toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Badalyan, S.M.; Peeters, F.M.
  Title Non-homogeneous magnetic field induced magnetic edge states and their transport in a quantum wire Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 64 Issue Pages 155303
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000171694600047 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 24 Open Access
  Notes Approved Most recent IF: 3.836; 2001 IF: NA
  Call Number UA @ lucian @ c:irua:37287 Serial 2345
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.
  Title Optically detected magnetophonon resonance in polar semiconductors GaAs Type A1 Journal article
  Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 60 Issue Pages 16513-16518
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000084791300045 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 24 Open Access
  Notes Approved Most recent IF: 3.836; 1999 IF: NA
  Call Number UA @ lucian @ c:irua:27001 Serial 2479
Permanent link to this record
 

 
Author Cornelissens, Y.G.; Peeters, F.M.
  Title Response function of a Hall magnetosensor in the diffusive regime Type A1 Journal article
  Year 2002 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 92 Issue 4 Pages 2006-2012
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Two-dimensional electron gas systems patterned into micrometer Hall bars can be used as Hall magnetosensors. In this way, ballistic Hall probes have already been studied and used successfully. Here, the response function of a Hall sensor is determined in the diffusive regime, which allows this device to be used as a magnetosensor for the determination of inhomogeneous magnetic field distributions. Furthermore, the influence of the geometry of the Hall bar on this response function, such as circular corners and asymmetry in the probes, is also investigated and appears to be non-negligible. (C) 2002 American Institute of Physics.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000177171700046 Publication Date 2002-09-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited (down) 24 Open Access
  Notes Approved Most recent IF: 2.068; 2002 IF: 2.281
  Call Number UA @ lucian @ c:irua:102826 Serial 2897
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M.
  Title Superconducting transition temperature of Pb nanofilms : impact of thickness-dependent oscillations of the phonon-mediated electron-electron coupling Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 85 Issue 22 Pages 224517-224517,6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract To date, several experimental groups reported measurements of the thickness dependence of T-c of atomically uniform single-crystalline Pb nanofilms. The reported amplitude of the T-c oscillations varies significantly from one experiment to another. Here we propose that the reason for this unresolved issue is an interplay of the quantum-size variations in the single-electron density of states with thickness-dependent oscillations in the phonon-mediated electron-electron coupling. Such oscillations in the coupling depend on the substrate material, the quality of the interface, the protection cover, and other details of the fabrication process, changing from one experiment to another. This explains why the available data do not exhibit one-voice consistency about the amplitude of the T-c oscillations. Our analyses are based on a numerical solution of the Bogoliubov-de Gennes equations for a superconducting slab.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000305251300006 Publication Date 2012-06-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 24 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
  Call Number UA @ lucian @ c:irua:99076 Serial 3368
Permanent link to this record
 

 
Author Chaves, A.; Farias, G.A.; Peeters, F.M.; Ferreira, R.
  Title The Split-operator technique for the study of spinorial wavepacket dynamics Type A1 Journal article
  Year 2015 Publication Communications in computational physics Abbreviated Journal Commun Comput Phys
  Volume 17 Issue 17 Pages 850-866
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The split-operator technique for wave packet propagation in quantum systems is expanded here to the case of propagatingwave functions describing Schrodinger particles, namely, charge carriers in semiconductor nanostructures within the effective mass approximation, in the presence of Zeeman effect, as well as of Rashba and Dresselhaus spin-orbit interactions. We also demonstrate that simple modifications to the expanded technique allow us to calculate the time evolution of wave packets describing Dirac particles, which are relevant for the study of transport properties in graphene.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000353695400010 Publication Date 2015-03-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1815-2406;1991-7120; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.004 Times cited (down) 24 Open Access
  Notes ; The authors gratefully acknowledge fruitful discussions with J. M. Pereira Jr. and R. N. Costa Filho. This work was financially supported by CNPq through the INCT-NanoBioSimes and the Science Without Borders programs (contract 402955/ 2012-9), PRONEX/FUNCAP, CAPES, the Bilateral programme between Flanders and Brazil, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.004; 2015 IF: 1.943
  Call Number c:irua:126028 Serial 3593
Permanent link to this record
 

 
Author Schweigert, V.A.; Peeters, F.M.
  Title Transitions between different superconducting states in mesoscopic disks Type A1 Journal article
  Year 2000 Publication Physica: C : superconductivity Abbreviated Journal Physica C
  Volume 144 Issue Pages 266-271
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000087245200047 Publication Date 2002-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.404 Times cited (down) 24 Open Access
  Notes Approved Most recent IF: 1.404; 2000 IF: 1.489
  Call Number UA @ lucian @ c:irua:28521 Serial 3701
Permanent link to this record
 

 
Author Baelus, B.J.; Sun, D.; Peeters, F.M.
  Title Vortex structures in mesoscopic superconducting spheres Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 75 Issue Pages 174523,1-11
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000246890500136 Publication Date 2007-05-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 24 Open Access
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
  Call Number UA @ lucian @ c:irua:69648 Serial 3896
Permanent link to this record
 

 
Author Goldoni, G.; Peeters, F.M.
  Title Wigner crystallization in quantum electron bilayers Type A1 Journal article
  Year 1997 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
  Volume 37 Issue Pages 293-298
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Paris Editor
  Language Wos A1997WJ52800010 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.957 Times cited (down) 24 Open Access
  Notes Approved Most recent IF: 1.957; 1997 IF: 2.350
  Call Number UA @ lucian @ c:irua:19295 Serial 3918
Permanent link to this record
 

 
Author Aierken, Y.; Leenaerts, O.; Peeters, F.M.
  Title Defect-induced faceted blue phosphorene nanotubes Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 92 Issue 92 Pages 104104
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The properties of a new class of phosphorene nanotubes (PNT) are investigated by performing first-principles calculations. We demonstrate that it is advantageous to use blue phosphorene in order to make small nanotubes and propose a way to create low-energy PNTs by the inclusion of defect lines. Five different types of defect lines are investigated and incorporated in various combinations. The resulting defect-induced faceted PNTs have negligible bending stresses which leads to a reduction in the formation energy with respect to round PNTs. Our armchair faceted PNTs have similar formation energies than the recently proposed multiphase faceted PNTs, but they have a larger variety of possible structures. Our zigzag faceted PNTs have lower formation energies than round tubes and multiphase faceted nanotubes. The electronic properties of the defect-induced faceted PNTs are determined by the defect lines which control the band gap and the shape of the electronic states at the band edges. These band gaps increase with the radius of the nanotubes and converge to those of isolated defect lines.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000361037200006 Publication Date 2015-09-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 24 Open Access
  Notes This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and ser- vices used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government, department EWI. Approved Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:127837 Serial 4033
Permanent link to this record
 

 
Author Aierken, Y.; Çakir, D.; Peeters, F.M.
  Title Strain enhancement of acoustic phonon limited mobility in monolayer TiS3 Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 18 Issue 18 Pages 14434-14441
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Strain engineering is an effective way to tune the intrinsic properties of a material. Here, we show by using first-principles calculations that both uniaxial and biaxial tensile strain applied to monolayer TiS3 are able to significantly modify its intrinsic mobility. From the elastic modulus and the phonon dispersion relation we determine the tensile strain range where structure dynamical stability of the monolayer is guaranteed. Within this region, we find more than one order of enhancement of the acoustic phonon limited mobility at 300 K (100 K), i.e. from 1.71 x 10(4) (5.13 x 10(4)) cm(2) V-1 s(-1) to 5.53 x 10(6) (1.66 x 10(6)) cm(2) V-1 s(-1). The degree of anisotropy in both mobility and effective mass can be tuned by using tensile strain. Furthermore, we can either increase or decrease the band gap of TiS3 monolayer by applying strain along different crystal directions. This property allows us to use TiS3 not only in electronic but also in optical applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000378102700036 Publication Date 2016-05-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited (down) 24 Open Access
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-V1). Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 4.123
  Call Number UA @ lucian @ c:irua:134628 Serial 4250
Permanent link to this record
 

 
Author Kiymaz, D.; Yagmurcukardes, M.; Tomak, A.; Sahin, H.; Senger, R.T.; Peeters, F.M.; Zareie, H.M.; Zafer, C.
  Title Controlled growth mechanism of poly (3-hexylthiophene) nanowires Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology
  Volume 27 Issue 27 Pages 455604
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Synthesis of 1D-polymer nanowires by a self-assembly method using marginal solvents is an attractive technique. While the formation mechanism is poorly understood, this method is essential in order to control the growth of nanowires. Here we visualized the time-dependent assembly of poly (3-hexyl-thiophene-2,5-diyl) (P3HT) nanowires by atomic force microscopy and scanning tunneling microscopy. The assembly of P3HT nanowires was carried out at room temperature by mixing cyclohexanone (CHN), as a poor solvent, with polymer solution in 1,2-dichlorobenzene (DCB). Both pi-pi stacking and planarization, obtained at the mix volume ratio of P3HT (in DCB):CHN (10:7), were considered during the investigation. We find that the length of nanowires was determined by the ordering of polymers in the polymer repetition direction. Additionally, our density functional theory calculations revealed that the presence of DCB and CHN molecules that stabilize the structural distortions due to tail group of polymers was essential for the core-wire formation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000386132600003 Publication Date 2016-10-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.44 Times cited (down) 24 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, the High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. HS is supported by a FWO Pegasus-Long Marie Curie Fellowship. HS and RTS acknowledge support from TUBITAK through Project No. 114F397. Also, DA is supported by the Scientific Research Project Fund of Ege University (Project Nr: 12GEE011). ; Approved Most recent IF: 3.44
  Call Number UA @ lucian @ c:irua:138159 Serial 4350
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Peeters, F.M.; Çakir, D.
  Title Assessment of sulfur-functionalized MXenes for li-ion battery applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 124 Issue 39 Pages 21293-21304
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The surface termination of MXenes greatly determines the electrochemical properties and ion kinetics on their surfaces. So far, hydroxyl-, oxygen-, and fluorine-terminated MXenes have been widely studied for energy storage applications. Recently, sulfur-functionalized MXene structures, which possess low diffusion barriers, have been proposed as candidate materials to enhance battery performance. We performed first-principles calculations on the structural, stability, electrochemical, and ion dynamic properties of Li-adsorbed sulfur-functionalized groups 3B, 4B, 5B, and 6B transition-metal (M)-based MXenes (i.e., M2CS2 with M = Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W). We performed phonon calculations, which indicated that all of the above M2CS2 MXenes, except for Sc, are dynamically stable at T = 0 K. The ground-state structure of each M2CS2 monolayer depends on the type of M atom. For instance, while sulfur prefers to sit at the FCC site on Ti2CS2, it occupies the HCP site of Cr-based MXene. We determined the Li adsorption configurations at different concentrations using the cluster expansion method. The highest maximum open-circuit voltages were computed for the group 4B element (i.e., Ti, Zr, and Hf)-based M2CS2, which are larger than 2.1 V, while their average voltages are approximately 1 V. The maximum voltage for the group 6B element (i.e., Cr, Mo, W)-based M2CS2 is less than 1 V, and the average voltage is less than 0.71 V. We found that S functionalization is helpful for capacity improvements over the O-terminated MXenes. In this respect, the computed storage gravimetric capacity may reach up to 417.4 mAh/g for Ti2CS2 and 404.5 mAh/g for V2CS2. Ta-, Cr-, Mo-, and W-based M2CS2 MXenes show very low capacities, which are less than 100 mAh/g. The Li surface diffusion energy barriers for all of the considered MXenes are less than 0.22 eV, which is favorable for high charging and discharging rates. Finally, ab initio molecular dynamic simulations performed at 400 K and bond-length analysis with respect to Li concentration verify that selected promising systems are robust against thermally induced perturbations that may induce structural transformations or distortions and undesirable Li release.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000577151900008 Publication Date 2020-09-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited (down) 24 Open Access
  Notes ; Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118F512 and the Air Force Office of Scientific Research under award no. FA9550-19-1-7048. This work was performed in part at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118C026. ; Approved Most recent IF: 3.7; 2020 IF: 4.536
  Call Number UA @ admin @ c:irua:172693 Serial 6452
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M.
  Title Tuning the electronic properties of graphene-graphitic carbon nitride heterostructures and heterojunctions by using an electric field Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
  Volume 101 Issue 8 Pages 085417-10
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Integration of graphene-based two-dimensional materials is essential for nanoelectronics applications. Using density-functional theory, we systematically investigate the electronic properties of vertically stacked graphene-graphitic carbon nitrides (GE/GCN). We also studied the covalently lateral stitched graphene-graphitic carbon nitrides (GE-GCN heterojunctions). The effects of perpendicular electric field on the electronic properties of six different heterostructures, i.e., (i) one layer of GE on top of a layer of CnNm with (n, m) = (3,1), (3,4), and (4,3) and (ii) three heterostructures CnNm/Cn'Nm', where (n, m) not equal (n', m') are elucidated. The most important calculated features are (i) the systems GE/C3N4, C3N/C3N4, GE-C3N, GE-C4N3, and C3N-C3N4 exhibit semiconducting characteristics having small band gaps of Delta(0)=20, 250, 100, 100, 80 meV, respectively while (ii) the systems GE/C4N3, C3N/C4N3, and C3N-C4N3 show ferromagnetic-metallic properties. In particular, we found that, in semiconducting heterostructures, the band gap increases nontrivially with increasing the absolute value of the applied perpendicular electric field. This work is useful for designing heterojunctions and heterostructures made of graphene and other two-dimensional materials such as those proposed in recent experiments [X. Liu and M. C. Hersam Sci. Adv. 5, 6444 (2019)].
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000515659700007 Publication Date 2020-02-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited (down) 24 Open Access
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836
  Call Number UA @ admin @ c:irua:167760 Serial 6640
Permanent link to this record
 

 
Author Villarreal, R.; Lin, P.-C.; Faraji, F.; Hassani, N.; Bana, H.; Zarkua, Z.; Nair, M.N.; Tsai, H.-C.; Auge, M.; Junge, F.; Hofsaess, H.C.; De Gendt, S.; De Feyter, S.; Brems, S.; Ahlgren, E.H.; Neyts, E.C.; Covaci, L.; Peeters, F.M.; Neek-Amal, M.; Pereira, L.M.C.
  Title Breakdown of universal scaling for nanometer-sized bubbles in graphene Type A1 Journal article
  Year 2021 Publication Nano Letters Abbreviated Journal Nano Lett
  Volume 21 Issue 19 Pages 8103-8110
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We report the formation of nanobubbles on graphene with a radius of the order of 1 nm, using ultralow energy implantation of noble gas ions (He, Ne, Ar) into graphene grown on a Pt(111) surface. We show that the universal scaling of the aspect ratio, which has previously been established for larger bubbles, breaks down when the bubble radius approaches 1 nm, resulting in much larger aspect ratios. Moreover, we observe that the bubble stability and aspect ratio depend on the substrate onto which the graphene is grown (bubbles are stable for Pt but not for Cu) and trapped element. We interpret these dependencies in terms of the atomic compressibility of the noble gas as well as of the adhesion energies between graphene, the substrate, and trapped atoms.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000709549100026 Publication Date 2021-09-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited (down) 24 Open Access OpenAccess
  Notes Approved Most recent IF: 12.712
  Call Number UA @ admin @ c:irua:184137 Serial 6857
Permanent link to this record
 

 
Author van Holsbeke, C.; de Backer, J.; Vos, W.; Verdonck, P.; van Ransbeeck, P.; Claessens, T.; Braem, M.; Vanderveken, O.; de Backer, W.
  Title Anatomical and functional changes in the upper airways of sleep apnea patients due to mandibular repositioning: a large scale study Type A1 Journal article
  Year 2011 Publication Journal of biomechanics Abbreviated Journal J Biomech
  Volume 44 Issue 3 Pages 442-449
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Vision lab; Laboratory Experimental Medicine and Pediatrics (LEMP); Translational Neurosciences (TNW)
  Abstract The obstructive sleep apnea-hypopnea syndrome (OSAHS) is a sleep related breathing disorder. A popular treatment is the use of a mandibular repositioning appliance (MRA) which advances the mandibula during the sleep and decreases the collapsibility of the upper airway. The success rate of such a device is, however, limited and very variable within a population of patients. Previous studies using computational fluid dynamics have shown that there is a decrease in upper airway resistance in patients who improve clinically due to an MRA. In this article, correlations between patient-specific anatomical and functional parameters are studied to examine how MRA induced biomechanical changes will have an impact on the upper airway resistance. Low-dose computed tomography (CT) scans are made from 143 patients suffering from OSAHS. A baseline scan and a scan after mandibular repositioning (MR) are performed in order to study variations in parameters. It is found that MR using a simulation bite is able to induce resistance changes by changing the pharyngeal lumen. The change in minimal cross-sectional area is the best parameter to predict the change in upper airway resistance. Looking at baseline values, the ideal patients for MR induced resistance decrease seem to be women with short airways, high initial resistance and no baseline occlusion.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000287551000014 Publication Date 2010-10-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9290; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.664 Times cited (down) 23 Open Access
  Notes ; ; Approved Most recent IF: 2.664; 2011 IF: 2.434
  Call Number UA @ lucian @ c:irua:85305 Serial 112
Permanent link to this record
 

 
Author da Silva, A.L.C.; Candido, L.; Teixeira Rabelo, J.N.; Hai, G.-Q.; Peeters, F.M.
  Title Anharmonic effects on thermodynamic properties of a graphene monolayer Type A1 Journal article
  Year 2014 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
  Volume 107 Issue 5 Pages 56004
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We extend the unsymmetrized self-consistent-field method (USF) for anharmonic crystals to layered non-Bravais crystals to investigate structural, dynamical and thermodynamic properties of a free-standing graphene monolayer. In this theory, the main anharmonicity of the crystal lattice has been included and the quantum corrections are taken into account in an h-expansion for the one-particle density matrix. The obtained result for the thermal expansion coefficient (TEC) of graphene shows a strong temperature dependence and agrees with experimental results by Bao et al. (Nat. Nanotechnol., 4 (2009) 562). The obtained value of TEC at room temperature (300 K) is -6.4 x 10(- 6) K- 1 and it becomes positive for T > T-alpha = 358K. We find that quantum effects are significant for T < 1000 K. The interatomic distance, effective amplitudes of the graphene lattice vibrations, adiabatic and isothermal bulk moduli, isobaric and isochoric heat capacities are also calculated and their temperature dependences are determined. Copyright (C) EPLA, 2014
  Address
  Corporate Author Thesis
  Publisher Place of Publication Paris Editor
  Language Wos 000341559900020 Publication Date 2014-09-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.957 Times cited (down) 23 Open Access
  Notes ; This research was supported by the Brazilian agencies CNPq, FAPEG and FAPESP, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 1.957; 2014 IF: 2.095
  Call Number UA @ lucian @ c:irua:119289 Serial 118
Permanent link to this record
 

 
Author Riva, C.; Escorcia, R.A.; Govorov, A.O.; Peeters, F.M.
  Title Charged donors in quantum dots: finite difference and fractional dimensions results Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 69 Issue Pages 245306,1-8
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000222531800051 Publication Date 2004-06-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 23 Open Access
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
  Call Number UA @ lucian @ c:irua:69387 Serial 339
Permanent link to this record
 

 
Author Zhao, H.J.; Misko, V.R.; Peeters, F.M.
  Title Dynamics of self-organized driven particles with competing range interaction Type A1 Journal article
  Year 2013 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
  Volume 88 Issue 2 Pages 022914-22917
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Nonequilibrium self-organized patterns formed by particles interacting through competing range interaction are driven over a substrate by an external force. We show that, with increasing driving force, the preexisted static patterns evolve into dynamic patterns either via disordered phase or depinned patterns or via the formation of nonequilibrium stripes. Strikingly, the stripes are formed either in the direction of the driving force or in the transverse direction, depending on the pinning strength. The revealed dynamical patterns are summarized in a dynamical phase diagram.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
  Language Wos 000323333000014 Publication Date 2013-08-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.366 Times cited (down) 23 Open Access
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.366; 2013 IF: 2.326
  Call Number UA @ lucian @ c:irua:110743 Serial 783
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M.
  Title Effect of strain on the magnetoexciton ground state in InP/GaxIn1-xP quantum disks Type A1 Journal article
  Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 67 Issue 23 Pages 235325,1-8
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000184040700063 Publication Date 2003-06-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 23 Open Access
  Notes Approved Most recent IF: 3.836; 2003 IF: NA
  Call Number UA @ lucian @ c:irua:62432 Serial 837
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M.
  Title Electronic structure and optical absorption of GaAs/AlxGa1-xAs and AlxGa1-xAs/GaAs core-shell nanowires Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 82 Issue 23 Pages 235425-235425,9
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The electronic structure of GaAs/AlxGa1−xAs and AlxGa1−xAs/GaAs core-shell nanowires grown in the [001] direction is studied. The k⋅p method with the 6×6 Kohn-Lüttinger Hamiltonian, taking into account the split-off band is used. The variation in the energy level dispersion, the spinor contribution to the ground state and the optical interband absorption are studied. For some range of parameters the top of the valence band exhibits a camelback structure which results in an extra peak in the optical absorption.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000286769100008 Publication Date 2010-12-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 23 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
  Call Number UA @ lucian @ c:irua:86911 Serial 1010
Permanent link to this record
 

 
Author Tavernier, M.B.; Anisimovas, E.; Peeters, F.M.
  Title Ground state and vortex structure of the N=5 and N=6 electron quantum dot Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 74 Issue 12 Pages 125305,1-9
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000240872500054 Publication Date 2006-09-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 23 Open Access
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
  Call Number UA @ lucian @ c:irua:61000 Serial 1383
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.; Volety, K.; Huyberechts, G.; Paul, J.
  Title High throughput first-principles calculations of bixbyite oxides for TCO applications Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 16 Issue 33 Pages 17724-17733
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract We present a high-throughput computing scheme based on density functional theory (DFT) to generate a class of oxides and screen them with the aim of identifying those that might be electronically appropriate for transparent conducting oxide (TCO) applications. The screening criteria used are a minimum band gap to ensure sufficient transparency, a band edge alignment consistent with easy n- or p-type dopability, and a minimum thermodynamic phase stability to be experimentally synthesizable. Following this scheme we screened 23 binary and 1518 ternary bixbyite oxides in order to identify promising candidates, which can then be a subject of an in-depth study. The results for the known TCOs are in good agreement with the reported data in the literature. We suggest a list of several new potential TCOs, including both n- and p-type compounds.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000341064800041 Publication Date 2014-07-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited (down) 23 Open Access
  Notes ; We gratefully acknowledge financial support from the IWT-Vlaanderen through the ISIMADE project (IWT-n 080023), the FWO-Vlaanderen through project G.0150.13 and a GOA fund from the University of Antwerp. This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center VSC, which is funded by the Hercules foundation and the Flemish Government (EWI Department). ; Approved Most recent IF: 4.123; 2014 IF: 4.493
  Call Number UA @ lucian @ c:irua:118263 Serial 1469
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Koch, R.; Speck, F.; Ostler, M.; Nagel, P.; Merz, M.; Schupler, S.; Moreschini, L.; Chang, Y.J.; Seyller, T.; Peeters, F.M.; Horn, K.; Rotenberg, E.;
  Title Luminescence, patterned metallic regions, and photon-mediated electronic changes in single-sided fluorinated graphene sheets Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
  Volume 8 Issue 8 Pages 7801-7808
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Single-sided fluorination has been predicted to open an electronic band gap in graphene and to exhibit unique electronic and magnetic properties; however, this has not been substantiated by experimental reports. Our comprehensive experimental and theoretical study of this material on a SiC(0001) substrate shows that single-sided fluorographene exhibits two phases, a stable one with a band gap of similar to 6 eV and a metastable one, induced by UV irradiation, with a band gap of similar to 2.5 eV. The metastable structure, which reverts to the stable “ground-state” phase upon annealing under emission of blue light, in our view is induced by defect states, based on the observation of a nondispersive electronic state at the top of the valence band, not unlike that found in organic molecular layers. Our structural data show that the stable C2F ground state has a “boat” structure, in agreement with our X-ray magnetic circular dichroism data, which show the absence of an ordered magnetic phase. A high flux of UV or X-ray photons removes the fluorine atoms, demonstrating the possibility of lithographically patterning conducting regions into an otherwise semiconducting 2D material.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000340992300025 Publication Date 2014-08-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited (down) 23 Open Access
  Notes Approved Most recent IF: 13.942; 2014 IF: 12.881
  Call Number UA @ lucian @ c:irua:119263 Serial 1857
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M.
  Title Metallic nanograins : spatially nonuniform pairing induced by quantum confinement Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 83 Issue 21 Pages 214509-214509,12
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract It is well known that the formation of discrete electron levels strongly influences the pairing in metallic nanograins. Here, we focus on another effect of quantum confinement in superconducting grains that was not studied previously, i.e., spatially nonuniform pairing. This effect is very significant when single-electron levels form bunches and/or a kind of shell structure. We find that, in highly symmetric grains, the order parameter can exhibit variations with position by an order of magnitude. Nonuniform pairing is closely related to a quantum-confinement-induced modification of the pairing-interaction matrix elements and size-dependent pinning of the chemical potential to groups of degenerate or nearly degenerate levels. For illustrative purposes, we consider spherical metallic nanograins and also rectangular shapes. We show that the relevant matrix elements are, as a rule, enhanced in the presence of quantum confinement, which favors spatial variations of the order parameter, compensating the corresponding energy cost. The size-dependent pinning of the chemical potential further increases the spatial variation of the pair condensate. The role of nonuniform pairing is smaller in less symmetric confining geometries and/or in the presence of disorder. However, it always remains of importance when the energy spacing between discrete electron levels δ is approaching the scale of the bulk gap ΔB, i.e., δ>0.10.2 ΔB.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000291310000006 Publication Date 2011-06-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 23 Open Access
  Notes ; This work was supported by the Alexander von Humboldt Foundation, the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP). M. D. C. acknowledges support of the European Community under a Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
  Call Number UA @ lucian @ c:irua:90081 Serial 2010
Permanent link to this record
 

 
Author Verberck, B.; Michel, K.H.
  Title Nanotube field and orientational properties of C70 molecules in carbon nanotubes Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 75 Issue 4 Pages 045419,1-14
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The orientation of a C(70) fullerene molecule encapsulated in a single-walled carbon nanotube (SWCNT) depends on the tube radius. First we confirm that chirality effects do not affect the orientation as well by comparing discrete atomistic calculations with the results of a continuous tube approximation for a variety of SWCNTs. The molecular and the tube symmetry are exploited by using symmetry-adapted rotator functions. We accurately determine the optimal molecular orientation as a function of the tube radius; for low (less than or similar to 7 A) and high (greater than or similar to 7.2 A) tube radii, lying and standing molecular orientations are recovered, respectively. In between, we observe a transition regime. In addition, we consider off-axis positions. We perform a one-dimensional liquid description of a chain of on-axis C(70) molecules inside a SWCNT. All results agree well with recent x-ray diffraction experiments.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000243895600128 Publication Date 2007-01-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 23 Open Access
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
  Call Number UA @ lucian @ c:irua:63752 Serial 2280
Permanent link to this record
 

 
Author Saniz, R.; Dixit, H.; Lamoen, D.; Partoens, B.
  Title Quasiparticle energies and uniaxial pressure effects on the properties of SnO2 Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 97 Issue Pages 261901-261901,3
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract We calculate the quasiparticle energy spectrum of SnO2 within the GW approximation, properly taking into account the contribution of core levels to the energy corrections. The calculated fundamental gap is of 3.85 eV. We propose that the difference with respect to the experimental optical gap (3.6 eV) is due to excitonic effects in the latter. We further consider the effect applied on uniaxial pressure along the c-axis. Compared to GW, the effect of pressure on the quasiparticle energies and band gap is underestimated by the local-density approximation. The quasiparticle effective masses, however, appear to be well described by the latter.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000285768100015 Publication Date 2010-12-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited (down) 23 Open Access
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.411; 2010 IF: 3.841
  Call Number UA @ lucian @ c:irua:85759 Serial 2803
Permanent link to this record
 

 
Author Chang, K.; Peeters, F.M.
  Title Spin-polarized ballistic transport in diluted magnetic semiconductor quantum wire systems Type A1 Journal article
  Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 68 Issue Pages 205320,1-5
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000187314400058 Publication Date 2003-11-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 23 Open Access
  Notes Approved Most recent IF: 3.836; 2003 IF: NA
  Call Number UA @ lucian @ c:irua:69378 Serial 3096
Permanent link to this record
 

 
Author Shanenko, A.A.; Aguiar, J.A.; Vagov, A.; Croitoru, M.D.; Milošević, M.V.
  Title Atomically flat superconducting nanofilms: multiband properties and mean-field theory Type A1 Journal article
  Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
  Volume 28 Issue 28 Pages 054001
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Perot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000353015700005 Publication Date 2015-03-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.878 Times cited (down) 23 Open Access
  Notes This work was supported by the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). AAS acknowledges fruitful discussions with A Perali and D Neilson during his stay in the University of Camerino and is thankful for partial support of his visit by the University of Camerino under the project FAR 'Control and enhancement of superconductivity by engineering materials at the nanoscale'. MDC acknowledges the support from the Back to Belgium Grant of the federal Science Policy (BELSPO). Approved Most recent IF: 2.878; 2015 IF: 2.325
  Call Number c:irua:132501 Serial 3944
Permanent link to this record
 

 
Author Berdiyorov, G.R.; El-Mellouhi, F.; Madjet, M.E.; Alharbi, F.H.; Peeters, F.M.; Kais, S.
  Title Effect of halide-mixing on the electronic transport properties of organometallic perovskites Type A1 Journal article
  Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal Sol Energ Mat Sol C
  Volume 148 Issue 148 Pages 2-10
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of iodide/chloride and iodide/bromide mixing on the electronic transport in lead based organometallic perovskite CH3NH3PbI3, which is known to be an effective tool to tune the electronic and optical properties of such materials. We found that depending on the level and position of the halide mixing, the electronic transport can be increased by more than a factor of 4 for a given voltage biasing. The largest current is observed for small concentration of bromide substitutions located at the equatorial sites. However, full halide substitution has a negative effect on the transport properties of this material: the current drops by an order of magnitude for both CH3NH3PbCl3 and CH3NH3PbBr3 samples. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Elsevier science bv Place of Publication Amsterdam Editor
  Language Wos 000371944500002 Publication Date 2015-12-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.784 Times cited (down) 23 Open Access
  Notes ; ; Approved Most recent IF: 4.784
  Call Number UA @ lucian @ c:irua:133150 Serial 4165
Permanent link to this record
 

 
Author Satarifard, V.; Mousaei, M.; Hadadi, F.; Dix, J.; Sobrino Fernández, M.; Carbone, P.; Beheshtian, J.; Peeters, F.M.; Neek-Amal, M.
  Title Reversible structural transition in nanoconfined ice Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 95 Issue 95 Pages 064105
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The report on square ice sandwiched between two graphene layers by Algara-Siller et al. [Nature (London) 519, 443 (2015)] has generated a large interest in this system. By applying high lateral pressure on nanoconfined water, we found that monolayer ice is transformed to bilayer ice when the two graphene layers are separated by H = 6,7 angstrom. It was also found that three layers of a denser phase of ice with smaller lattice constant are formed if we start from bilayer ice and apply a lateral pressure of about 0.7 GPa with H = 8,9 angstrom. The lattice constant (2.5-2.6 angstrom) in both transitions is found to be smaller than those typical for the known phases of ice and water, i.e., 2.8 angstrom. We validate these results using ab initio calculations and find good agreement between ab initio O-O distance and those obtained from classical molecular dynamics simulations. The reversibility of the mentioned transitions is confirmed by decompressing the systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000393943300005 Publication Date 2017-02-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 23 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:141994 Serial 4558
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: