toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Esken, D.; Zhang, X.; Lebedev, O.I.; Schröder, F.; Fischer, R.A. doi  openurl
  Title Pd@MOF-5: limitations of gas-phase infiltration and solution impregnation of [Zn4O(bdc)3] (MOF-5) with metalorganic palladium precursors for loading with Pd nanoparticles Type A1 Journal article
  Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 19 Issue 9 Pages 1314-1319  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The limitations of the loading of the porous metalorganic framework [Zn4O(bdc)3] (bdc = benzene-1,4-dicarboxylate; MOF-5 or IRMOF-1) with Pd nanoparticles was investigated. First, the volatile organometallic precursor [Pd(5-C5H5)(3-C3H5)] was employed to get the inclusion compound [Pd(5-C5H5)(3-C3H5)]x@MOF-5 via gas-phase infiltration at 10-3 mbar. A loading of four molecules of [Pd(5-C5H5)(3-C3H5)] per formula unit of MOF-5 (x = 4) can be reached (35 wt.% Pd). Second, the metalorganic precursor [Pd(acac)2] (acac = 2,4-pentanedionate) was used and the inclusion materials [Pd(acac)2]x@MOF-5 of different Pd loadings were obtained by incipient wetness infiltration. However, the maximum loading was lower as compared with the former case with about two precursor molecules per formula unit of MOF-5. Both loading routes are suitable for the synthesis of Pd nanoparticles inside the porous host matrix. Homogeneously distributed nanoparticles with diameter of 2.4(±0.2) nm can be achieved by photolysis of the inclusion compounds [Pd(5-C5H5)(3-C3H5)]x@MOF-5 (x 4), while the hydrogenolysis of [Pd(acac)2]x@MOF-5 (x 2) leads to a mixture of small particles inside the network (< 3 nm) and large Pd agglomerates (40 nm) on the outer surface of the MOF-5 specimens. The pure Pdx@MOF-5 materials proved to be stable under hydrogen pressure (2 bar) at 150 °C over many hours. Neither hydrogenation of the bdc linkers nor particle growth was observed. The new composite materials were characterized by 1H/13C-MAS-NMR, powder XRD, ICP-AES, FT-IR, N2 sorption measurements and high resolution TEM. Raising the Pd loading of a representative sample Pd4@MOF-5 (35 wt.% Pd) by using [Pd(5-C5H5)(3-C3H5)] as precursor in a second cycle of gas-phase infiltration and photolysis was accompanied by the collapse of the long-range crystalline order of the MOF.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000263450300015 Publication Date 2009-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 100 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:76318 Serial 2565  
Permanent link to this record
 

 
Author Holden, T.; Habermeier, H.-U.; Cristiani, G.; Golnik, A.; Boris, A.; Pimenov, A.; Humlicek, J.; Lebedev, O.I.; Van Tendeloo, G.; Keimer, B.; Bernhard, C. doi  openurl
  Title Proximity induced metal-insulator transition in YBa2Cu3O7/La2/3Ca1/3MnO3 superlattices Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 69 Issue 6 Pages 064505,1-064505,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The far-infrared dielectric response of superlattices (SL) composed of superconducting YBa2Cu3O7 (YBCO) and ferromagnetic La0.67Ca0.33MnO3 (LCMO) has been investigated by ellipsometry. A drastic decrease of the free-carrier response is observed which involves an unusually large length scale of d(crit)approximate to20 nm in YBCO and d(crit)approximate to10 nm in LCMO. A corresponding suppression of metallicity is not observed in SL's where LCMO is replaced by the paramagnetic metal LaNiO3. Our data suggest that either a long-range charge transfer from the YBCO to the LCMO layers or alternatively a strong coupling of the charge carriers to the different and competitive kind of magnetic correlations in the LCMO and YBCO layers is at the heart of the observed metal-insulator transition. The low free-carrier response observed in the far-infrared dielectric response of the magnetic superconductor RuSr2GdCu2O8 is possibly related to this effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000220092100066 Publication Date 2004-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 101 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:54743 Serial 2734  
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Schroeder, F.; Fischer, R.A.; Van Tendeloo, G. pdf  doi
openurl 
  Title Direct imaging of loaded metal-organic framework materials (metal@MOF-5) Type A1 Journal article
  Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue 17 Pages 5622-5627  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We illustrate the potential of advanced transmission electron microscopy for the characterization of a new class of soft porous materials: metal@Zn4O(bdc)3 (metal@MOF-5; bdc = 1,4-benzenedicarboxylate). By combining several electron microscopy techniques (transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and electron tomography) and by carefully reducing the electron dose to avoid beam damage, it is possible to simultaneously characterize the MOF-5 framework material and the loaded metal nanoparticles. We also demonstrate that electron tomography can be used to accurately determine the position and distribution of the particles within the MOF-5 framework. To demonstrate the implementation of these microscopy techniques and what kind of results can be expected, measurements on gas-phase-loaded metal−organic framework materials Ru@MOF-5 and Pd@MOF-5 are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000258941400021 Publication Date 2008-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (up) 112 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:76595 Serial 714  
Permanent link to this record
 

 
Author Gasparotto, A.; Barreca, D.; Bekermann, D.; Devi, A.; Fischer, R.A.; Fornasiero, P.; Gombac, V.; Lebedev, O.I.; Maccato, C.; Montini, T.; Van Tendeloo, G.; Tondello, E. pdf  doi
openurl 
  Title F-doped Co3O4 photocatalysts for sustainable H2 generation from water/ethanol Type A1 Journal article
  Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 133 Issue 48 Pages 19362-19365  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract p-Type Co3O4 nanostructured films are synthesized by a plasma-assisted process and tested in the photocatalytic production of H2 from water/ethanol solutions under both near-UV and solar irradiation. It is demonstrated that the introduction of fluorine into p-type Co3O4 results in a remarkable performance improvement with respect to the corresponding undoped oxide, highlighting F-doped Co3O4 films as highly promising systems for hydrogen generation. Notably, the obtained yields were among the best ever reported for similar semiconductor-based photocatalytic processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000297606500027 Publication Date 2011-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited (up) 114 Open Access  
  Notes Approved Most recent IF: 13.858; 2011 IF: 9.907  
  Call Number UA @ lucian @ c:irua:93628 Serial 1164  
Permanent link to this record
 

 
Author Lebedev, O.I.; Van Tendeloo, G.; Amelinckx, S.; Leibold, B.; Habermeier, H.-U. doi  openurl
  Title Structure and microstructure of La1-xCaxMnO3- thin films prepared by pulsed layer deposition Type A1 Journal article
  Year 1998 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 58 Issue 12 Pages 8065-8074  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000076130500085 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 131 Open Access  
  Notes Approved Most recent IF: 3.836; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:25679 Serial 3288  
Permanent link to this record
 

 
Author Liu, S.; Cool, P.; Collart, O.; van der Voort, P.; Vansant, E.F.; Lebedev, O.I.; Van Tendeloo, G.; Jiang, M. pdf  doi
openurl 
  Title The influence of the alcohol concentration on the structural ordering of mesoporous silica: cosurfactant versus cosolvent Type A1 Journal article
  Year 2003 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 107 Issue Pages 10405-10411  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000185401900013 Publication Date 2003-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited (up) 134 Open Access  
  Notes Approved Most recent IF: 3.177; 2003 IF: 3.679  
  Call Number UA @ lucian @ c:irua:46264 Serial 1643  
Permanent link to this record
 

 
Author Canioni, R.; Roch-Marchal, C.; Sécheresse, F.; Horcajada, P.; Serre, C.; Hardi-Dan, M.; Férey, G.; Grenèche, J.-M.; Lefebvre, F.; Chang, J.-S.; Hwang, Y.-K.; Lebedev, O.; Turner, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe) Type A1 Journal article
  Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 21 Issue 4 Pages 1226-1233  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Successful encapsulation of polyoxometalate (POM) within the framework of a mesoporous iron trimesate MIL-100(Fe) sample has been achieved by direct hydrothermal synthesis in the absence of fluorine. XRPD, 31P MAS NMR, IR, EELS, TEM and 57Fe Mössbauer spectrometry corroborate the insertion of POM within the cavities of the MOF. The experimental Mo/Fe ratio is 0.95, in agreement with the maximum theoretical amount of POM loaded within the pores of MIL-100(Fe), based on steric hindrance considerations. The POM-MIL-100(Fe) sample exhibits a pore volume of 0.373 cm3 g−1 and a BET surface area close to 1000 m2 g−1, indicating that small gas molecules can easily diffuse inside the cavities despite the presence of heavy phosphomolybdates. These latter contribute to the decrease in the overall surface area, due to the increase in molar weight, by 65%. Moreover, the resulting Keggin containing MIL-100(Fe) solid is stable in aqueous solution with no POM leaching even after more than 2 months. In addition, no exchange of the Keggin anions by tetrabutylammonium perchlorate in organic media has been observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000286110400042 Publication Date 2010-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 158 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:88642 Serial 3145  
Permanent link to this record
 

 
Author Moshnyaga, V.; Damaschke, B.; Shapoval, O.; Belenchuk, A.; Faupel, J.; Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Mücksch, M.; Tsurkan, V.; Tidecks, R.; Samwer, K. pdf  doi
openurl 
  Title Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1-x:(MgO)x nanocomposite films Type A1 Journal article
  Year 2003 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 2 Issue 4 Pages 247-252  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract 'Colossal magnetoresistance' in perovskite manganites such as La0.7Ca0.3MnO3 (LCMO), is caused by the interplay of ferro-paramagnetic, metal-insulator and structural phase transitions. Moreover, different electronic phases can coexist on a very fine scale resulting in percolative electron transport. Here we report on (LCMO)(1-x):(MgO)(x) (0 < x less than or equal to 0.8) epitaxial nano-composite films in which the structure and magnetotransport properties of the manganite nanoclusters can be tuned by the tensile stress originating from the MgO second phase. With increasing x, the lattice of LCMO was found to expand, yielding a bulk tensile strain. The largest colossal magnetoresistance of 10(5)% was observed at the percolation threshold in the conductivity at x(c) approximate to 0.3, which is coupled to a structural phase transition from orthorhombic (0 < x less than or equal to 0.1) to rhombohedral R (3) over barc structure (0.33 less than or equal to x less than or equal to 0.8). An increase of the Curie temperature for the R (3) over barc phase was observed. These results may provide a general method for controlling the magnetotransport properties of manganite-based composite films by appropriate choice of the second phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000182052700022 Publication Date 2003-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited (up) 177 Open Access  
  Notes Approved Most recent IF: 39.737; 2003 IF: 10.778  
  Call Number UA @ lucian @ c:irua:54855 Serial 3247  
Permanent link to this record
 

 
Author Neira, I.S.; Kolen'ko, Y.V.; Lebedev, O.I.; Van Tendeloo, G.; Gupta, H.S.; Guitián, F.; Yoshimura, M. pdf  doi
openurl 
  Title An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis Type A1 Journal article
  Year 2009 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 9 Issue 1 Pages 466-474  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A facile urea-assisted hydrothermal synthesis and systematic characterization of hydroxyapatite (HA) with calcium nitrate tetrahydrate and diammonium hydrogen phosphate as precursors are reported. The advantage of the proposed technique over previously reported synthetic approaches is the simple but precise control of the HA crystals morphology, which is achieved by employing an intensive, stepwise, and slow thermal decomposition of urea as well as varying initial concentrations of starting reagents. Whereas the plate-, hexagonal prism- and needle-like HA particles preferentially growth along the c-axis, the smaller and fine-plate-like HA crystals demonstrate crystal growth along the (102) and (211) directions, uncommon for HA. Furthermore, it was established that the hydrothermally derived powdered products are phase-pure HA containing CO32− anions in the crystal lattice, that is, AB-type carbonated hydroxyapatite. Transmission electron microscopy (TEM) and electron diffraction (ED) of selected samples reveal that the as-prepared HA crystals are single-crystalline and exhibit a nearly defect-free microstructure. The hardness and elastic modulus of the hexagonal prism-like HA crystals have been investigated on a nanoscale using the nanoindentation technique; the observed trends are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000262332700073 Publication Date 2008-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited (up) 183 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 4.055; 2009 IF: 4.162  
  Call Number UA @ lucian @ c:irua:75740 Serial 853  
Permanent link to this record
 

 
Author Lebedev, O.I.; Millange, F.; Serre, C.; Van Tendeloo, G.; Férey, G. pdf  doi
openurl 
  Title First direct imaging of giant pores of the metal-organic framework MIL-101 Type A1 Journal article
  Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 17 Issue 26 Pages 6525-6527  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000234187300007 Publication Date 2005-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (up) 191 Open Access  
  Notes Approved Most recent IF: 9.466; 2005 IF: 4.818  
  Call Number UA @ lucian @ c:irua:56404 Serial 1197  
Permanent link to this record
 

 
Author Esken, D.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Au@ZIFs: stabilization and encapsulation of cavity-size matching gold clusters inside functionalized Zeolite Imidazolate Frameworks, ZIFs Type A1 Journal article
  Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue 23 Pages 6393-6401  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The selective formation and stabilization of very small, naked metal particles inside the cavities of metal organic frameworks (MOFs) and the simultaneous realization of an even distribution of the particles throughout the crystalline MOF host matrix over a wide range of metal loading are challenging goals. MOFs reveal high specific surface areas, tunable pore sizes, and organic linkers, which are able to interact with guests. The chemically very robust zeolite imidazolate frameworks (ZIFs) are a subclass of MOFs. We chose the microporous sodalite-like ZIF-8 (Zn(MelM)(2); IM = imidazolate) and ZIF-90 (Zn(ICA)(2); ICA = imidazolate-2-carboxyaldehyde) as host matrices to influence the dispersion of imbedded gold nanoparticles (Au NPs). The metal loading was achieved via gas phase infiltration of [Au(CO)Cl] followed by a thermal hydrogenation step to form the Au NPs. Low-dose high-resolution transmission electron microscopy ((HR)TEM) and electron tomography reveal a homogeneous distribution of Au NPs throughout the ZIF matrix. The functional groups of ZIF-90 direct the anchoring of intermediate Au species and stabilize drastically smaller and quite monodisperse Au NPs in contrast to the parent not functionalized ZIF-8. The particles can be very small, match the cavity size and approach defined molecular clusters of magic numbers, i.e., Au(55), independently from the level of loading. Post-synthetic oxidation of the aldehyde groups to yield alkyl esters by the adjacent, catalytically active metal NPs is presented as a new concept of encapsulating nanoparticles inside MOFs and allows multiple steps of metal loadings without decomposition of the MOF.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000284975100025 Publication Date 2010-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (up) 194 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:95530 Serial 208  
Permanent link to this record
 

 
Author Kolen'ko, Y.V.; Kovnir, K.A.; Gavrilov, A.I.; Garshev, A.V.; Frantti, J.; Lebedev, O.I.; Churagulov, B.R.; Van Tendeloo, G.; Yoshimura, M. pdf  doi
openurl 
  Title Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide Type A1 Journal article
  Year 2006 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 110 Issue 9 Pages 4030-4038  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000235944500033 Publication Date 2006-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited (up) 234 Open Access  
  Notes Approved Most recent IF: 3.177; 2006 IF: 4.115  
  Call Number UA @ lucian @ c:irua:56988 Serial 1540  
Permanent link to this record
 

 
Author Schröder, F.; Esken, D.; Cokoja, M.; van den Berg, M.W.E.; Lebedev, O.I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H.H.; Chaudret, B.; Fischer, R.A.; pdf  doi
openurl 
  Title Ruthenium nanoparticles inside porous (Zn40(bdC)(3)) by hydrogenolysis of adsorbed (Ru(cod)(cot)): a solid-state reference system for surfactant-stabilized ruthenium colloids Type A1 Journal article
  Year 2008 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 130 Issue 19 Pages 6119-6130  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000255620200018 Publication Date 2008-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited (up) 272 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 13.858; 2008 IF: 8.091  
  Call Number UA @ lucian @ c:irua:68851 Serial 2934  
Permanent link to this record
 

 
Author Godefroo, S.; Hayne, M.; Jivanescu, M.; Stesmans, A.; Zacharias, M.; Lebedev, O.I.; Van Tendeloo, G.; Moshchalkov, V.V. pdf  doi
openurl 
  Title Classification and control of the origin of photoluminescence from Si nanocrystals Type A1 Journal article
  Year 2008 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 3 Issue 3 Pages 174-178  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Silicon dominates the electronics industry, but its poor optical properties mean that III-V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they arise from highly localized defect states or quantum confinement effects?) has been the subject of intense debate ever since. Attention has subsequently shifted from porous Si to Si nanocrystals, but the same fundamental question about the origin of the photoluminescence has remained. Here we show, based on measurements in high magnetic fields, that defects are the dominant source of light from Si nanocrystals. Moreover, we show that it is possible to control the origin of the photoluminescence in a single sample: passivation with hydrogen removes the defects, resulting in photoluminescence from quantum-confined states, but subsequent ultraviolet illumination reintroduces the defects, making them the origin of the light again.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000254743600017 Publication Date 2008-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387;1748-3395; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited (up) 426 Open Access  
  Notes Fwo Approved Most recent IF: 38.986; 2008 IF: 20.571  
  Call Number UA @ lucian @ c:irua:102630 Serial 373  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: