|   | 
Details
   web
Records
Author Neyts, E.C.; Yusupov, M.; Verlackt, C.C.; Bogaerts, A.
Title Computer simulations of plasmabiomolecule and plasmatissue interactions for a better insight in plasma medicine Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 29 Pages 293001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma medicine is a rapidly evolving multidisciplinary field at the intersection of chemistry, biochemistry, physics, biology, medicine and bioengineering. It holds great potential in medical, health care, dentistry, surgical, food treatment and other applications. This multidisciplinary nature and variety of possible applications come along with an inherent and intrinsic complexity. Advancing plasma medicine to the stage that it becomes an everyday tool in its respective fields requires a fundamental understanding of the basic processes, which is lacking so far. However, some major advances have already been made through detailed experiments over the last 15 years. Complementary, computer simulations may provide insight that is difficultif not impossibleto obtain through experiments. In this review, we aim to provide an overview of the various simulations that have been carried out in the context of plasma medicine so far, or that are relevant for plasma medicine. We focus our attention mostly on atomistic simulations dealing with plasmabiomolecule interactions. We also provide a perspective and tentative list of opportunities for future modelling studies that are likely to further advance the field.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000338860300001 Publication Date 2014-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited (up) 28 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:117853 Serial 472
Permanent link to this record
 

 
Author Neyts, E.C.; Khalilov, U.; Pourtois, G.; van Duin, A.C.T.
Title Hyperthermal oxygen interacting with silicon surfaces : adsorption, implantation, and damage creation Type A1 Journal article
Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue 15 Pages 4818-4823
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using reactive molecular dynamics simulations, we have investigated the effect of single-impact, low-energy (thermal-100 eV) bombardment of a Si(100){2 × 1} surface by atomic and molecular oxygen. Penetration probability distributions, as well as defect formation distributions, are presented as a function of the impact energy for both species. It is found that at low impact energy, defects are created chemically due to the chemisorption process in the top layers of the surface, while at high impact energy, additional defects are created by a knock-on displacement of Si. These results are of particular importance for understanding device performances of silica-based microelectronic and photovoltaic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000288401200060 Publication Date 2011-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited (up) 28 Open Access
Notes Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:89858 Serial 1543
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Neyts, E.C.; Thijsse, B.J.; Stesmans, A.
Title Uniform-acceptance force-bias Monte Carlo method with time scale to study solid-state diffusion Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 13 Pages 134301-134301,9
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Monte Carlo (MC) methods have a long-standing history as partners of molecular dynamics (MD) to simulate the evolution of materials at the atomic scale. Among these techniques, the uniform-acceptance force-bias Monte Carlo (UFMC) method [ G. Dereli Mol. Simul. 8 351 (1992)] has recently attracted attention [ M. Timonova et al. Phys. Rev. B 81 144107 (2010)] thanks to its apparent capacity of being able to simulate physical processes in a reduced number of iterations compared to classical MD methods. The origin of this efficiency remains, however, unclear. In this work we derive a UFMC method starting from basic thermodynamic principles, which leads to an intuitive and unambiguous formalism. The approach includes a statistically relevant time step per Monte Carlo iteration, showing a significant speed-up compared to MD simulations. This time-stamped force-bias Monte Carlo (tfMC) formalism is tested on both simple one-dimensional and three-dimensional systems. Both test-cases give excellent results in agreement with analytical solutions and literature reports. The inclusion of a time scale, the simplicity of the method, and the enhancement of the time step compared to classical MD methods make this method very appealing for studying the dynamics of many-particle systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000302290500001 Publication Date 2012-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 31 Open Access
Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97160 Serial 3809
Permanent link to this record
 

 
Author Hoon Park, J.; Kumar, N.; Hoon Park, D.; Yusupov, M.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A.; Ho Kang, M.; Sup Uhm, H.; Ha Choi, E.; Attri, P.;
Title A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 5 Issue 5 Pages 13849
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000360909000001 Publication Date 2015-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited (up) 32 Open Access
Notes Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number c:irua:127410 Serial 419
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C.
Title Hyperthermal oxidation of Si(100)2x1 surfaces : effect of growth temperature Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 15 Pages 8649-8656
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using reactive molecular dynamics simulations based on the ReaxFF potential, we studied the growth mechanism of ultrathin silica (SiO2) layers during hyperthermal oxidation as a function of temperature in the range 100-1300 K. Oxidation of Si(100){2 x 1} surfaces by both atomic and molecular oxygen was investigated for hyperthermal impact energies in the range of 1 to 5 eV. Two different growth mechanisms are found, corresponding to a low temperature oxidation and a high temperature one. The transition temperature between these mechanisms is estimated to be about 700 K. Also, the initial step of the Si oxidation process is analyzed in detail. Where possible, we validated our results with experimental and ab initio data, and good agreement was obtained. This study is important for the fabrication of silica-based devices in the micro- and nanoelectronics industry and, more specifically, for the fabrication of metal oxide semiconductor devices.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000302924900035 Publication Date 2012-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited (up) 32 Open Access
Notes Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:98259 Serial 1542
Permanent link to this record
 

 
Author Zhang, Y.-R.; Neyts, E.C.; Bogaerts, A.
Title Influence of the Material Dielectric Constant on Plasma Generation inside Catalyst Pores Type A1 Journal article
Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 120 Issue 120 Pages 25923-25934
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest for various environmental applications, but the crucial question is whether plasma can be created inside catalyst pores and under which conditions. In practice, various catalytic support materials are used, with various dielectric constants. We investigate here the influence of the dielectric constant on the plasma properties inside catalyst pores and in the sheath in front of the pores, for various pore sizes. The calculations are performed by a two-dimensional fluid model for an atmospheric pressure dielectric barrier discharge in helium. The electron impact ionization rate, electron temperature, electron and ion density, as well as the potential distribution and surface charge density, are analyzed for a better understanding of the discharge behavior inside catalyst pores. The results indicate that, in a 100 μm pore, the electron impact ionization in the pore, which is characteristic for the plasma generation inside the pore, is greatly enhanced for dielectric constants below 300. Smaller pore sizes only yield enhanced ionization for smaller dielectric constants, i.e., up to εr = 200, 150, and 50 for pore sizes of 50, 30, and 10 μm. Thus, the most common catalyst supports, i.e., Al2O3 and SiO2, which have dielectric constants around εr = 8−11 and 4.2, respectively, should allow more easily that microdischarges can be formed inside catalyst pores, even for smaller pore sizes. On the other hand, ferroelectric materials with dielectric constants above 300 never seem to yield plasma enhancement inside catalyst pores, not even for 100 μm pore sizes. Furthermore, it is clear that the dielectric constant of the material has a large effect on the extent of plasma enhancement inside the catalyst pores, especially in the range between εr = 4 and εr = 200. The obtained results are explained in detail based on the surface charge density at the pore walls,

and the potential distribution and electron temperature inside and above the pores. The results obtained with this model are

important for plasma catalysis, as the production plasma species in catalyst pores might affect the catalyst properties, and thus

improve the applications of plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388429100029 Publication Date 2016-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited (up) 34 Open Access
Notes This work was supported by the Fund for Scientific Research Flanders (FWO) (Grant G.0217.14N), the National Natural Science Foundation of China (Grant 11405019), and the China Postdoctoral Science Foundation (Grant 2015T80244). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @ c:irua:138602 Serial 4319
Permanent link to this record
 

 
Author Khalilov, U.; Neyts, E.C.; Pourtois, G.; van Duin, A.C.T.
Title Can we control the thickness of ultrathin silica layers by hyperthermal silicon oxidation at room temperature? Type A1 Journal article
Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue 50 Pages 24839-24848
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using reactive molecular dynamics simulations by means of the ReaxFF potential, we studied the growth mechanism of ultrathin silica (SiO2) layers during hyperthermal oxidation at room temperature. Oxidation of Si(100){2 × 1} surfaces by both atomic and molecular oxygen was investigated in the energy range 15 eV. The oxidation mechanism, which differs from thermal oxidation, is discussed. In the case of oxidation by molecular O2, silica is quickly formed and the thickness of the formed layers remains limited compared to oxidation by atomic oxygen. The Si/SiO2 interfaces are analyzed in terms of partial charges and angle distributions. The obtained structures of the ultrathin SiO2 films are amorphous, including some intrinsic defects. This study is important for the fabrication of silica-based devices in the micro- and nanoelectronics industry, and more specifically for the fabrication of metal oxide semiconductor devices.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000297947700050 Publication Date 2011-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited (up) 36 Open Access
Notes Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:94303 Serial 273
Permanent link to this record
 

 
Author Van der Paal, J.; Aernouts, S.; van Duin, A.C.T.; Neyts, E.C.; Bogaerts, A.
Title Interaction of O and OH radicals with a simple model system for lipids in the skin barrier : a reactive molecular dynamics investigation for plasma medicine Type A1 Journal article
Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 46 Issue 39 Pages 395201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma medicine has been claimed to provide a novel route to heal wounds and regenerate skin, although very little is currently known about the elementary processes taking place. We carried out a series of ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of O and OH radicals with lipids, more specifically with α-linolenic acid as a model for the free fatty acids present in the upper skin layer. Our calculations predict that the O and OH radicals most typically abstract a H atom from the fatty acids, which can lead to the formation of a conjugated double bond, but also to the incorporation of alcohol or aldehyde groups, thereby increasing the hydrophilic character of the fatty acids and changing the general lipid composition of the skin. Within the limitations of the investigated model, no formation of possibly toxic products was observed.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000324810400007 Publication Date 2013-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited (up) 36 Open Access
Notes Approved Most recent IF: 2.588; 2013 IF: 2.521
Call Number UA @ lucian @ c:irua:109904 Serial 1684
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C.
Title Plasma species interacting with nickel surfaces : toward an atomic scale understanding of plasma-catalysis Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 39 Pages 20958-20965
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The adsorption probability and reaction behavior of CHx plasma species on various nickel catalyst surfaces is investigated by means of reactive molecular dynamics (MD) simulations using the ReaxFF potential. Such catalysts are used in the reforming of hydrocarbons and in the growth of carbon nanotubes, and further insight in the underlying mechanisms of these processes is needed to increase their applicability. Single and consecutive impacts of CHx radicals (x={1,2,3}) were performed on four different Ni surfaces, at a temperature of 400 K. The adsorption probability is shown to be related to the number of free electrons, i.e. a higher number leads to more adsorptions, and the steric hindrance caused by the hydrogen atoms bonded to the impacting CHx species. Furthermore, some of the CH bonds break after adsorption, which generally leads to diffusion of the hydrogen atom over the surface. Additionally, these adsorbed H-atoms can be used in reactions to form new molecules, such as CH4 and C2Hx, although this is dependent on the precise morphology of the surface. New molecules are also formed by subtraction of H-atoms from adsorbed radicals, leading to occasional formation of H2 and C2Hx molecules.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000309375700040 Publication Date 2012-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited (up) 37 Open Access
Notes Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:101522 Serial 2640
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C.
Title Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors Type A1 Journal article
Year 2015 Publication Nature communications Abbreviated Journal Nat Commun
Volume 6 Issue 6 Pages 10306
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level.
Address PLASMANT research group, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000367584500001 Publication Date 2015-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited (up) 37 Open Access
Notes The authors gratefully acknowledge financial support from the Fund of Scientific Research Flanders (FWO), Belgium, grant number 12M1315N. The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. We thank Professor Adri C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 12.124; 2015 IF: 11.470
Call Number c:irua:129975 Serial 3990
Permanent link to this record
 

 
Author Ali, S.; Myasnichenko, V.S.; Neyts, E.C.
Title Size-dependent strain and surface energies of gold nanoclusters Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 792-800
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Gold nanocluster properties exhibit unique size-dependence. In this contribution, we employ reactive molecular dynamics simulations to calculate the size- and temperature-dependent surface energies, strain energies and atomic displacements for icosahedral, cuboctahedral, truncated octahedral and decahedral Au-nanoclusters. The calculations demonstrate that the surface energy decreases with increasing cluster size at 0 K but increases with size at higher temperatures. The calculated melting curves as a function of cluster size demonstrate the Gibbs-Thomson effect. Atomic displacements and strain are found to strongly depend on the cluster size and both are found to increase with increasing cluster size. These results are of importance for understanding the size-and temperature-dependent surface processes on gold nanoclusters.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000369480600017 Publication Date 2015-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited (up) 37 Open Access
Notes Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:131626 Serial 4243
Permanent link to this record
 

 
Author Samani, M.K.; Ding, X.Z.; Khosravian, N.; Amin-Ahmadi, B.; Yi, Y.; Chen, G.; Neyts, E.C.; Bogaerts, A.; Tay, B.K.
Title Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc Type A1 Journal article
Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 578 Issue 578 Pages 133-138
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A seriesof [TiN/TiAlN]nmultilayer coatingswith different bilayer numbers n=5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEMimaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000351686500019 Publication Date 2015-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited (up) 41 Open Access
Notes Approved Most recent IF: 1.879; 2015 IF: 1.759
Call Number c:irua:125517 Serial 3626
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title Merging Metadynamics into Hyperdynamics: Accelerated Molecular Simulations Reaching Time Scales from Microseconds to Seconds Type A1 Journal article
Year 2015 Publication Journal of chemical theory and computation Abbreviated Journal J Chem Theory Comput
Volume 11 Issue 11 Pages 4545-4554
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The hyperdynamics method is a powerful tool to simulate slow processes at the atomic level. However, the construction of an optimal hyperdynamics potential is a task that is far from trivial. Here, we propose a generally applicable implementation of the hyperdynamics algorithm, borrowing two concepts from metadynamics. First, the use of a collective variable (CV) to represent the accelerated dynamics gives the method a very large flexibility and simplicity. Second, a metadynamics procedure can be used to construct a suitable history-dependent bias potential on-the-fly, effectively turning the algorithm into a self-learning accelerated molecular dynamics method. This collective variable-driven hyperdynamics (CVHD) method has a modular design: both the local system properties on which the bias is based, as well as the characteristics of the biasing method itself, can be chosen to match the needs of the considered system. As a result, system-specific details are abstracted from the biasing algorithm itself, making it extremely versatile and transparent. The method is tested on three model systems: diffusion on the Cu(001) surface and nickel-catalyzed methane decomposition, as examples of reactive processes with a bond-length-based CV, and the folding of a long polymer-like chain, using a set of dihedral angles as a CV. Boost factors up to 109, corresponding to a time scale of seconds, could be obtained while still accurately reproducing correct dynamics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362921700004 Publication Date 2015-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1549-9618 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.245 Times cited (up) 41 Open Access
Notes K.M.B. is funded as Ph.D. fellow (aspirant) of the FWOFlanders (Fund for Scientific Research-Flanders), Grant No. 11 V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), funded by the Hercules Foundation and the Flemish Government−Department EWI. Approved Most recent IF: 5.245; 2015 IF: 5.498
Call Number c:irua:128183 Serial 3991
Permanent link to this record
 

 
Author Neyts, E.C.
Title PECVD growth of carbon nanotubes : from experiment to simulation Type A1 Journal article
Year 2012 Publication Journal of vacuum science and technology: B: micro-electronics processing and phenomena Abbreviated Journal
Volume 30 Issue 3 Pages 030803-030803,17
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nanostructured carbon materials show a tremendous variety in atomic structure, morphology, properties, and applications. As all properties are ultimately determined by the structure of the material, a thorough understanding of the growth mechanisms that give rise to the particular structure is critical. On many occasions, it has been shown that plasma enhanced growth can be strongly beneficial. This review will describe the authors current understanding of plasma enhanced growth of carbon nanotubes, the prototypical example of nanostructured carbon materials, as obtained from experiments, simulations, and modeling. Specific emphasis is put on where experiments and computational approaches correspond, and where they differ. Also, the current status on simulating PECVD growth of some other carbon nanomaterials is reviewed, including amorphous carbon, graphene, and metallofullerenes. Finally, computational challenges with respect to the simulation of PECVD growth are identified.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000305042000010 Publication Date 2012-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-2746; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) 42 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:97166 Serial 2570
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C.
Title Self-limiting oxidation in small-diameter Si nanowires Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 11 Pages 2141-2147
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Recently, core shell silicon nanowires (Si-NWs) have been envisaged to be used for field-effect transistors and photovoltaic applications. In spite of the constant downsizing of such devices, the formation of ultrasmall diameter core shell Si-NWs currently remains entirely unexplored. We report here on the modeling of the formation of such core shell Si-NWs using a dry thermal oxidation of 2 nm diameter (100) Si nanowires at 300 and 1273 K, by means of reactive molecular dynamics simulations using the ReaxFF potential. Two different oxidation mechanisms are discussed, namely a self-limiting process that occurs at low temperature (300 K), resulting in a Si core I ultrathin SiO2 silica shell nanowire, and a complete oxidation process that takes place at a higher temperature (1273 K), resulting in the formation of an ultrathin SiO2 silica nanowire. The oxidation kinetics of both cases and the resulting structures are analyzed in detail. Our results demonstrate that precise control over the Si-core radius of such NWs and the SiOx (x <= 2.0) oxide shell is possible by controlling the growth temperature used during the oxidation process.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000305092600021 Publication Date 2012-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited (up) 45 Open Access
Notes Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:99079 Serial 2976
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Khalilov, U.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A.
Title Atomic-scale simulations of reactive oxygen plasma species interacting with bacterial cell walls Type A1 Journal article
Year 2012 Publication New journal of physics Abbreviated Journal New J Phys
Volume 14 Issue 9 Pages 093043
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In recent years there has been growing interest in the use of low-temperature atmospheric pressure plasmas for biomedical applications. Currently, however, there is very little fundamental knowledge regarding the relevant interaction mechanisms of plasma species with living cells. In this paper, we investigate the interaction of important plasma species, such as O3, O2 and O atoms, with bacterial peptidoglycan (or murein) by means of reactive molecular dynamics simulations. Specifically, we use the peptidoglycan structure to model the gram-positive bacterium Staphylococcus aureus murein. Peptidoglycan is the outer protective barrier in bacteria and can therefore interact directly with plasma species. Our results demonstrate that among the species mentioned above, O3 molecules and especially O atoms can break important bonds of the peptidoglycan structure (i.e. CO, CN and CC bonds), which subsequently leads to the destruction of the bacterial cell wall. This study is important for gaining a fundamental insight into the chemical damaging mechanisms of the bacterial peptidoglycan structure on the atomic scale.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000309393400001 Publication Date 2012-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited (up) 47 Open Access
Notes Approved Most recent IF: 3.786; 2012 IF: 4.063
Call Number UA @ lucian @ c:irua:101014 Serial 189
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; Neyts, E.C.
Title How Oxygen Vacancies Activate CO2 Dissociation on TiO2 Anatase (001) Type A1 Journal article
Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 120 Issue 120 Pages 21659-21669
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The adsorption, dissociation, and diffusion of CO2 on the anatase (001) surface was studied using DFT by means of the generalized gradient approximation using the Perdew−Burcke−Ernzerhof (PBE)-functional and applying corrections for long-range dispersion interactions. Different stable adsorption configurations were identified for the fully oxidized surface. The most stable adsorption configuration is the monodentated carbonate-like structure. Small energy barriers were identified for the conversion of a physisorbed to a chemisorbed configuration.

CO2 dissociation is found to be unfeasible on the stoichiometric surface. The introduction of oxygen vacancy defects gives rise to new highly stable adsorption configurations with a stronger activation of the C−O bonds. This leads to the possibility of exothermic dissociation of CO2 with barriers up to 22.2 kcal/mol,

corresponding to chemical lifetimes of less than 4 s at 300 K. These reactions cause a CO molecule to be formed, which will easily desorb, and the reduced surface to become oxidized. It is clear that oxygen vacancy defects play a key role in the catalytic activity of an anatase (001) surface. Oxygen vacancies play an important role in the dissociation of CO2 on the anatase (001) surface, and will play a significant role in complex problems, such as the catalytic conversion of CO2 to value-added chemicals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384626800055 Publication Date 2016-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited (up) 49 Open Access
Notes Stijn Huygh is funded as an aspirant of the Research Foundation Flanders (FWO, project number 11C0115N). This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @ c:irua:136164 Serial 4291
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.; Han, Z.J.; Kumar, S.; van Duin, A.C.T.; Bogaerts, A.
Title Defect healing and enhanced nucleation of carbon nanotubes by low-energy ion bombardment Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 110 Issue 6 Pages 065501-65505
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Structural defects inevitably appear during the nucleation event that determines the structure and properties of single-walled carbon nanotubes. By combining ion bombardment experiments with atomistic simulations we reveal that ion bombardment in a suitable energy range allows these defects to be healed resulting in an enhanced nucleation of the carbon nanotube cap. The enhanced growth of the nanotube cap is explained by a nonthermal ion-induced graphene network restructuring mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000314687300022 Publication Date 2013-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited (up) 50 Open Access
Notes Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:105306 Serial 616
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Simon, P.; Berdiyorov, G.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A.
Title Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 2 Pages 025205-25209
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of atmospheric pressure plasmas in medicine is increasingly gaining attention in recent years, although very little is currently known about the plasma-induced processes occurring on the surface of living organisms. It is known that most bio-organisms, including bacteria, are coated by a liquid film surrounding them, and there might be many interactions between plasma species and the liquid layer before the plasma species reach the surface of the bio-organisms. Therefore, it is essential to study the behaviour of the reactive species in a liquid film, in order to determine whether these species can travel through this layer and reach the biomolecules, or whether new species are formed along the way. In this work, we investigate the interaction of reactive oxygen species (i.e. O, OH, HO2 and H2O2) with water, which is assumed as a simple model system for the liquid layer surrounding biomolecules. Our computational investigations show that OH, HO2 and H2O2 can travel deep into the liquid layer and are hence in principle able to reach the bio-organism. Furthermore, O, OH and HO2 radicals react with water molecules through hydrogen-abstraction reactions, whereas no H-abstraction reaction takes place in the case of H2O2. This study is important to gain insight into the fundamental operating mechanisms in plasma medicine, in general, and the interaction mechanisms of plasma species with a liquid film, in particular.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000329108000013 Publication Date 2013-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited (up) 51 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:112286 Serial 2823
Permanent link to this record
 

 
Author Elliott, J.A.; Shibuta, Y.; Amara, H.; Bichara, C.; Neyts, E.C.
Title Atomistic modelling of CVD synthesis of carbon nanotubes and graphene Type A1 Journal article
Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 5 Issue 15 Pages 6662-6676
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We discuss the synthesis of carbon nanotubes (CNTs) and graphene by catalytic chemical vapour deposition (CCVD) and plasma-enhanced CVD (PECVD), summarising the state-of-the-art understanding of mechanisms controlling their growth rate, chiral angle, number of layers (walls), diameter, length and quality (defects), before presenting a new model for 2D nucleation of a graphene sheet from amorphous carbon on a nickel surface. Although many groups have modelled this process using a variety of techniques, we ask whether there are any complementary ideas emerging from the different proposed growth mechanisms, and whether different modelling techniques can give the same answers for a given mechanism. Subsequently, by comparing the results of tight-binding, semi-empirical molecular orbital theory and reactive bond order force field calculations, we demonstrate that graphene on crystalline Ni(111) is thermodynamically stable with respect to the corresponding amorphous metal and carbon structures. Finally, we show in principle how a complementary heterogeneous nucleation step may play a key role in the transformation from amorphous carbon to graphene on the metal surface. We conclude that achieving the conditions under which this complementary crystallisation process can occur may be a promising method to gain better control over the growth processes of both graphene from flat metal surfaces and CNTs from catalyst nanoparticles.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000321675600003 Publication Date 2013-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited (up) 52 Open Access
Notes Approved Most recent IF: 7.367; 2013 IF: 6.739
Call Number UA @ lucian @ c:irua:109231 Serial 200
Permanent link to this record
 

 
Author Neyts, E.C.; van Duin, A.C.T.; Bogaerts, A.
Title Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations : effect of electric field Type A1 Journal article
Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 134 Issue 2 Pages 1256-1260
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Carbon nanotubes (CNTs) are nowadays routinely grown in a thermal CVD setup. State-of-the-art plasma-enhanced CVD (PECVD) growth, however, offers advantages over thermal CVD. A lower growth temperature and the growth of aligned freestanding single-walled CNTs (SWNTs) makes the technique very attractive. The atomic scale growth mechanisms of PECVD CNT growth, however, remain currently entirely unexplored. In this contribution, we employed molecular dynamics simulations to focus on the effect of applying an electric field on the SWNT growth process, as one of the effects coming into play in PECVD. Using sufficiently strong fields results in (a) alignment of the growing SWNTs, (b) a better ordering of the carbon network, and (c) a higher growth rate relative to thermal growth rate. We suggest that these effects are due to the small charge transfer occurring in the Ni/C system. These simulations constitute the first study of PECVD growth of SWNTs on the atomic level.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000301084300086 Publication Date 2011-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited (up) 56 Open Access
Notes Approved Most recent IF: 13.858; 2012 IF: 10.677
Call Number UA @ lucian @ c:irua:97163 Serial 1673
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C.
Title Plasma Technology: An Emerging Technology for Energy Storage Type A1 Journal article
Year 2018 Publication ACS energy letters Abbreviated Journal Acs Energy Lett
Volume 3 Issue 4 Pages 1013-1027
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma technology is gaining increasing interest for gas conversion applications, such as CO2 conversion into value-added chemicals or renewable fuels, and N2 fixation from the air, to be used for the production of small building blocks for, e.g., mineral fertilizers. Plasma is generated by electric power and can easily be switched on/off, making it, in principle, suitable for using intermittent renewable electricity. In this Perspective article, we explain why plasma might be promising for this application. We briefly present the most common types of plasma reactors with their characteristic features, illustrating why some plasma types exhibit better energy efficiency than others. We also highlight current research in the fields of CO2 conversion (including the combined conversion of CO2 with CH4, H2O, or H2) as well as N2 fixation (for NH3 or NOx synthesis). Finally, we discuss the major limitations and steps to be taken for further improvement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430369600035 Publication Date 2018-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) 56 Open Access OpenAccess
Notes Universiteit Antwerpen, TOP research project 32249 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N G.0254.14N G.0383.16N ; Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:150358 Serial 4919
Permanent link to this record
 

 
Author Yusupov, M.; Bogaerts, A.; Huygh, S.; Snoeckx, R.; van Duin, A.C.T.; Neyts, E.C.
Title Plasma-induced destruction of bacterial cell wall components : a reactive molecular dynamics simulation Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue 11 Pages 5993-5998
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nonthermal atmospheric pressure plasmas are gaining increasing attention for biomedical applications. However, very little fundamental information on the interaction mechanisms between the plasma species and biological cells is currently available. We investigate the interaction of important plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, with bacterial peptidoglycan by means of reactive molecular dynamics simulations, aiming for a better understanding of plasma disinfection. Our results show that OH, O, O3, and H2O2 can break structurally important bonds of peptidoglycan (i.e., CO, CN, or CC bonds), which consequently leads to the destruction of the bacterial cell wall. The mechanisms behind these breakups are, however, dependent on the impinging plasma species, and this also determines the effectiveness of the cell wall destruction.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000316773000056 Publication Date 2013-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited (up) 59 Open Access
Notes Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ lucian @ c:irua:107154 Serial 2636
Permanent link to this record
 

 
Author Neyts, E.C.
Title Plasma-Surface Interactions in Plasma Catalysis Type A1 Journal article
Year 2016 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P
Volume 36 Issue 36 Pages 185-212
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper the various elementary plasma—surface interaction processes occurring in plasma catalysis are critically evaluated. Specifically, plasma catalysis at atmospheric pressure is considered. The importance of the various processes is analyzed for the most common plasma catalysis sources, viz. the dielectric barrier discharge and the gliding arc. The role and importance of surface chemical reactions (including adsorption, surface-mediated association and dissociation reactions, and desorption), plasma-induced surface modification, photocatalyst activation, heating, charging, surface discharge formation and electric field enhancement are discussed in the context of plasma catalysis. Numerous examples are provided to demonstrate the importance of the various processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370720800011 Publication Date 2015-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.355 Times cited (up) 66 Open Access
Notes The author is indebted to many colleagues for fruitful discussions. In particular discussions with A. Bogaerts (University of Antwerp, Belgium), H.-H. Kim (AIST, Japan), J. C. Whitehead (University of Manchester, UK) and T. Nozaki (Tokyo Institute of Technology, Japan) are greatfully acknowledged and appreciated. Approved Most recent IF: 2.355
Call Number c:irua:130742 Serial 4004
Permanent link to this record
 

 
Author Zhang, Y.-R.; Van Laer, K.; Neyts, E.C.; Bogaerts, A.
Title Can plasma be formed in catalyst pores? A modeling investigation Type A1 Journal article
Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 185 Issue 185 Pages 56-67
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract tWe investigate microdischarge formation inside catalyst pores by a two-dimensional fluid model forvarious pore sizes in the m-range and for various applied voltages. Indeed, this is a poorly understoodphenomenon in plasma catalysis. The calculations are performed for a dielectric barrier discharge inhelium, at atmospheric pressure. The electron and ion densities, electron temperature, electric field andpotential, as well as the electron impact ionization and excitation rate and the densities of excited plasmaspecies, are examined for a better understanding of the characteristics of the plasma inside a pore. Theresults indicate that the pore size and the applied voltage are critical parameters for the formation of amicrodischarge inside a pore. At an applied voltage of 20 kV, our calculations reveal that the ionizationmainly takes place inside the pore, and the electron density shows a significant increase near and inthe pore for pore sizes larger than 200m, whereas the effect of the pore on the total ion density isevident even for 10m pores. When the pore size is fixed at 30m, the presence of the pore has nosignificant influence on the plasma properties at an applied voltage of 2 kV. Upon increasing the voltage,the ionization process is enhanced due to the strong electric field and high electron temperature, andthe ion density shows a remarkable increase near and in the pore for voltages above 10 kV. These resultsindicate that the plasma species can be formed inside pores of structured catalysts (in the m range),and they may interact with the catalyst surface, and affect the plasma catalytic process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000369452000006 Publication Date 2015-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited (up) 75 Open Access
Notes This work was supported by the Fund for Scientific ResearchFlanders (FWO) (Grant no. G.0217.14N), the National Natural Sci-ence Foundation of China (Grant no. 11405019), and the ChinaPostdoctoral Science Foundation (Grant no. 2015T80244). Theauthors are very grateful to V. Meynen for the useful discussions oncatalysts. This work was carried out in part using the Turing HPCinfrastructure at the CalcUA core facility of the Universiteit Antwer-pen, a division of the Flemish Supercomputer Center VSC, fundedby the Hercules Foundation, the Flemish Government (departmentEWI) and the University of Antwerp. Approved Most recent IF: 9.446
Call Number c:irua:129808 Serial 3984
Permanent link to this record
 

 
Author Wang, Z.; Zhang, Y.; Neyts, E.C.; Cao, X.; Zhang, X.; Jang, B.W.-L.; Liu, C.-jun
Title Catalyst preparation with plasmas : how does it work? Type A1 Journal article
Year 2018 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 8 Issue 3 Pages 2093-2110
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Catalyst preparation with plasmas is increasingly attracting interest. A plasma is a partially ionized gas, consisting of electrons, ions, molecules, radicals, photons, and excited species, which are all active species for catalyst preparation and treatment. Under the influence of plasma, nucleation and crystal growth in catalyst preparation can be very different from those in the conventional thermal approach. Some thermodynamically unfavorable reactions can easily take place with plasmas. Compounds such as sulfides, nitrides, and phosphides that are produced under harsh conditions can be synthesized by plasma under mild conditions. Plasmas can produce catalysts with smaller particle sizes and controllable structure. Plasma is also a facile tool for reduction, oxidation, doping, etching, coating, alloy formation, surface treatment, and surface cleaning in a simple and direct way. A rapid and convenient plasma template removal has thus been established for zeolite synthesis. It can operate at room temperature and allows the catalyst preparation on temperature-sensitive supporting materials. Plasma is typically effective for the production of various catalysts on metallic substrates. In addition, plasma-prepared transition-metal catalysts show enhanced low-temperature activity with improved stability. This provides a useful model catalyst for further improvement of industrial catalysts. In this review, we aim to summarize the recent advances in catalyst preparation with plasmas. The present understanding of plasma-based catalyst preparation is discussed. The challenges and future development are addressed.
Address
Corporate Author Thesis
Publisher Amer chemical soc Place of Publication Washington Editor
Language Wos 000426804100055 Publication Date 2018-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.614 Times cited (up) 81 Open Access Not_Open_Access
Notes Approved Most recent IF: 10.614
Call Number UA @ lucian @ c:irua:150880 Serial 4963
Permanent link to this record
 

 
Author Van der Paal, J.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A.
Title Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress Type A1 Journal article
Year 2016 Publication Chemical science Abbreviated Journal Chem Sci
Volume 7 Issue 7 Pages 489-498
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We performed molecular dynamics simulations to investigate the effect of lipid peroxidation products on the structural and dynamic properties of the cell membrane. Our simulations predict that the lipid order in a phospholipid bilayer, as a model system for the cell membrane, decreases upon addition of lipid peroxidation products. Eventually, when all phospholipids are oxidized, pore formation can occur. This will allow reactive species, such as reactive oxygen and nitrogen species (RONS), to enter the cell and cause oxidative damage to intracellular macromolecules, such as DNA or proteins. On the other hand, upon increasing the cholesterol fraction of lipid bilayers, the cell membrane order increases, eventually reaching a certain threshold, from which cholesterol is able to protect the membrane against pore formation. This finding is crucial for cancer treatment by plasma technology, producing a large number of RONS, as well as for other cancer treatment methods that cause an increase in the concentration of extracellular RONS. Indeed, cancer cells contain less cholesterol than their healthy counterparts. Thus, they will be more vulnerable to the consequences of lipid peroxidation, eventually enabling the penetration of RONS into the interior of the cell, giving rise to oxidative stress, inducing pro-apoptotic factors. This provides, for the first time, molecular level insight why plasma can selectively treat cancer cells, while leaving their healthy counterparts undamaged, as is indeed experimentally demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366826900058 Publication Date 2015-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited (up) 106 Open Access
Notes The authors acknowledge nancial support from the Fund for Scientic Research (FWO) Flanders, grant number G012413N. The calculations were performed in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 8.668
Call Number c:irua:131058 Serial 3986
Permanent link to this record
 

 
Author Neyts, E.C.; van Duin, A.C.T.; Bogaerts, A.
Title Changing chirality during single-walled carbon nanotube growth : a reactive molecular dynamics/Monte Carlo study Type A1 Journal article
Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 133 Issue 43 Pages 17225-17231
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The growth mechanism and chirality formation of a single-walled carbon nanotube (SWNT) on a surface-bound nickel nanocluster are investigated by hybrid reactive molecular dynamics/force-biased Monte Carlo simulations. The validity of the interatomic potential used, the so-called ReaxFF potential, for simulating catalytic SWNT growth is demonstrated. The SWNT growth process was found to be in agreement with previous studies and observed to proceed through a number of distinct steps, viz., the dissolution of carbon in the metallic particle, the surface segregation of carbon with the formation of aggregated carbon clusters on the surface, the formation of graphitic islands that grow into SWNT caps, and finally continued growth of the SWNT. Moreover, it is clearly illustrated in the present study that during the growth process, the carbon network is continuously restructured by a metal-mediated process, thereby healing many topological defects. It is also found that a cap can nucleate and disappear again, which was not observed in previous simulations. Encapsulation of the nanoparticle is observed to be prevented by the carbon network migrating as a whole over the cluster surface. Finally, for the first time, the chirality of the growing SWNT cap is observed to change from (11,0) over (9,3) to (7,7). It is demonstrated that this change in chirality is due to the metal-mediated restructuring process.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000297380900026 Publication Date 2011-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited (up) 116 Open Access
Notes Approved Most recent IF: 13.858; 2011 IF: 9.907
Call Number UA @ lucian @ c:irua:92043 Serial 309
Permanent link to this record
 

 
Author Neyts, E.C.; Shibuta, Y.; van Duin, A.C.T.; Bogaerts, A.
Title Catalyzed growth of carbon nanotube with definable chirality by hybrid molecular dynamics-force biased Monte Carlo simulations Type A1 Journal article
Year 2010 Publication ACS nano Abbreviated Journal Acs Nano
Volume 4 Issue 11 Pages 6665-6672
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Metal-catalyzed growth mechanisms of carbon nanotubes (CNTs) were studied by hybrid molecular dynamics−Monte Carlo simulations using a recently developed ReaxFF reactive force field. Using this novel approach, including relaxation effects, a CNT with definable chirality is obtained, and a step-by-step atomistic description of the nucleation process is presented. Both root and tip growth mechanisms are observed. The importance of the relaxation of the network is highlighted by the observed healing of defects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000284438000043 Publication Date 2010-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited (up) 129 Open Access
Notes Approved Most recent IF: 13.942; 2010 IF: 9.865
Call Number UA @ lucian @ c:irua:84759 Serial 294
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
Title Understanding plasma catalysis through modelling and simulation : a review Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 224010
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis holds great promise for environmental applications, provided that the process viability can be maximized in terms of energy efficiency and product selectivity. This requires a fundamental understanding of the various processes taking place and especially the mutual interactions between plasma and catalyst. In this review, we therefore first examine the various effects of the plasma on the catalyst and of the catalyst on the plasma that have been described in the literature. Most of these studies are purely experimental. The urgently needed fundamental understanding of the mechanisms underpinning plasma catalysis, however, may also be obtained through modelling and simulation. Therefore, we also provide here an overview of the modelling efforts that have been developed already, on both the atomistic and the macroscale, and we identify the data that can be obtained with these models to illustrate how modelling and simulation may contribute to this field. Last but not least, we also identify future modelling opportunities to obtain a more complete understanding of the various underlying plasma catalytic effects, which is needed to provide a comprehensive picture of plasma catalysis.
Address
Corporate Author Thesis
Publisher Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000336207900011 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited (up) 130 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116920 Serial 3803
Permanent link to this record