toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Batenburg, K.J.; Bals, S.; Sijbers, J.; Kübel, C.; Midgley, P.A.; Hernandez, J.C.; Kaiser, U.; Encina, E.R.; Coronado, E.A.; Van Tendeloo, G.
  Title 3D imaging of nanomaterials by discrete tomography Type A1 Journal article
  Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 109 Issue 6 Pages 730-740
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the reconstruction can be improved significantly, or the number of required projection images can be reduced. The discrete reconstruction typically contains fewer artifacts and does not have to be segmented, as it already contains one grey level for each composition. Recently, a new algorithm, called discrete algebraic reconstruction technique (DART), has been proposed that can be used effectively on experimental electron tomography datasets. In this paper, we propose discrete tomography as a general reconstruction method for electron tomography in materials science. We describe the basic principles of DART and show that it can be applied successfully to three different types of samples, consisting of embedded ErSi2 nanocrystals, a carbon nanotube grown from a catalyst particle and a single gold nanoparticle, respectively.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000265816400005 Publication Date 2009-02-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited (up) 220 Open Access
  Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
  Call Number UA @ lucian @ c:irua:74665 c:irua:74665 Serial 12
Permanent link to this record
 

 
Author Van Aert, S.; Batenburg, K.J.; Rossell, M.D.; Erni, R.; Van Tendeloo, G.
  Title Three-dimensional atomic imaging of crystalline nanoparticles Type A1 Journal article
  Year 2011 Publication Nature Abbreviated Journal Nature
  Volume 470 Issue 7334 Pages 374-377
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract Determining the three-dimensional (3D) arrangement of atoms in crystalline nanoparticles is important for nanometre-scale device engineering and also for applications involving nanoparticles, such as optoelectronics or catalysis. A nanoparticles physical and chemical properties are controlled by its exact 3D morphology, structure and composition1. Electron tomography enables the recovery of the shape of a nanoparticle from a series of projection images2, 3, 4. Although atomic-resolution electron microscopy has been feasible for nearly four decades, neither electron tomography nor any other experimental technique has yet demonstrated atomic resolution in three dimensions. Here we report the 3D reconstruction of a complex crystalline nanoparticle at atomic resolution. To achieve this, we combined aberration-corrected scanning transmission electron microscopy5, 6, 7, statistical parameter estimation theory8, 9 and discrete tomography10, 11. Unlike conventional electron tomography, only two images of the targeta silver nanoparticle embedded in an aluminium matrixare sufficient for the reconstruction when combined with available knowledge about the particles crystallographic structure. Additional projections confirm the reliability of the result. The results we present help close the gap between the atomic resolution achievable in two-dimensional electron micrographs and the coarser resolution that has hitherto been obtained by conventional electron tomography.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000287409100037 Publication Date 2011-02-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0028-0836;1476-4687; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 40.137 Times cited (up) 341 Open Access
  Notes Esteem 026019 Approved Most recent IF: 40.137; 2011 IF: 36.280
  Call Number UA @ lucian @ c:irua:86745 Serial 3644
Permanent link to this record
 

 
Author van Aarle, W.; Palenstijn, W.J.; De Beenhouwer, J.; Altantzis, T.; Bals, S.; Batenburg, K.J.; Sijbers, J.
  Title The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 157 Issue 157 Pages 35-47
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract We present the ASTRA Toolbox as an open platform for 3D image reconstruction in tomography. Most of the software tools that are currently used in electron tomography offer limited flexibility with respect to the geometrical parameters of the acquisition model and the algorithms used for reconstruction. The ASTRA Toolbox provides an extensive set of fast and flexible building blocks that can be used to develop advanced reconstruction algorithms, effectively removing these limitations. We demonstrate this flexibility, the resulting reconstruction quality, and the computational efficiency of this toolbox by a series of experiments, based on experimental dual-axis tilt series.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000361002400005 Publication Date 2015-05-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited (up) 562 Open Access OpenAccess
  Notes The authors acknowledge financial support from the iMinds ICONMetroCT project,the IWT SBO Tom Food project and from the Netherlands Organisation for Scientific Research (NWO),Project no. 639.072.005. Networking support was provided by the EXTREMA COST Action MP 1207. Sara Bals acknowledges financial support from the European Research Council (ERC Starting Grant #335078 COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436
  Call Number c:irua:127834 Serial 3974
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: