toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kontozova-Deutsch, V.; Deutsch, F.; Bencs, L.; Krata, A.; Van Grieken, R.; De Wael, K. pdf  doi
openurl 
  Title Optimization of the ion chromatographic quantification of airborne fluoride, acetate and formate in the Metropolitan Museum of Art, New York Type A1 Journal article
  Year 2011 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal Talanta  
  Volume 86 Issue Pages 372-376  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Ion chromatographic (IC) methods have been compared in order to achieve an optimal separation of fluoride, acetate and formate under various elution conditions on two formerly introduced analytical columns (i and ii) and a novel one (iii): (i) an IonPac AS14 (250 mm × 4 mm I.D.), (ii) Allsep A-2 (150 mm × 4.6 mm I.D.), and (iii) an IC SI-50 4E (250 mm (length) × 4 mm (internal diameter – I.D.)). The IC conditions for the separation of the anions concerned were optimized on the IC SI-50 4E column. A near baseline separation of these anions was attained on the IonPac AS14, whereas the peaks of fluoride and acetate could not be resolved on the Allsep A-2. A baseline separation for the three anions was achieved on the IC SI-50 4E column, when applying an eluent mixture of 3.2 mmol/L Na2CO3 and 1.0 mmol/L NaHCO3 with a flow rate of 1.0 mL/min. The highest precision of 1.7, 3.0 and 2.8% and the best limits of detection (LODs) of 0.014, 0.22 and 0.17 mg/L for fluoride, acetate and formate, respectively, were obtained with the IC SI-50 4E column. Hence, this column was applied for the determination of the acetic and formic acid contents of air samples taken by means of passive gaseous sampling at the Metropolitan Museum of Art in New York, USA. Atmospheric concentrations of acetic and formic acid up to 1050 and 450 μg/m3, respectively, were found in non-aerated showcases of the museum. In galleries and outdoors, rather low levels of acetic and formic acid were detected with average concentrations of 50 and 10 μg/m3, respectively. The LOD data of acetate and formate on the IC SI-50 4E column correspond to around 0.5 μg/m3 for both acetic and formic acid in air samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298126300048 Publication Date 2011-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited (up) 19 Open Access  
  Notes ; The authors gratefully acknowledge the support of Marco Leona and the staff of the Metropolitan Museum of Art in New York during the sampling campaigns. The technical assistance and advice by Dr. Takashi Kotsuka and Shodex Benelux are acknowledged as well. ; Approved Most recent IF: 4.162; 2011 IF: 3.794  
  Call Number UA @ admin @ c:irua:92066 Serial 5762  
Permanent link to this record
 

 
Author Buczyńska, A.J.; Geypens, B.; Van Grieken, R.; De Wael, K. pdf  doi
openurl 
  Title Stable carbon isotopic ratio measurement of polycyclic aromatic hydrocarbons as a tool for source identification and apportionment : a review of analytical methodologies Type A1 Journal article
  Year 2013 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal Talanta  
  Volume 105 Issue Pages 435-450  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The measurement of the ratio of stable isotopes of carbon (13C/12C expressed as a δ13C) in the individual components of a sample may be used as a means to identify the origin of these components. This article reviews the approaches and reports on the successes and failures of source identification and apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) with the use of compound-specific isotope analysis (CSIA). One of the conditions for a precise and accurate analysis of isotope ratios with the use of GC-C-IRMS is the need for well separated peaks, with no co-elutions, and reduced unresolved complex mixture (UCM). Additionally, special care needs to be taken for an investigation of possible isotope fractionation effects introduced during the analytical treatment of samples. With the above-mentioned problems in mind, this review discusses in detail and compares current laboratory methodologies, mainly in the extraction and subsequent clean-up techniques used for environmental samples (air particulate matter, soil and sediments). Sampling strategies, the use of isotopic internal standards and the ranges for precision and accuracy are also reported and discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319088500064 Publication Date 2012-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited (up) 19 Open Access  
  Notes ; ; Approved Most recent IF: 4.162; 2013 IF: 3.511  
  Call Number UA @ admin @ c:irua:102091 Serial 5845  
Permanent link to this record
 

 
Author Godoi, R.H.M.; Godoi, A.F.L.; Gonçalves jr., S.J.; Paralovo, S.L.; Borillo, G.C.; Gregório Barbosa, C.G.; Arantes, M.G.; Rosário Filho, N.A.; Grassi, M.T.; Yamamoto, C.I.; Potgieter-Vermaak, S.; Rotondo, G.G.; De Wael, K.; Van Grieken, R. pdf  doi
openurl 
  Title Healthy environment : indoor air quality of Brazilian elementary schools nearby petrochemical industry Type A1 Journal article
  Year 2013 Publication The science of the total environment Abbreviated Journal Sci Total Environ  
  Volume 463 Issue Pages 639-646  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The mitigation of pollution released to the environment originating fromthe industrial sector has been the aimof all policy-makers and its importance is evident if the adverse health effects on the world population are considered. Although this concern is controversial, petroleum refinery has been linked to some adverse health effects for people living nearby. Apart from home, school is the most important indoor environment for children and there is increasing concern about the school environment and its impact on health, also in developing countries where the prevalence of pollution is higher. As most of the children spend more than 40% of their time in schools, it is critical to evaluate the pollution level in such environment. In the metropolitan region of Curitiba, South Brazil, five schools nearby industries and highways with high density traffic, were selected to characterize the aerosol and gaseous compounds indoor and outdoor of the classrooms, during 20092011. Size segregated aerosol samples were collected for analyses of bulk and single particle elemental profiles. They were analyzed by electron probe X-ray micro-analysis (EPXMA), and by energy-dispersive X-ray fluorescence (EDXRF), to investigate the elemental composition of individual particles and bulk samples. The concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX); NO2; SO2; acetic acid; and formic acid were assessed indoor and outdoor using passive diffusion tubes. BTEX were analyzed by GCMS and other collected gasses by ion chromatography. Individual exposition of BTEX was assessed by personal passive diffusion tubes. Results are interpreted separately and as a whole with the specific aim of identifying compounds that could affect the health of the scholars. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the children's respiratory systems were calculated, revealing the deposition of particles at extrathoracic, tracheobronchial and pulmonary levels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000325831200072 Publication Date 2013-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.9 Times cited (up) 22 Open Access  
  Notes ; We would like to thank Araucaria Foundation and the National Council for Scientific and Technological Development (CNPq) who supported the funding and promoted the development of this study. ; Approved Most recent IF: 4.9; 2013 IF: 3.163  
  Call Number UA @ admin @ c:irua:108954 Serial 5637  
Permanent link to this record
 

 
Author Krupińska, B.; Worobiec, A.; Rotondo, G.G.; Novaković, V.; Kontozova, V.; Ro, C.-U.; Van Grieken, R.; De Wael, K. pdf  doi
openurl 
  Title Assessment of the air quality (NO2, SO2, O3 and particulate matter) in the Plantin-Moretus Museum/Print Room in Antwerp, Belgium, in different seasons of the year Type A1 Journal article
  Year 2012 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 102 Issue 1 Pages 49-53  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract The Plantin-Moretus Museum/Print Room in Antwerp, Belgium, gathers one of the most precious collections of typographical material and old printed books in the world. Rich decorations of this former printing-house and the history of the building itself underline its uniqueness. The cultural heritage (CH) objects collected in the museum, in particular books and manuscripts are vulnerable to the atmospheric pollution and can be irreversibly damaged. To assess the air quality inside the museum, four consecutive sampling campaigns were performed in each season of the year. The gas monitoring of nitrogen dioxide (NO2), sulphur dioxide (SO2) and ozone (O3) was carried out outside the building, in galleries and in showcases by means of using diffusive samplers. The particulate matter (PM) was collected in bulk form and as single particles and then analysed with use of energy dispersive X-ray fluorescence (EDXRF) and electron probe micro-analyser (EPMA), respectively. The museum complex turned out to show good protection against gaseous pollutants, especially SO2 and O3. The concentrations of these pollutants were significantly reduced inside the building in comparison to the outdoor ones. Similar protective character of the museum complex was established in case of the coarse fraction of PM; however with some limitations. Single particle analysis showed that the relative abundance of carbon-rich particles inside the museum was greater than outside. Moreover, these particles contributed more to the fine fraction of PM than to the coarse fraction. Therefore, for better preservation of cultural heritage, special attention should be paid to the small particles and their distribution within the museum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000301559100007 Publication Date 2011-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited (up) 25 Open Access  
  Notes ; The presented work was realised in the frame of the project Preventive conservation/preservation in the museum Plantin-Moretus/Prentenkabinet, Antwerp, financed by the Flemish Government. Special thanks are due to Mrs Hanne Moris and Mrs Elke van Herck and all the staff of the Museum Plantin-Moretus/Print Room in Antwerp for their sincere interest in this work and their eager assistance during all the sampling campaigns. Barbara Krupinska is supported as PhD student by the Flemish Fund for Scientific Research (FWO, Belgium). ; Approved Most recent IF: 3.034; 2012 IF: 2.879  
  Call Number UA @ admin @ c:irua:94466 Serial 5483  
Permanent link to this record
 

 
Author Cassiers, K.; Linssen, T.; Aerts, K.; Cool, P.; Lebedev, O.; Van Tendeloo, G.; van Grieken, R.; Vansant, E.F. pdf  doi
openurl 
  Title Controlled formation of amine-templated mesostructured zirconia with remarkably high thermal stability Type A1 Journal article
  Year 2003 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 13 Issue Pages 3033-3039  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000186907500040 Publication Date 2003-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 26 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:43522 Serial 502  
Permanent link to this record
 

 
Author Buczyńska, A.J.; Krata, A.; Van Grieken, R.; Brown, A.; Polezer, G.; De Wael, K.; Potgieter-Vermaak, S. pdf  doi
openurl 
  Title Composition of PM2.5 and PM1 on high and low pollution event days and its relation to indoor air quality in a home for the elderly Type A1 Journal article
  Year 2014 Publication The science of the total environment Abbreviated Journal Sci Total Environ  
  Volume 490 Issue Pages 134-143  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Many studies probing the link between air quality and health have pointed towards associations between particulate matter (PM) exposure and decreased lung function, aggravation of respiratory diseases like asthma, premature death and increased hospitalisation admissions for the elderly and individuals with cardiopulmonary diseases. Of recent, it is believed that the chemical composition and physical properties of PM may contribute significantly to these adverse health effects. As part of a Belgian Science Policy project (Health effects of particulate matter in relation to physicalchemical characteristics and meteorology), the chemical composition (elemental and ionic compositions) and physical properties (PM mass concentrations) of PM were investigated, indoors and outdoors of old age homes in Antwerp. The case reported here specifically relates to high versus normal/low pollution event periods. PM mass concentrations for PM1 and PM2.5 fractions were determined gravimetrically after collection via impaction. These same samples were hence analysed by EDXRF spectrometry and IC for their elemental and ionic compositions, respectively. During high pollution event days, PM mass concentrations inside the old age home reached 53 μg m− 3 and 32 μg m− 3 whilst outside concentrations were 101 μg m− 3 and 46 μg m− 3 for PM2.5 and PM1, respectively. The sum of nss-sulphate, nitrate and ammonium, dominate the composition of PM, and contribute the most towards an increase in the PM during the episode days constituting 64% of ambient PM2.5 (52 μg m− 3) compared to 39% on non-episode days (10 μg m− 3). Other PM components, such as mineral dust, sea salt or heavy metals were found to be considerably higher during PM episodes but relatively less important. Amongst heavy metals Zn and Pb were found at the highest concentrations in both PM2.5 and PM1. Acidbase ionic balance equations were calculated and point to acidic aerosols during event days and acidic to alkaline aerosols during non-event days. No significant sources of indoor pollutants could be identified inside the old-age home as high correlations were found between outdoor and indoor PM, confirming mainly the outdoor origin of indoor air.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347293800015 Publication Date 2014-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.9 Times cited (up) 27 Open Access  
  Notes ; The work reported in this paper was financed by the Belgian Science Policy under the Science for Sustainable Development programme (SD/HE/01), the Flemish Scientific Fund (FWO:G.0873.11). We thank the direction and staff of the elderly homes for their support. The authors are thankful to the partners of the project Lotte Jacobs, Tim Nawrot and Benoit Nemery for taking care of project organization, Andy Delcoo, Jo Dewulf and Hugo De Backer from Royal Meteorological Institute, Brussels, Belgium for supplying the meteorological data. We acknowledge Dr. Laszlo Bencs for assistance regarding backward trajectory analyses and two reviewers for their constructive comments. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this publication. ; Approved Most recent IF: 4.9; 2014 IF: 4.099  
  Call Number UA @ admin @ c:irua:117005 Serial 5544  
Permanent link to this record
 

 
Author Horemans, B.; Cardell, C.; Bencs, L.; Kontozova-Deutsch, V.; De Wael, K.; Van Grieken, R. pdf  doi
openurl 
  Title Evaluation of airborne particles at the Alhambra monument in Granada, Spain Type A1 Journal article
  Year 2011 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 99 Issue 2 Pages 429-438  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract As a part of an ongoing investigation regarding the air quality at the Alhambra monument (UNESCO World Cultural Heritage), indoor and outdoor atmospheric aerosols (PM1 and PM10-1) and pollutant gases (O3, NO2, SO2 and NH3) were studied during summer and winter. Bulk elements, ionic compounds and black carbon (BC) in aerosols were analyzed with X-ray fluorescence spectrometry, ion chromatography and aethalometry/reflectometry, respectively. Natural PM10-1 aerosols, such as carbonate-rich soil and sea salts, reacted with a typical urban atmosphere, producing a mixture of particulates with diverse chemical composition. The content/formation of secondary inorganic aerosols depended on the air temperature and absolute humidity. Ratios of typical mineral elements (i.e., Ti/Fe and Si/Fe) showed that Saharan dust events contribute to the composition of the observed mineral aerosol content. BC, V and Ni originated from diesel exhaust, while Cu, Cr, Pb and Zn came mainly from non-exhaust vehicular emissions. Weathering phenomena, such as blackening and pigment discoloration, which could arise from gradual aerosol deposition indoors, are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000295770700042 Publication Date 2011-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited (up) 39 Open Access  
  Notes ; ; Approved Most recent IF: 3.034; 2011 IF: 3.048  
  Call Number UA @ admin @ c:irua:91720 Serial 5611  
Permanent link to this record
 

 
Author Hellar-Kihampa, H.; De Wael, K.; Lugwisha, E.; Govindan, M.; Covaci, A.; Van Grieken, R. pdf  doi
openurl 
  Title Spatial monitoring of organohalogen compounds in surface water and sediments of a rural-urban river basin in Tanzania Type A1 Journal article
  Year 2013 Publication The science of the total environment Abbreviated Journal Sci Total Environ  
  Volume 447 Issue Pages 186-197  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract The presence of persistent organic pollutants in Tanzanian environment is not well monitored despite the existing pollution potential from a number of sources. In this study, we investigated for the first time, the concentration profiles of different organohalogen compounds such as organochlorine pesticide residues (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in environmental samples (water and sediments) from the Pangani river basin (PRB). The PRB is one of the largest drainage basins in Tanzania, with its watershed exposed to multiple input sources of trace organic contaminants. Surface water and sediments were sampled from 12 representative stations of diverse characteristics and land-use practices, in three distinct seasons, and extracted by liquidliquid and Soxhlet extraction methods, respectively. Water samples were analyzed by GC-ECD for OCPs only, while sediment samples were analyzed for OCPs, PCBs and PBDEs by GC/MS. Seven compounds, dominated by HCH isomers (5104460 pg/L) and DDT analogs (1601460 pg/L),were detected in the water samples. These concentrations are far below the WHO guidelines for drinking water quality. A total of 42 compounds (8 OCPs, 28 PCB congeners and 6 PBDE congeners) were detected in the sediment samples. Their respective total concentration ranges were 24510,230; 35711,000 and 382175 pg/g dry weight. The spatial distribution patterns and Hierarchical Cluster Analysis reflected the impact of historical agricultural usage in sugarcane plantations (OCPs), and urbanization (PCBs and PBDEs). Risk assessment using sediment quality guidelines indicated no ecotoxicological risks. The results we have found provide preliminary data on levels of the organic contaminants in Pangani river basin as a new insight on the environmental quality of the area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317538100022 Publication Date 2013-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.9 Times cited (up) 42 Open Access  
  Notes ; This research project was funded by the International Foundation for Science (IFS, Project Number W/4945-1). The authors wish to acknowledge the contribution of the Pangani Basin Water Office (PBWO) in Moshi, Tanzania; especially Ms. Arafa Maggidi in provision of valuable information and assistance with the sampling campaigns, and Salim Lyimo in mapping of the study area. The contributions of Mr. Peter Machibya of the Department of Geology, University of Dar es Salaam, Tanzania in sediment characterization; and Mr. Emmanuel Gwae, of the Government Chemists Laboratory Agency (GCLA) Dar es Salaam, Tanzania, for instrumental analysis of the water samples, are highly appreciated. Harieth Hellar-Kihampa acknowledges financial support from the Belgian Technical Agency (BTC). Govindan Malarvannan and Adrian Covaci acknowledge financial support from the University of Antwerp. ; Approved Most recent IF: 4.9; 2013 IF: 3.163  
  Call Number UA @ admin @ c:irua:105260 Serial 5836  
Permanent link to this record
 

 
Author Krupińska, B.; Van Grieken, R.; De Wael, K. pdf  doi
openurl 
  Title Air quality monitoring in a museum for preventive conservation : results of a three-year study in the Plantin-Moretus Museum in Antwerp, Belgium Type A1 Journal article
  Year 2013 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 110 Issue Pages 350-360  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Through different research projects on air quality in museums, researcher and conservators try identifying various risks of air pollution on materials. The conclusions may be later translated into specific actions for a maximum preservation of the museum collections, a process known as preventive conservation. Air pollution is a particular problem in historical buildings such as museums, because they were not originally built to exhibit and protect art objects in a sustainable way. This article reports on the data and results that were obtained during 10 sampling campaigns, in the period between November 2008 and February 2012 in a museum in Antwerp (Belgium), i.e. Plantin-Moretus Museum/Print Room. Different pollutants were measured inside and outside the museum such as inorganic gases, particulate matter and black carbon. The report specifically addresses environmental factors that may be responsible for damage to the collections present in museums. Thanks to the knowledge about the current situation in the museum, accurate solutions regarding preventive conservation, in general, are suggested.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326851200051 Publication Date 2013-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited (up) 46 Open Access  
  Notes ; The presented work was realised in the frame of the project Preventive conservation/preservation in the museum Plantin-Moretus/Prentenkabinet, Antwerp, financed by the Flemish Government. Special thanks are due to Mrs Hanne Moris and Mrs Elke van Herck and all the staff of the Museum Plantin-Moretus/Print Room in Antwerp for their sincere interest in this work and their eager assistance during all the sampling campaigns. VMM and Dr. Edward Roekens is acknowledged for sharing the black carbon measurements. Barbara Krupinska is supported as PhD student by the Flemish Fund for Scientific Research (FWO, Belgium). ; Approved Most recent IF: 3.034; 2013 IF: 3.583  
  Call Number UA @ admin @ c:irua:108402 Serial 5460  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: