|   | 
Details
   web
Records
Author Evers, W.H.; Goris, B.; Bals, S.; Casavola, M.; de Graaf, J.; van Roij, R.; Dijkstra, M.; Vanmaekelbergh, D.
Title Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment Type A1 Journal article
Year 2013 Publication Nano letters Abbreviated Journal Nano Lett
Volume 13 Issue 6 Pages 2317-2323
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Oriented attachment, the process in which nanometer-sized crystals fuse by atomic bonding of specific crystal facets, is expected to be more difficult to control than nanocrystal self-assembly that is driven by entropic factors or weak van der Waals attractions. Here, we present a study of oriented attachment of PbSe nanocrystals that counteract this tuition. The reaction was studied in a thin film of the suspension casted on an immiscible liquid at a given temperature. We report that attachment can be controlled such that it occurs with one type of facets exclusively. By control of the temperature and particle concentration we obtain one- or two-dimensional PbSe single crystals, the latter with a honeycomb or square superimposed periodicity in the nanometer range. We demonstrate the ability to convert these PbSe superstructures into other semiconductor compounds with the preservation of crystallinity and geometry.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000320485100001 Publication Date 2012-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited (up) 206 Open Access
Notes 262348 ESMI; Hercules 3 Approved Most recent IF: 12.712; 2013 IF: 12.940
Call Number UA @ lucian @ c:irua:101777 Serial 1847
Permanent link to this record
 

 
Author Yang, S.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S.S.; Suslu, A.; Peeters, F.M.; Liu, Q.; Li, J.; Tongay, S.;
Title Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering Type A1 Journal article
Year 2015 Publication Nano letters Abbreviated Journal Nano Lett
Volume 15 Issue 15 Pages 1660-1666
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Creating materials with ultimate control over their physical properties is vital for a wide range of applications. From a traditional materials design perspective, this task often requires precise control over the atomic composition and structure. However, owing to their mechanical properties, low-dimensional layered materials can actually withstand a significant amount of strain and thus sustain elastic deformations before fracture. This, in return, presents a unique technique for tuning their physical properties by strain engineering. Here, we find that local strain induced on ReSe2, a new member of the transition metal dichalcogenides family, greatly changes its magnetic, optical, and electrical properties. Local strain induced by generation of wrinkle (1) modulates the optical gap as evidenced by red-shifted photoluminescence peak, (2) enhances light emission, (3) induces magnetism, and (4) modulates the electrical properties. The results not only allow us to create materials with vastly different properties at the nanoscale, but also enable a wide range of applications based on 2D materials, including strain sensors, stretchable electrodes, flexible field-effect transistors, artificial-muscle actuators, solar cells, and other spintronic, electromechanical, piezoelectric, photonic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000351188000033 Publication Date 2015-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited (up) 314 Open Access
Notes ; This work is supported by Arizona State University, Research Seeding Program, the National Natural Science Foundation of China (91233120), and the National Basic Research Program of China (2011CB921901). Q., Liu acknowledges the support to this work by NSFC (10974037), NBRPC (2010CB934102), and the CAS Strategy Pilot program (XDA 09020300). S. Yang acknowledges financial support from China Postdoctoral Science Foundation (No. 2013M540127). ; Approved Most recent IF: 12.712; 2015 IF: 13.592
Call Number c:irua:125480 Serial 3758
Permanent link to this record