme, 823717—ESTEEM3 ; Max-Planck-Gesellschaft; Helmholtz Virtual Institute; Approved Most recent IF: 8.6; 2020 IF: 8.462
Call Number UA @ lucian @c:irua:167699 Serial 6393
Permanent link to this record