toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Jiang, J.; Wang, Y.-L.; Milošević, M.V.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H.
  Title Reversible ratchet effects in a narrow superconducting ring Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
  Volume 103 Issue 1 Pages 014502
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We study the ratchet effect in a narrow pinning-free superconductive ring based on time-dependent Ginzburg-Landau (TDGL) equations. Voltage responses to external dc and ac currents at various magnetic fields are studied. Due to asymmetric barriers for flux penetration and flux exit in the ring-shaped superconductor, the critical current above which the flux-flow state is reached, as well as the critical current for the transition to the normal state, are different for the two directions of applied current. These effects cooperatively cause ratchet signal reversal at high magnetic fields, which has not been reported to date in a pinning-free system. The ratchet signal found here is larger than those induced by asymmetric pinning potentials. Our results also demonstrate the feasibility of using mesoscopic superconductors to employ a superconducting diode effect in versatile superconducting devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000604821500003 Publication Date 2021-01-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (up) 4 Open Access OpenAccess
  Notes ; We are grateful to G. Berdiyorov for useful suggestions and comments. Q.-H.C. thanks Beiyi Zhu for helpful discussions during the early stage of this work. This work is supported in part by the National Key Research and Development Program of China, Grants No. 2017YFA0303002 (Q.-H.C. and J.J.), and No. 2018YFA0209002 (Y.-L.W.), and the National Natural Science Foundation of China Grants No. 11834005, No. 11674285, No. 61771235, and No. 61727805. Z.-L.X. acknowledges support by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering and the National Science Foundation under Grant No. DMR-1901843. F.M.P. and M.V.M. acknowledge support by the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:174984 Serial 6697
Permanent link to this record
 

 
Author Abakumov, A.M.; Li, C.; Boev, A.; Aksyonov, D.A.; Savina, A.A.; Abakumova, T.A.; Van Tendeloo, G.; Bals, S.
  Title Grain boundaries as a diffusion-limiting factor in lithium-rich NMC cathodes for high-energy lithium-ion batteries Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal
  Volume 4 Issue 7 Pages 6777-6786
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract High-energy lithium-rich layered transition metal oxides are capable of delivering record electrochemical capacity and energy density as positive electrodes for Li-ion batteries. Their electrochemical behavior is extremely complex due to sophisticated interplay between crystal structure, electronic structure, and defect structure. Here we unravel an extra level of this complexity by revealing that the most typical representative Li1.2Ni0.13Mn0.54Co0.13O2 material, prepared by a conventional coprecipitation technique with Na2CO3 as a precipitating agent, contains abundant coherent (001) grain boundaries with a Na-enriched P2-structured block due to segregation of the residual sodium traces. The trigonal prismatic oxygen coordination of Na triggers multiple nanoscale twinning, giving rise to incoherent (104) boundaries. The cationic layers at the (001) grain boundaries are filled with transition metal cations being Mn-depleted and Co-enriched; this makes them virtually not permeable for the Li+ cations, and therefore they negatively influence the Li diffusion in and out of the spherical agglomerates. These results demonstrate that besides the mechanisms intrinsic to the crystal and electronic structure of Li-rich cathodes, their rate capability might also be depreciated by peculiar microstructural aspects. Dedicated engineering of grain boundaries opens a way for improving inherently sluggish kinetics of these materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000678382900042 Publication Date 2021-07-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited (up) 4 Open Access OpenAccess
  Notes We thank Dr. M. V. Berekchiian (MSU) for assisting in ICPMS measurements. We acknowledge Russian Science Foundation (Grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, Project No. G0F1320N) for financial support. Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:180556 Serial 6841
Permanent link to this record
 

 
Author Psilodimitrakopoulos, S.; Orekhov, A.; Mouchliadis, L.; Jannis, D.; Maragkakis, G.M.; Kourmoulakis, G.; Gauquelin, N.; Kioseoglou, G.; Verbeeck, J.; Stratakis, E.
  Title Optical versus electron diffraction imaging of Twist-angle in 2D transition metal dichalcogenide bilayers Type A1 Journal article
  Year 2021 Publication npj 2D Materials and Applications Abbreviated Journal
  Volume 5 Issue 1 Pages 77
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Atomically thin two-dimensional (2D) materials can be vertically stacked with van der Waals bonds, which enable interlayer coupling. In the particular case of transition metal dichalcogenide (TMD) bilayers, the relative direction between the two monolayers, coined as twist-angle, modifies the crystal symmetry and creates a superlattice with exciting properties. Here, we demonstrate an all-optical method for pixel-by-pixel mapping of the twist-angle with a resolution of 0.55(degrees), via polarization-resolved second harmonic generation (P-SHG) microscopy and we compare it with four-dimensional scanning transmission electron microscopy (4D STEM). It is found that the twist-angle imaging of WS2 bilayers, using the P-SHG technique is in excellent agreement with that obtained using electron diffraction. The main advantages of the optical approach are that the characterization is performed on the same substrate that the device is created on and that it is three orders of magnitude faster than the 4D STEM. We envisage that the optical P-SHG imaging could become the gold standard for the quality examination of TMD superlattice-based devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000694849200001 Publication Date 2021-09-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited (up) 4 Open Access OpenAccess
  Notes This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call European R & T Cooperation-Grant Act of Hellenic Institutions that have successfully participated in Joint Calls for Proposals of European Networks ERA NETS (National project code: GRAPH-EYE T8 Epsilon Rho Alpha 2-00009 and European code: 26632, FLAGERA). L.M., G.Ko. and G.Ki. acknowledge funding by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project No: HFRI-FM17-3034). GKi, S.P. and G.M.M. acknowledge funding from a research co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning 2014-2020” in the context of the project “Crystal quality control of two-dimensional materials and their heterostructures via imaging of their non-linear optical properties” (MIS 5050340)“. J.V acknowledges funding from FWO G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund, EU. J.V. and N.G. acknowledge funding from the European Union under the Horizon 2020 programme within a contract for Integrating Activities for Advanced Communities No 823717-ESTEEM3. J.V. N.G. and A.O. acknowledge funding through a GOA project ”Solarpaint" of the University of Antwerp. Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:181610 Serial 6877
Permanent link to this record
 

 
Author Mijin, S.D.; Baum, A.; Bekaert, J.; Solajic, A.; Pesic, J.; Liu, Y.; He, G.; Milošević, M.V.; Petrovic, C.; Popovic, Z., V; Hackl, R.; Lazarevic, N.
  Title Probing charge density wave phases and the Mott transition in 1T-TaS₂I by inelastic light scattering Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
  Volume 103 Issue 24 Pages 245133
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We present a polarization-resolved, high-resolution Raman scattering study of the three consecutive charge density wave (CDW) regimes in 1T-TaS2 single crystals, supported by ab initio calculations. Our analysis of the spectra within the low-temperature commensurate (C-CDW) regime shows P (3) over bar symmetry of the system, thus excluding the previously proposed triclinic stacking of the “star-of-David” structure, and promoting trigonal or hexagonal stacking instead. The spectra of the high-temperature incommensurate (IC-CDW) phase directly project the phonon density of states due to the breaking of the translational invariance, supplemented by sizable electron-phonon coupling. Between 200 and 352 K, our Raman spectra show contributions from both the IC-CDW and the C-CDW phases, indicating their coexistence in the so-called nearly commensurate (NC-CDW) phase. The temperature dependence of the symmetry-resolved Raman conductivity indicates the stepwise reduction of the density of states in the CDW phases, followed by a Mott transition within the C-CDW phase. We determine the size of the Mott gap to be Omega(gap) approximate to 170-190 meV, and track its temperature dependence.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000664450500002 Publication Date 2021-06-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (up) 4 Open Access OpenAccess
  Notes Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:179664 Serial 7015
Permanent link to this record
 

 
Author Nazar, N.D.; Vazifehshenas, T.; Ebrahimi, M.R.; Peeters, F.M.
  Title Strong anisotropic optical properties of 8-Pmmn borophene : a many-body perturbation study Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys
  Volume 23 Issue 30 Pages 16417-16422
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using first-principles many-body perturbation theory, we investigate the optical properties of 8-Pmmn borophene at two levels of approximations; the GW method considering only the electron-electron interaction and the GW in combination with the Bethe-Salpeter equation including electron-hole coupling. The band structure exhibits anisotropic Dirac cones with semimetallic character. The optical absorption spectra are obtained for different light polarizations and we predict strong optical absorbance anisotropy. The absorption peaks undergo a global redshift when the electron-hole interaction is taken into account due to the formation of bound excitons which have an anisotropic excitonic wave function.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000677722700001 Publication Date 2021-07-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record
  Impact Factor 4.123 Times cited (up) 4 Open Access Not_Open_Access
  Notes Approved Most recent IF: 4.123
  Call Number UA @ admin @ c:irua:180385 Serial 7022
Permanent link to this record
 

 
Author Man, L.F.; Xu, W.; Xiao, Y.M.; Wen, H.; Ding, L.; Van Duppen, B.; Peeters, F.M.
  Title Terahertz magneto-optical properties of graphene hydrodynamic electron liquid Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
  Volume 104 Issue 12 Pages 125420
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The discovery of the hydrodynamic electron liquid (HEL) in graphene [D. Bandurin et al., Science 351, 1055 (2016) and J. Crossno et al., Science 351, 1058 (2016)] has marked the birth of the solid-state HEL which can be probed near room temperature in a table-top setup. Here we examine the terahertz (THz) magneto-optical (MO) properties of a graphene HEL. Considering the case where the magnetic length l(B) = root h/eB is comparable to the mean-free path l(ee) for electron-electron interaction in graphene, the MO conductivities are obtained by taking a momentum balance equation approach on the basis of the Boltzmann equation. We find that when l(B) similar to l(ee), the viscous effect in a HEL can weaken significantly the THz MO effects such as cyclotron resonance and Faraday rotation. The upper hybrid and cyclotron resonance magnetoplasmon modes omega(+/-) are also obtained through the RPA dielectric function. The magnetoplasmons of graphene HEL at large wave-vector regime are affected by the viscous effect, and results in red-shifts of the magnetoplasmon frequencies. We predict that the viscosity in graphene HEL can affect strongly the magneto-optical and magnetoplasmonic properties, which can be verified experimentally.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000704419300004 Publication Date 2021-09-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (up) 4 Open Access OpenAccess
  Notes Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:182518 Serial 7029
Permanent link to this record
 

 
Author Sevik, C.; Bekaert, J.; Petrov, M.; Milošević, M.V.
  Title High-temperature multigap superconductivity in two-dimensional metal borides Type A1 Journal article
  Year 2022 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials
  Volume 6 Issue 2 Pages 024803
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000766666300003 Publication Date 2022-02-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.4 Times cited (up) 4 Open Access Not_Open_Access
  Notes Universiteit Antwerpen; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, COST-118F187 ; Air Force Office of Scientific Research, FA9550-19-1-7048 ; Fonds Wetenschappelijk Onderzoek; Approved Most recent IF: 3.4
  Call Number CMT @ cmt @c:irua:187126 Serial 7047
Permanent link to this record
 

 
Author Yagmurcukardes, N.; Bayram, A.; Aydin, H.; Yagmurcukardes, M.; Acikbas, Y.; Peeters, F.M.; Celebi, C.
  Title Anisotropic etching of CVD grown graphene for ammonia sensing Type A1 Journal article
  Year 2022 Publication IEEE sensors journal Abbreviated Journal Ieee Sens J
  Volume 22 Issue 5 Pages 3888-3895
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Bare chemical vapor deposition (CVD) grown graphene (GRP) was anisotropically etched with various etching parameters. The morphological and structural characterizations were carried out by optical microscopy and the vibrational properties substrates were obtained by Raman spectroscopy. The ammonia adsorption and desorption behavior of graphene-based sensors were recorded via quartz crystal microbalance (QCM) measurements at room temperature. The etched samples for ambient NH3 exhibited nearly 35% improvement and showed high resistance to humidity molecules when compared to bare graphene. Besides exhibiting promising sensitivity to NH3 molecules, the etched graphene-based sensors were less affected by humidity. The experimental results were collaborated by Density Functional Theory (DFT) calculations and it was shown that while water molecules fragmented into H and O, NH3 interacts weakly with EGPR2 sample which reveals the enhanced sensing ability of EGPR2. Apparently, it would be more suitable to use EGRP2 in sensing applications due to its sensitivity to NH3 molecules, its stability, and its resistance to H2O molecules in humid ambient.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000766276000010 Publication Date 2022-01-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-437x; 1558-1748 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.3 Times cited (up) 4 Open Access Not_Open_Access
  Notes Approved Most recent IF: 4.3
  Call Number UA @ admin @ c:irua:187257 Serial 7126
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V.
  Title Axion insulator states in a topological insulator proximitized to magnetic insulators : a tight-binding characterization Type A1 Journal article
  Year 2022 Publication Physical review materials Abbreviated Journal
  Volume 6 Issue 7 Pages 074205-74208
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The recent discovery of axion states in materials such as antiferromagnetic topological insulators has boosted investigations of the magnetoelectric response in topological insulators and their promise towards realizing dissipationless topological electronics. In this paper, we develop a tight-binding methodology to explore the emergence of axion states in Bi2Se3 in proximity to magnetic insulators on the top and bottom surfaces. The topological protection of the surface states is lifted by a time-reversal-breaking perturbation due to the proximity of a magnetic insulator, and a gap is opened on the surfaces, giving rise to half-quantized Hall conductance and a zero Hall plateau-evidencing an axion insulator state. We developed a real-space tight-binding Hamiltonian for Bi2Se3 using first-principles data. Transport properties of the system were obtained within the Landauer-Buttiker formalism, and we discuss the creation of axion states through Hall conductance and a zero Hall plateau at the surfaces, as a function of proximitized magnetization and corresponding potentials at the surfaces, as well as the thickness of the topological insulator.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000832387000006 Publication Date 2022-07-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.4 Times cited (up) 4 Open Access OpenAccess
  Notes Approved Most recent IF: 3.4
  Call Number UA @ admin @ c:irua:189498 Serial 7130
Permanent link to this record
 

 
Author Mirzakhani, M.; da Costa, D.R.; Peeters, F.M.
  Title Isolated and hybrid bilayer graphene quantum rings Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 105 Issue 11 Pages 115430-11
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using the continuum model, we investigate the electronic properties of two types of bilayer graphene (BLG) quantum ring (QR) geometries: (i) An isolated BLG QR and (ii) a monolayer graphene (MLG) with a QR put on top of an infinite graphene sheet (hybrid BLG QR). Solving the Dirac-Weyl equation in the presence of a perpendicular magnetic field and applying the infinite mass boundary condition at the ring boundaries, we obtain analytical results for the energy levels and corresponding wave spinors for both structures. In the case of isolated BLG QR, we observe a sizable and magnetically tunable band gap which agrees with the tight-binding transport simulations. Our analytical results also show the intervalley symmetry EeK (m) = ???EK??? h (m) between the electron (e) and the hole (h) states (m is the angular momentum quantum number) for the energy spectrum of the isolated BLG QR. The presence of interface boundary in a hybrid BLG QR modifies drastically the energy levels as compared with that of an isolated BLG QR. Its energy levels are tunable from MLG dot to isolated BLG QR and to MLG Landau energy levels as the magnetic field is varied. Our predictions can be verified experimentally using different techniques such as by magnetotransport measurements.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000801209300006 Publication Date 2022-03-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited (up) 4 Open Access OpenAccess
  Notes Approved Most recent IF: 3.7
  Call Number UA @ admin @ c:irua:188703 Serial 7175
Permanent link to this record
 

 
Author Cunha, D.M.; Gauquelin, N.; Xia, R.; Verbeeck, J.; Huijben, M.
  Title Self-assembled epitaxial cathode-electrolyte nanocomposites for 3D microbatteries Type A1 Journal article
  Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
  Volume 14 Issue 37 Pages 42208-42214
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The downscaling of electronic devices requires rechargeable microbatteries with enhanced energy and power densities. Here, we evaluate self-assembled vertically aligned nano-composite (VAN) thin films as a platform to create high-performance three-dimensional (3D) microelectrodes. This study focuses on controlling the VAN formation to enable interface engineering between the LiMn2O4 cathode and the (Li,La)TiO3 solid electrolyte. Electrochemical analysis in a half cell against lithium metal showed the absence of sharp redox peaks due to the confinement in the electrode pillars at the nanoscale. The (100)-oriented VAN thin films showed better rate capability and stability during extensive cycling due to the better alignment to the Li-diffusion channels. However, an enhanced pseudocapacitive contribution was observed for the increased total surface area within the (110)-oriented VAN thin films. These results demonstrate for the first time the electrochemical behavior of cathode-electrolyte VANs for lithium-ion 3D microbatteries while pointing out the importance of control over the vertical interfaces.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000852647100001 Publication Date 2022-09-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.5 Times cited (up) 4 Open Access OpenAccess
  Notes This research was carried out with the support from the Netherlands Organization for Scientific Research (NWO) under VIDI grant no. 13456. Approved Most recent IF: 9.5
  Call Number UA @ admin @ c:irua:190619 Serial 7206
Permanent link to this record
 

 
Author Yu, Y.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L.
  Title Two-dimensional semimetal states in transition metal trichlorides : a first-principles study Type A1 Journal article
  Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 121 Issue 11 Pages 112405-112407
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The two-dimensional (2D) transition metal trihalide (TMX3, X = Cl, Br, I) family has attracted considerable attention in recent years due to the realization of CrCl3, CrBr3, and CrI3 monolayers. Up to now, the main focus of the theoretically predicted TMX3 monolayers has been on the Chern insulator states, which can realize the quantum anomalous Hall effect. Here, using first-principles calculations, we theoretically demonstrate that the stable OsCl3 monolayer has a ferromagnetic ground state and a spin-polarized Dirac point without spin-orbit coupling (SOC), which disappears in the band structure of a Janus OsBr1.5Cl1.5 monolayer. We find that OsCl3 exhibits in-plane magnetization when SOC is included. By manipulating the magnetization direction along the C-2 symmetry axis of the OsCl3 structure, a gapless half-Dirac semimetal state with SOC can be achieved, which is different from the gapped Chern insulator state. Both semimetal states of OsCl3 monolayer without and with SOC exhibit a linear half-Dirac point (twofold degenerate) with high Fermi velocities. The achievement of the 2D semimetal state with SOC is expected to be found in other TMX3 monolayers, and we confirm it in a TiCl3 monolayer. This provides a different perspective to study the band structure with SOC of the 2D TMX3 family.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000863219400003 Publication Date 2022-09-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record
  Impact Factor 4 Times cited (up) 4 Open Access OpenAccess
  Notes Approved Most recent IF: 4
  Call Number UA @ admin @ c:irua:191541 Serial 7223
Permanent link to this record
 

 
Author Rivas-Murias, B.; Testa-Anta, M.; Skorikov, A.S.; Comesana-Hermo, M.; Bals, S.; Salgueirino, V.
  Title Interfaceless exchange bias in CoFe₂O₄ nanocrystals Type A1 Journal article
  Year 2023 Publication Nano letters Abbreviated Journal
  Volume 23 Issue 5 Pages 1688-1695
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Oxidized cobalt ferrite nanocrystals with a modified distribution of the magnetic cations in their spinel structure give place to an unusual exchange-coupled system with a double reversal of the magnetization, exchange bias, and increased coercivity, but without the presence of a clear physical interface that delimits two well-differentiated magnetic phases. More specifically, the partial oxidation of cobalt cations and the formation of Fe vacancies at the surface region entail the formation of a cobalt-rich mixed ferrite spinel, which is strongly pinned by the ferrimagnetic background from the cobalt ferrite lattice. This particular configuration of exchange-biased magnetic behavior, involving two different magnetic phases but without the occurrence of a crystallographically coherent interface, revolu-tionizes the established concept of exchange bias phenomenology.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000940892000001 Publication Date 2023-02-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.8 Times cited (up) 4 Open Access OpenAccess
  Notes M.T.-A. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovaci?n under grant FJC2021- 046680-I. S.B. acknowledges funding from the European Research Council under the European Union?s Horizon 2020 research and innovation program (ERC Consolidator Grant N o 815128 REALNANO) . V.S. acknowledges the financial support from the Spanish Ministerio de Ciencia e Innovaci?n under project PID2020-119242-I00 and from the European Union under project H2020-MSCA-RISE-2019 PEPSA-MATE (project number 872233) . Approved Most recent IF: 10.8; 2023 IF: 12.712
  Call Number UA @ admin @ c:irua:195186 Serial 7315
Permanent link to this record
 

 
Author Beckwee, E.J.; Watson, G.; Houlleberghs, M.; Arenas Esteban, D.; Bals, S.; Van Der Voort, P.; Breynaert, E.; Martens, J.; Baron, G.V.; Denayer, J.F.M.
  Title Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes Type A1 Journal article
  Year 2023 Publication Heliyon Abbreviated Journal
  Volume 9 Issue 7 Pages e17662-14
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formationdissociation cycles demonstrates the material's excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001056264100001 Publication Date 2023-06-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2405-8440 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited (up) 4 Open Access OpenAccess
  Notes E.J.B., G.W. and M.H. contributed equally to this work. M.H. acknowledges FWO for an FWO-SB fellowship. All authors acknowledge VLAIO for Moonshot funding (ARCLATH, n ? HBC.2019.0110, ARCLATH2, n ? HBC.2021.0254) . J.A.M. acknowledges the Flemish Government for long-term structural funding (Methusalem) and department EWI for infrastructure investment via the Hermes Fund (AH.2016.134) . NMRCoRe acknowledges the Flemish government, department EWI for financial support as International Research Infrastructure (I001321N: Nuclear Magnetic Resonance Spectroscopy Platform for Molecular Water Research) . J.A.M. acknowledges the European Research Council (ERC) for an Advanced Research Grant under the European Union's Horizon 2020 research and innovation program under grant agreement No. 834134 (WATUSO) . S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N) . This project also received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO) . Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:199249 Serial 8862
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Magnus, W.; Sorée, B.
  Title An envelope function formalism for lattice-matched heterostructures Type A1 Journal article
  Year 2015 Publication Physica: B : condensed matter Abbreviated Journal Physica B
  Volume 470-471 Issue 470-471 Pages 69-75
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The envelope function method traditionally employs a single basis set which, in practice, relates to a single material because the k.p matrix elements are generally only known in a particular basis. In this work, we defined a basis function transformation to alleviate this restriction. The transformation is completely described by the known inter-band momentum matrix elements. The resulting envelope function equation can solve the electronic structure in lattice matched heterostructures without resorting to boundary conditions at the interface between materials, while all unit-cell averaged observables can be calculated as with the standard envelope function formalism. In the case of two coupled bands, this heterostructure formalism is equivalent to the standard formalism while taking position dependent matrix elements. (C) 2015 Elsevier B.V. All rights reserved
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000355149600011 Publication Date 2015-04-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.386 Times cited (up) 5 Open Access
  Notes ; ; Approved Most recent IF: 1.386; 2015 IF: 1.319
  Call Number c:irua:126397 Serial 95
Permanent link to this record
 

 
Author Castelano, L.K.; Hai, G.Q.; Partoens, B.; Peeters, F.M.
  Title Artificial molecular quantum rings under magnetic field influence Type A1 Journal article
  Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 106 Issue 7 Pages 073702,1-073702,8
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The ground states of a few electrons confined in two vertically coupled quantum rings in the presence of an external magnetic field are studied systematically within the current spin-density functional theory. Electron-electron interactions combined with inter-ring tunneling affect the electronic structure and the persistent current. For small values of the external magnetic field, we recover the zero magnetic field molecular quantum ring ground state configurations. Increasing the magnetic field many angular momentum, spin, and isospin transitions are predicted to occur in the ground state. We show that these transitions follow certain rules, which are governed by the parity of the number of electrons, the single-particle picture, Hunds rules, and many-body effects.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000270915600047 Publication Date 2009-10-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited (up) 5 Open Access
  Notes Approved Most recent IF: 2.068; 2009 IF: 2.072
  Call Number UA @ lucian @ c:irua:86926 Serial 155
Permanent link to this record
 

 
Author Peeters, F.M.; Partoens, B.; Schweigert, V.A.; Goldoni, G.
  Title Classical molecules in two dimensions Type A1 Journal article
  Year 1997 Publication Physica: E Abbreviated Journal Physica E
  Volume 1 Issue Pages 219-225
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000074364500047 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited (up) 5 Open Access
  Notes Approved Most recent IF: 2.221; 1997 IF: NA
  Call Number UA @ lucian @ c:irua:19300 Serial 368
Permanent link to this record
 

 
Author Wang, Y.; Yu, M.Y.; Chen, Z.Y.
  Title Coherent relativistic wake wave of a charged object moving steadily in a plasma Type A1 Journal article
  Year 2011 Publication Physica scripta Abbreviated Journal Phys Scripta
  Volume 84 Issue 2 Pages 025501,1-025501,5
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Nonlinear electron plasma waves driven by a finite-charged particle pulse or rigid object moving at relativistic speeds are investigated. Quasi-stationary smooth and spiky wake waves comoving with the object are found. Localized soliton-like solutions are also shown to exist. Relativistic effects tend to prevent their formation because of the electron mass increase. The application of the very-large-amplitude wake density waves as a source of ultrahigh-energy cosmic-ray events is discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Stockholm Editor
  Language Wos 000294727900017 Publication Date 2011-07-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.28 Times cited (up) 5 Open Access
  Notes Approved Most recent IF: 1.28; 2011 IF: 1.204
  Call Number UA @ lucian @ c:irua:92435 Serial 381
Permanent link to this record
 

 
Author Cole, B.E.; Batty, W.; Singleton, J.; Chamberlain, J.M.; Li, L.; van Bockstal, L.; Imanaka, Y.; Shimamoto, Y.; Miura, N.; Peeters, F.M.; Henini, M.; Cheng, T.
  Title Collective cyclotron modes in high mobility two-dimensional hole systems in GaAs-(Ga,Al)As heterojunctions: 2: experiments at magnetic fields of up to forty Tesla Type A1 Journal article
  Year 1997 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume 9 Issue Pages 4887-4896
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1997XE20300012 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.649 Times cited (up) 5 Open Access
  Notes Approved Most recent IF: 2.649; 1997 IF: 1.479
  Call Number UA @ lucian @ c:irua:19292 Serial 385
Permanent link to this record
 

 
Author Kapra, A.V.; Misko, V.R.; Peeters, F.M.
  Title Controlling magnetic flux motion by arrays of zigzag-arranged magnetic bars Type A1 Journal article
  Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
  Volume 26 Issue 2 Pages 025011-10
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Recent advances in manufacturing arrays of artificial pinning sites, i.e., antidots, blind holes and magnetic dots, allowed an effective control of magnetic flux in superconductors. An array of magnetic bars deposited on top of a superconducting film was shown to display different pinning regimes depending on the direction of the in-plane magnetization of the bars. Changing the sign of their magnetization results in changes in the induced magnetic pinning potentials. By numerically solving the time-dependent Ginzburg-Landau equations in a superconducting film with periodic arrays of zigzag-arranged magnetic bars, we revealed various flux dynamics regimes. In particular, we demonstrate flux pinning and flux flow, depending on the direction of the magnetization of the magnetic bars. Remarkably, the revealed different flux-motion regimes are associated with different mechanisms of vortex-antivortex dynamics. For example, we found that for an 'antiparallel' configuration of magnetic bars this dynamics involves a repeating vortex-antivortex generation and annihilation. We show that the depinning transition and the onset of flux flow can be manipulated by the magnetization of the bars and the geometry of the array. This provides an effective control of the depinning critical current that can be useful for possible fluxonics applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000313559300011 Publication Date 2012-12-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.878 Times cited (up) 5 Open Access
  Notes ; We acknowledge useful discussions with Denis Vodolazov and Alejandro Silhanek. This work was supported by the 'Odysseus' Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.878; 2013 IF: 2.796
  Call Number UA @ lucian @ c:irua:110080 Serial 505
Permanent link to this record
 

 
Author Tso, H.C.; Vasilopoulos, P.; Peeters, F.M.
  Title Coupled electron-hole transport: generalized random-phase approximation and density functional theory Type A1 Journal article
  Year 1994 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci
  Volume 305 Issue Pages 400-404
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos A1994ND67400076 Publication Date 2002-10-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.925 Times cited (up) 5 Open Access
  Notes Approved PHYSICS, APPLIED 47/145 Q2 #
  Call Number UA @ lucian @ c:irua:9380 Serial 535
Permanent link to this record
 

 
Author Panin, R.V.; Khasanova, N.R.; Abakumov, A.M.; Schnelle, W.; Hadermann, J.; Antipov, E.V.
  Title Crystal structure and properties of the Na1-xRu2O4 phase Type A1 Journal article
  Year 2006 Publication Russian chemical bulletin Abbreviated Journal Russ Chem B+
  Volume 55 Issue 10 Pages 1717-1722
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000245091400003 Publication Date 2007-03-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1066-5285;1573-9171; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 0.529 Times cited (up) 5 Open Access
  Notes Approved Most recent IF: 0.529; 2006 IF: 0.505
  Call Number UA @ lucian @ c:irua:63810 Serial 566
Permanent link to this record
 

 
Author Chandrasekaran, M.; Ghosh, G.; Schryvers, D.; de Graef, M.; Delaey, L.; Van Tendeloo, G.
  Title Decomposition of a metastable bcc phase in rapidly solidified Ni-9 at.% Zr and Ni-8 at.%X alloys Type A1 Journal article
  Year 1997 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal Philos Mag A
  Volume 75 Issue Pages 677-701
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1997WN48000006 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0141-8610; 1364-2804 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited (up) 5 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:21343 Serial 608
Permanent link to this record
 

 
Author Lemmens, H.; Czank, M.; Van Tendeloo, G.; Amelinckx, S.
  Title Defect structure of the low temperature α-cristobalite phase and the cristobalite <-> tridymite transformation in (Si-Ge)O2 Type A1 Journal article
  Year 2000 Publication Physics and chemistry of minerals Abbreviated Journal Phys Chem Miner
  Volume 27 Issue 6 Pages 386-397
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Berlin Editor
  Language Wos 000087959700004 Publication Date 2002-10-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0342-1791;1432-2021; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.521 Times cited (up) 5 Open Access
  Notes Approved Most recent IF: 1.521; 2000 IF: 1.513
  Call Number UA @ lucian @ c:irua:54725 Serial 622
Permanent link to this record
 

 
Author Filippousi, M.; Turner, S.; Katsikini, M.; Pinakidou, F.; Zamboulis, D.; Pavlidou, E.; Van Tendeloo, G.
  Title Direct observation and structural characterization of natural and metal ion-exchanged HEU-type zeolites Type A1 Journal article
  Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
  Volume 210 Issue 210 Pages 185-193
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The atomic structure of natural HEU-type zeolite and two ion-exchanged variants of the zeolite, Ag+ (Ag-HEU) and Zn2+ (Zn-HEU) ion exchanged HEU-type zeolites, are investigated using advanced transmission electron microscopy techniques in combination with X-ray powder diffraction and X-ray absorption fine structure measurements. In both ion-exchanged materials, loading of the natural HEU zeolite is confirmed. Using low-voltage, aberration-corrected transmission electron microscopy at low-dose conditions, the local crystal structure of natural HEU-type zeolite is determined and the interaction of the ion-exchanged natural zeolites with the Ag+ and Zn2+ ions is studied. In the case of Ag-HEU, the presence of Ag+ ions and clusters at extra-framework sites as well as Ag nanoparticles has been confirmed. The Ag nanoparticles are preferentially positioned at the zeolite surface. For Zn-HEU, no large Zn(O) nanopartides are present, instead, the HEU channels are evidenced to be decorated by small Zn(O) clusters. (c) 2015 Elsevier Inc. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000353733300024 Publication Date 2015-02-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.615 Times cited (up) 5 Open Access
  Notes 246791 Countatoms; Iap-Pai; Fwo Approved Most recent IF: 3.615; 2015 IF: 3.453
  Call Number c:irua:126006 Serial 715
Permanent link to this record
 

 
Author Das, P.; Koblischka, M.R.; Turner, S.; Van Tendeloo, G.; Wolf, T.; Jirsa, M.; Hartmann, U.
  Title Direct observation of nanometer-scale pinning sites in (Nd0.33Eu0.20Gd0.47)Ba2Cu3O7-\delta single crystals Type A1 Journal article
  Year 2008 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
  Volume 83 Issue 3 Pages 37005,1-37005,4
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We report on the observation of self-organized stripe-like structures on the as-grown surface and in the bulk of (Nd,Eu,Gd)Ba2Cu3Oy single crystals. The periodicity of the stripes on the surface lies between 500800 nm. These are possibly the growth steps of the crystal. Transmission electron microscopy investigations revealed stripes of periodicity in the range of 2040 nm in the bulk. From electron back scattered diffraction investigations, no crystallographic misorientation due to the nanostripes has been found. Scanning tunneling spectroscopic experiments revealed nonsuperconducting regions, running along twin directions, which presumably constitute strong pinning sites.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Paris Editor
  Language Wos 000259022600032 Publication Date 2008-07-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.957 Times cited (up) 5 Open Access
  Notes Approved Most recent IF: 1.957; 2008 IF: 2.203
  Call Number UA @ lucian @ c:irua:76496 Serial 719
Permanent link to this record
 

 
Author Batuk, M.; Buffiere, M.; Zaghi, A.E.; Lenaers, N.; Verbist, C.; Khelifi, S.; Vleugels, J.; Meuris, M.; Hadermann, J.
  Title Effect of the burn-out step on the microstructure of the solution-processed Cu(In,Ga)Se2 solar cells Type A1 Journal article
  Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
  Volume 583 Issue 583 Pages 142-150
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract For the development of the photovoltaic industry cheap methods for the synthesis of Cu(In,Ga)Se-2 (CIGSe) based solar cells are required. In this work, CIGSe thin films were obtained by a solution-based method using oxygen-bearing derivatives. With the aimof improving the morphology of the printed CIGSe layers, we investigated two different annealing conditions of the precursor layer, consisting of (1) a direct selenization step (reference process), and (2) a pre-treatment thermal step prior to the selenization. We showed that the use of an Air/H2S burn-out step prior to the selenization step increases the CIGSe grain size and reduces the carbon content. However, it leads to the reduction of the solar cell efficiency from 4.5% in the reference sample down to 0.5% in the annealed sample. Detailed transmission electron microscopy analysis, including high angle annular dark field scanning transmission electron microscopy and energy dispersive X-ray mapping, was applied to characterize the microstructure of the film and to determine the relationship between microstructure and the solar cell performance. We demonstrated that the relatively low efficiency of the reference solar cells is related not only to the nanosize of the CIGSe grains and presence of the pores in the CIGSe layer, but also to the high amount of secondary phases, namely, In/Ga oxide (or hydroxide) amorphous matter, residuals of organicmatter (carbon), and copper sulfide that is formed at the CIGSe/MoSe2 interface. The annealing in H2S during the burn-out step leads to the formation of the copper sulfide at all grain boundaries and surfaces in the CIGSe layer, which results in the noticeably efficiency drop. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000353812400024 Publication Date 2015-04-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.879 Times cited (up) 5 Open Access
  Notes Approved Most recent IF: 1.879; 2015 IF: 1.759
  Call Number c:irua:126009 Serial 845
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M.; Partoens, B.; Janssens, K.L.
  Title Electron and hole localization in coupled InP/InGaP self-assembled quantum dots Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
  Volume 13 Issue 2/4 Pages 237-240
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000176869100035 Publication Date 2002-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited (up) 5 Open Access
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
  Call Number UA @ lucian @ c:irua:62427 Serial 905
Permanent link to this record
 

 
Author Van Holsbeke, C.S.; Leemans, G.; Vos, W.G.; de Backer, J.W.; Vinchurkar, S.C.; Geldof, M.; Verdonck, P.R.; Parizel, P.M.; van Schil, P.E.; de Backer, W.A.
  Title Functional Respiratory Imaging as a tool to personalize respiratory treatment in subjects with unilateral diaphragmatic paralysis Type A1 Journal article
  Year 2013 Publication Respiratory care Abbreviated Journal Resp Care
  Volume Issue Pages 1-20
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)
  Abstract In two subjects with a unilateral diaphragmatic paralysis and complaints of dyspnea, a completely different treatment approach was chosen despite similar anatomical and physiological abnormalities. These decisions were supported by the results generated by Functional Respiratory Imaging (FRI). FRI was able to generate functional information with respect to lobar ventilation and local drug deposition. In one subject, it was found that some lobes were poorly ventilated and drug deposition simulation showed that some regions were undertreated. This subject underwent a diaphragm plication to restore the ventilation. In the other subject, it was found that all lobes were still ventilated. A conservative approach with regular follow-up was chosen to wait for spontaneous recovery of the diaphragmatic function. Both subjects improved subjectively and objectively. These cases demonstrate how novel medical imaging techniques such as FRI can be used to personalize respiratory treatment in subjects with unilateral diaphragmatic paralysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Dallas, Tex. Editor
  Language Wos 000349200100024 Publication Date 2013-12-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1324;1943-3654; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.733 Times cited (up) 5 Open Access
  Notes ; ; Approved Most recent IF: 1.733; 2013 IF: 1.840
  Call Number UA @ lucian @ c:irua:112982 Serial 1303
Permanent link to this record
 

 
Author Munarin, F.F.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M.
  Title Ground state and normal-mode spectra of a two-dimensional system of dipole particles confined in a parabolic trap Type A1 Journal article
  Year 2008 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
  Volume 78 Issue 3 Part 1 Pages 031405-31412
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The ordered configurations of a monolayer of interacting magnetic dipoles confined in a circular parabolic potential are investigated as a function of the dipole moment of the particles. Despite the circular confinement, we find very asymmetric ordered structures like chains and Y-shaped configurations when a magnetic field is applied parallel to the plane of the particles. The normal-mode spectrum of the particles and its dependence on the magnetic field and the strength of the dipole moment of the particles are studied. The vibrational and rotational modes of the spectrum, which are associated with the stability of the system, are investigated in detail. The number of particles is varied and we found different ordering of the particles for different values of the dipole moment and the magnetic field. A ring structure with a large number of particles is observed for high values of the dipole moment of the particles.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
  Language Wos 000259682700057 Publication Date 2008-09-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.366 Times cited (up) 5 Open Access
  Notes Approved Most recent IF: 2.366; 2008 IF: 2.508
  Call Number UA @ lucian @ c:irua:103084 Serial 1382
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: