|   | 
Details
   web
Records
Author Heidari Mezerji, H.
Title Quantitative electron tomography of nanoparticles Type Doctoral thesis
Year 2012 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:100629 Serial 2755
Permanent link to this record
 

 
Author Heidari, H.; van den Broek, W.; Bals, S.
Title Quantitative electron tomography : the effect of the three-dimensional point spread function Type A1 Journal article
Year 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 135 Issue Pages 1-5
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The intensity levels in a three-dimensional (3D) reconstruction, obtained by electron tomography, can be influenced by several experimental imperfections. Such artifacts will hamper a quantitative interpretation of the results. In this paper, we will correct for artificial intensity variations by determining the 3D point spread function (PSF) of a tomographic reconstruction based on high angle annular dark field scanning transmission electron microscopy. The large tails of the PSF cause an underestimation of the intensity of smaller particles, which in turn hampers an accurate radius estimate. Here, the error introduced by the PSF is quantified and corrected a posteriori.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000326941500001 Publication Date 2013-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 6 Open Access
Notes Esteem2; Sunflower; esteem2_jra4 Approved Most recent IF: 2.843; 2013 IF: 2.745
Call Number UA @ lucian @ c:irua:111397 Serial 2756
Permanent link to this record
 

 
Author Salje, E.K.H.; Zhang, H.; Schryvers, D.; Bartova, B.
Title Quantitative Landau potentials for the martensitic transformation in Ni-Al Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 90 Issue 22 Pages 221903,1-3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000246909900020 Publication Date 2007-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 9 Open Access
Notes Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:64777 Serial 2757
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Verbeeck, J.
Title Quantitative measurement of orbital angular momentum in electron microscopy Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue 5 Pages 053818
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron vortex beams have been predicted to enable atomic scale magnetic information measurement, via transfer of orbital angular momentum. Research so far has focused on developing production techniques and applications of these beams. However, methods to measure the outgoing orbital angular momentum distribution are also a crucial requirement towards this goal. Here, we use a method to obtain the orbital angular momentum decomposition of an electron beam, using a multipinhole interferometer. We demonstrate both its ability to accurately measure orbital angular momentum distribution, and its experimental limitations when used in a transmission electron microscope.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000335826300012 Publication Date 2014-05-13
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 23 Open Access
Notes 7th Framework Program (FP7); ERC Starting Grant No. 278510- VORTEX 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). 7th Framework Program (FP7), ERC Grant No. 246791- COUNTATOMS. SP – 053818-1; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:117093UA @ admin @ c:irua:117093 Serial 2758
Permanent link to this record
 

 
Author Martínez Alanis, G.T.
Title Quantitative model-based high angle annular dark field scanning transmission electron microscopy Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT); Engineering Management (ENM)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:122528 Serial 2759
Permanent link to this record
 

 
Author Martinez, G.T.; Jones, L.; de Backer, A.; Béché, A.; Verbeeck, J.; Van Aert, S.; Nellist, P.D.
Title Quantitative STEM normalisation : the importance of the electron flux Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 159 Issue 159 Pages 46-58
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Annular dark-field (ADF) scanning transmission electron microscopy (STEM) has become widely used in quantitative studies based on the opportunity to directly compare experimental and simulated images. This comparison merely requires the experimental data to be normalised and expressed in units of fractional beam-current. However, inhomogeneities in the response of electron detectors can complicate this normalisation. The quantification procedure becomes both experiment and instrument specific, requiring new simulations for the particular response of each instrument's detector, and for every camera-length used. This not only impedes the comparison between different instruments and research groups, but can also be computationally very time consuming. Furthermore, not all image simulation methods allow for the inclusion of an inhomogeneous detector response. In this work, we propose an alternative method for normalising experimental data in order to compare these with simulations that consider a homogeneous detector response. To achieve this, we determine the electron flux distribution reaching the detector by means of a camera-length series or a so-called atomic column cross-section averaged convergent beam electron diffraction (XSACBED) pattern. The result is then used to determine the relative weighting of the detector response. Here we show that the results obtained by this new electron flux weighted (EFW) method are comparable to the currently used method, while considerably simplifying the needed simulation libraries. The proposed method also allows one to obtain a metric that describes the quality of the detector response in comparison with the ideal detector response.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000366220000006 Publication Date 2015-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 27 Open Access
Notes 246791 Countatoms; 278510 Vortex; 312483 Esteem2; Fwo G036815; G036915; G037413; G004413; esteem2ta ECASJO; Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:127293 c:irua:127293UA @ admin @ c:irua:127293 Serial 2762
Permanent link to this record
 

 
Author Altantzis, T.; Goris, B.; Sánchez-Iglesias, A.; Grzelczak, M.; Liz-Marzán, L.M.; Bals, S.
Title Quantitative structure determination of large three-dimensional nanoparticle assemblies Type A1 Journal article
Year 2013 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 30 Issue 1 Pages 84-88
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Thumbnail image of graphical abstract To investigate nanoassemblies in three dimensions, electron tomography is an important tool. For large nanoassemblies, it is not straightforward to obtain quantitative results in three dimensions. An optimized acquisition technique, incoherent bright field scanning transmission electron microscopy, is combined with an advanced 3D reconstruction algorithm. The approach is applied to quantitatively analyze large nanoassemblies in three dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000310806000008 Publication Date 2012-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 23 Open Access
Notes Goa; Fwo; 267867 Plasmaquo; 262348 Esmi Approved Most recent IF: 4.474; 2013 IF: 0.537
Call Number UA @ lucian @ c:irua:101776 Serial 2763
Permanent link to this record
 

 
Author Tang, Y.; Chen, Z.; Borbely, A.; Ji, G.; Zhong, S.Y.; Schryvers, D.; Ji, V.; Wang, H.W.
Title Quantitative study of particle size distribution in an in-situ grown Al-TiB2 composite by synchrotron X-ray diffraction and electron microscopy Type A1 Journal article
Year 2015 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 102 Issue 102 Pages 131-136
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Synchrotron X-ray diffraction and transmission electron microscopy (TEM) were applied to quantitatively characterize the average particle size and size distribution of free-standing TiB2 particles and TiB2 particles in an insitu grown Al–TiB2 composite. The detailed evaluations were carried out by X-ray line profile analysis using the restrictedmoment method and multiplewhole profile fitting procedure (MWP). Both numericalmethods indicate that the formed TiB2 particles are well crystallized and free of crystal defects. The average particle size determined from different Bragg reflections by the restricted moment method ranges between 25 and 55 nm, where the smallest particle size is determined using the 110 reflection suggesting the highest lateral-growth velocity of (110) facets. TheMWP method has shown that the in-situ grown TiB2 particles have a very low dislocation density (~1011 m−2) and their size distribution can be described by a log-normal distribution. Good agreement was found between the results obtained from the restricted moment and MWP methods, which was further confirmed by TEM.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000355335200017 Publication Date 2015-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 41 Open Access
Notes This work is financially supported by the National Natural Science Foundation of China (Grant No. 51201099 and No. 51301108) and the China Postdoctoral Science Foundation (Grant No. 2013T60443 and No. 2012M520891). The authors are grateful for the project 2013BB03 supported by NPL, CAEP. Many thanks are also due to the faculty of BL14B beamline at the Shanghai Synchrotron Radiation Facility for their help on synchrotron experiments. Approved Most recent IF: 2.714; 2015 IF: 1.845
Call Number c:irua:126443 Serial 2764
Permanent link to this record
 

 
Author Cao, S.; Nishida, M.; Schryvers, D.
Title Quantitative three-dimensional analysis of Ni4Ti3 precipitate morphology and distribution in polycrystalline Ni-Ti Type A1 Journal article
Year 2011 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 59 Issue 4 Pages 1780-1789
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The three-dimensional size, morphology and distribution of Ni4Ti3 precipitates in a Ni50.8Ti49.2 polycrystalline shape memory alloy with a heterogeneous microstructure have been investigated using a focused ion beam/scanning electron microscopy slice-and-view procedure. The mean volume, central plane diameter, thickness, aspect ratio and sphericity of the precipitates in the grain interior as well as near to the grain boundary were measured and/or calculated. The morphology of the precipitates was quantified by determining the equivalent ellipsoids with the same moments of inertia and classified according to the Zingg scheme. Also, the pair distribution functions describing the three-dimensional distributions were obtained from the coordinates of the precipitate mass centres. Based on this new data it is suggested that the existence of the heterogeneous microstructure could be due to a very small concentration gradient in the grains of the homogenized material and that the resulting multistage martensitic transformation originates in strain effects related to the size of the precipitates and scale differences of the available B2 matrix in between the precipitates.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000287265100045 Publication Date 2010-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 34 Open Access
Notes Fwo Approved Most recent IF: 5.301; 2011 IF: 3.755
Call Number UA @ lucian @ c:irua:85533 Serial 2766
Permanent link to this record
 

 
Author Bals, S.; Batenburg, K.J.; Liang, D.; Lebedev, O.; Van Tendeloo, G.; Aerts, A.; Martens, J.A.; Kirschhock, C.E.
Title Quantitative three-dimensional modeling of zeotile through discrete electron tomography Type A1 Journal article
Year 2009 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 131 Issue 13 Pages 4769-4773
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Discrete electron tomography is a new approach for three-dimensional reconstruction of nanoscale objects. The technique exploits prior knowledge of the object to be reconstructed, which results in an improvement of the quality of the reconstructions. Through the combination of conventional transmission electron microscopy and discrete electron tomography with a model-based approach, quantitative structure determination becomes possible. In the present work, this approach is used to unravel the building scheme of Zeotile-4, a silica material with two levels of structural order. The layer sequence of slab-shaped building units could be identified. Successive layers were found to be related by a rotation of 120°, resulting in a hexagonal space group. The Zeotile-4 material is a demonstration of the concept of successive structuring of silica at two levels. At the first level, the colloid chemical properties of Silicalite-1 precursors are exploited to create building units with a slablike geometry. At the second level, the slablike units are tiled using a triblock copolymer to serve as a mesoscale structuring agent.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000264806300050 Publication Date 2009-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 58 Open Access
Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 13.858; 2009 IF: 8.580
Call Number UA @ lucian @ c:irua:76393 Serial 2767
Permanent link to this record
 

 
Author Bals, S.; Batenburg, J.; Verbeeck, J.; Sijbers, J.; Van Tendeloo, G.
Title Quantitative three-dimensional reconstruction of catalyst particles for bamboo-like carbon nanotubes Type A1 Journal article
Year 2007 Publication Nano letters Abbreviated Journal Nano Lett
Volume 7 Issue 12 Pages 3669-3674
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The three-dimensional (3D) structure and chemical composition of bamboo-like carbon nanotubes including the catalyst particles that are. used during their growth are studied by discrete electron tomography in combination with energy-filtered transmission electron microscopy. It is found that cavities are present in the catalyst particles. Furthermore, only a small percentage of the catalyst particles consist of pure Cu, since a large volume fraction of the particles is oxidized to CU(2)0. These volume fractions are determined quantitatively from 3D reconstructions obtained by discrete tomography.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000251581600022 Publication Date 2007-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 78 Open Access
Notes Fwo; Esteem Approved Most recent IF: 12.712; 2007 IF: 9.627
Call Number UA @ lucian @ c:irua:66762UA @ admin @ c:irua:66762 Serial 2768
Permanent link to this record
 

 
Author Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Kuznetsov, A.S.; Chibotaru, L.F.; Baranov, A.N.; Van Tendeloo, G.; Moshchalkov, V.V.
Title Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host Type A1 Journal article
Year 2011 Publication Optics express Abbreviated Journal Opt Express
Volume 19 Issue 17 Pages 15955-15964
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Li-Yb co-doped nano-crystalline ZnO has been synthesized by a method of thermal growth from the salt mixtures. X-ray diffraction, transmission electron microscopy, atomic absorption spectroscopy and optical spectroscopy confirm the doping and indicate that the dopants may form Li-Li and Yb3+-Li based nanoclusters. When pumped into the conduction and exciton absorption bands of ZnO between 250 to 425 nm, broad emission bands of about 100 nm half-height-width are excited around 770 and 1000 nm, due to Li and Yb dopants, respectively. These emission bands are activated by energy transfer from the ZnO host mostly by quantum cutting processes, which generate pairs of quanta in Li (770 nm) and Yb (1000 nm) emission bands, respectively, out of one quantum absorbed by the ZnO host. These quantum cutting phenomena have great potential for application in the down-conversion layers coupled to the Si solar cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000293894900033 Publication Date 2011-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 19 Open Access
Notes FWO; Methusalem Approved Most recent IF: 3.307; 2011 IF: 3.587
Call Number UA @ lucian @ c:irua:92428 Serial 2776
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Quantum-size effects on T-c in superconducting nanofilms Type A1 Journal article
Year 2006 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 76 Issue 3 Pages 498-504
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000241434300022 Publication Date 2006-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 31 Open Access
Notes Approved Most recent IF: 1.957; 2006 IF: 2.229
Call Number UA @ lucian @ c:irua:61463 Serial 2788
Permanent link to this record
 

 
Author Balaban, S.N.; Pokatilov, E.P.; Fomin, V.M.; Gladilin, V.N.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; van Rossum, M.; Sorée, B.
Title Quantum transport in a cylindrical sub-0.1 μm silicon-based MOSFET Type A1 Journal article
Year 2002 Publication Solid-State Electronics Abbreviated Journal Solid State Electron
Volume 46 Issue Pages 435-444
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000174445000020 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.58 Times cited 16 Open Access
Notes Approved Most recent IF: 1.58; 2002 IF: 0.913
Call Number UA @ lucian @ c:irua:40880 Serial 2791
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Sorée, B.
Title Quantum transport in a nanosize double-gate metal-oxide-semiconductor field-effect transistor Type A1 Journal article
Year 2004 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 96 Issue Pages 2305-2310
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000223055100081 Publication Date 2004-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 14 Open Access
Notes Approved Most recent IF: 2.068; 2004 IF: 2.255
Call Number UA @ lucian @ c:irua:49454 Serial 2792
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Sorée, B.
Title Quantum transport in a nanosize silicon-on-insulator metal-oxide-semiconductor field effect transistor Type A1 Journal article
Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 93 Issue Pages 1230-1240
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000180134200069 Publication Date 2003-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 16 Open Access
Notes Approved Most recent IF: 2.068; 2003 IF: 2.171
Call Number UA @ lucian @ c:irua:40874 Serial 2793
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Sorée, B.
Title Quantum transport in an ultra-thin SOI MOSFET: influence of the channel thickness on the I-V characteristics Type A1 Journal article
Year 2008 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 147 Issue 1/2 Pages 31-35
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000257220400009 Publication Date 2008-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 8 Open Access
Notes Approved Most recent IF: 1.554; 2008 IF: 1.557
Call Number UA @ lucian @ c:irua:69748 Serial 2794
Permanent link to this record
 

 
Author Dixit, H.; Lamoen, D.; Partoens, B.
Title Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions Type A1 Journal article
Year 2013 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 25 Issue 3 Pages 035501-35505
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000313100500010 Publication Date 2012-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 7 Open Access
Notes Fwo Approved Most recent IF: 2.649; 2013 IF: 2.223
Call Number UA @ lucian @ c:irua:105296 Serial 2801
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B.
Title The quasiparticle band structure of zincblende and rocksalt ZnO Type A1 Journal article
Year 2010 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 22 Issue 12 Pages 125505,1-125505,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the pd hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong pd hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn20 + pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ~ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong pd hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000275496600010 Publication Date 2010-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 53 Open Access
Notes Iwt; Fwo; Bof-Nio Approved Most recent IF: 2.649; 2010 IF: 2.332
Call Number UA @ lucian @ c:irua:81531 Serial 2802
Permanent link to this record
 

 
Author Saniz, R.; Dixit, H.; Lamoen, D.; Partoens, B.
Title Quasiparticle energies and uniaxial pressure effects on the properties of SnO2 Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 97 Issue Pages 261901-261901,3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We calculate the quasiparticle energy spectrum of SnO2 within the GW approximation, properly taking into account the contribution of core levels to the energy corrections. The calculated fundamental gap is of 3.85 eV. We propose that the difference with respect to the experimental optical gap (3.6 eV) is due to excitonic effects in the latter. We further consider the effect applied on uniaxial pressure along the c-axis. Compared to GW, the effect of pressure on the quasiparticle energies and band gap is underestimated by the local-density approximation. The quasiparticle effective masses, however, appear to be well described by the latter.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000285768100015 Publication Date 2010-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 23 Open Access
Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:85759 Serial 2803
Permanent link to this record
 

 
Author Schryvers, D.; Potapov, P.L.
Title R-phase structure refinement using electron diffraction data Type A1 Journal article
Year 2002 Publication Materials transactions Abbreviated Journal Mater Trans
Volume 43 Issue 5 Pages 774-779
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000176212100002 Publication Date 2005-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1345-9678; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.713 Times cited 25 Open Access
Notes Approved Most recent IF: 0.713; 2002 IF: 0.841
Call Number UA @ lucian @ c:irua:48772 Serial 2805
Permanent link to this record
 

 
Author Wang, X.; Li, K.; Schryvers, D.; Verlinden, B.; Van Humbeeck, J.
Title R-phase transition and related mechanical properties controlled by low-temperature aging treatment in a Ti50.8 at.% Ni thin wire Type A1 Journal article
Year 2014 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 72-73 Issue Pages 21-24
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A cold-drawn Ti50.8 at.% Ni wire was annealed at 600 °C for 30 min, followed by aging at 250 °C for different times. A microstructure with small grains and nanoscaled precipitates was obtained. The thermally induced martensite transformation is suppressed in the samples aged for 4 h or longer, leaving a one-stage R-phase transition between −150 and +150 °C. The transformation behavior, work output and recovery stress associated with the R-phase transition are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000329148500006 Publication Date 2013-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 27 Open Access
Notes Fwo Approved Most recent IF: 3.747; 2014 IF: 3.224
Call Number UA @ lucian @ c:irua:111847 Serial 2806
Permanent link to this record
 

 
Author De Meulenaere, P.; Van Tendeloo, G.; van Landuyt, J.; Mommaert, C.; Severne, G.
Title Radiation defects and ordered radiation patterns in Ni and Ni4Mo: a study by electron microscopy Type A1 Journal article
Year 1993 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal
Volume 67 Issue 3 Pages 745-756
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1993 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1993; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:6783 Serial 2808
Permanent link to this record
 

 
Author Smeulders, G.; Meynen, V.; van Baelen, G.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Maes, B.U.W.; Cool, P.
Title Rapid microwave-assisted synthesis of benzene bridged periodic mesoporous organosilicas Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue 19 Pages 3042-3048
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)
Abstract Following extended use in organic chemistry, microwave-assisted synthesis is gaining more importance in the field of inorganic chemistry, especially for the synthesis of nanoporous materials. It offers some major advantages such as a significant shortening of the synthesis time and an improved promotion of nucleation. In the research here reported, microwave technology is applied for the synthesis of benzene bridged PMOs (periodic mesoporous organosilicas). PMOs are one of the latest innovations in the field of hybrid ordered mesoporous materials and have attracted much attention because of their feasibility in electronics, catalysis, separation and sorption applications. The different synthesis steps (stirring, aging and extraction) of the classical PMO synthesis are replaced by microwave-assisted synthesis steps. The characteristics of the as-synthesized materials are evaluated by X-ray diffraction, N2-sorption, thermogravimetric analysis, scanning- and transmission electron microscopy. The microwave-assisted synthesis drastically reduces the synthesis time by more than 40 hours without any loss in structural properties, such as mesoscale and molecular ordering. The porosity of the PMO materials has even been improved by more than 25%. Moreover, the number of handling/transfer steps and amounts of chemicals and waste are drastically reduced. The study also shows that there is a clear time (1 to 3 hours) and temperature frame (373 K to 403 K) wherein synthesis of benzene bridged PMO is optimal. In conclusion, the microwave-assisted synthesis pathway allows an improved material to be obtained in a more economical way i.e. a much shorter time with fewer chemicals and less waste.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000265919300024 Publication Date 2009-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 20 Open Access
Notes Fwo; Iwt Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:76844 Serial 2810
Permanent link to this record
 

 
Author Armelao, L.; Barreca, D.; Bottaro, G.; Gasparotto, A.; Maccato, C.; Tondello, E.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.; Štangar, U.L.
Title Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach Type A1 Journal article
Year 2009 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 10 Issue 18 Pages 3249-3259
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The present work is devoted to the preparation of Ag/TiO2 nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the systems chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 °C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000273410600015 Publication Date 2009-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 56 Open Access
Notes Esteem 026019 Approved Most recent IF: 3.075; 2009 IF: 3.453
Call Number UA @ lucian @ c:irua:80561 Serial 2811
Permanent link to this record
 

 
Author Neira, I.S.; Kolen'ko, Y.V.; Lebedev, O.I.; Van Tendeloo, G.; Gupta, H.S.; Matsushita, N.; Yoshimura, M.; Guitian, F.
Title Rational synthesis of a nanocrystalline calcium phosphate cement exhibiting rapid conversion to hydroxyapatite Type A1 Journal article
Year 2009 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater
Volume 29 Issue 7 Pages 2124-2132
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The rational synthesis, comprehensive characterization, and mechanical and micromechanical properties of a calcium phosphate cement are presented. Hydroxyapatite cement biomaterial was synthesized from reactive sub-micrometer-sized dicalcium phosphate dihydrate and tetracalcium phosphate via a dissolution-precipitation reaction using water as the liquid phase. As a result nanostructured, Ca-deficient and carbonated B-type hydroxyapatite is formed. The cement shows good processibility, sets in 22 ± 2 min and entirely transforms to the end product after 6 h of setting reaction, one of the highest conversion rates among previously reported for calcium phosphate cements based on dicalcium and tetracalcium phosphates. The combination of all elucidated physical-chemical traits leads to an essential bioactivity and biocompatibility of the cement, as revealed by in vitro acellular simulated body fluid and cell culture studies. The compressive strength of the produced cement biomaterial was established to be 25 ± 3 MPa. Furthermore, nanoindentation tests were performed directly on the cement to probe its local elasticity and plasticity at sub-micrometer/micrometer level. The measured elastic modulus and hardness were established to be Es = 23 ± 3.5 and H = 0.7 ± 0.2 GPa, respectively. These values are in close agreement with those reported in literature for trabecular and cortical bones, reflecting good elastic and plastic coherence between synthesized cement biomaterial and human bones.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000270159200008 Publication Date 2009-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0928-4931; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.164 Times cited 18 Open Access
Notes Esteem 026019 Approved Most recent IF: 4.164; 2009 IF: NA
Call Number UA @ lucian @ c:irua:79312 Serial 2812
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D.
Title Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue 94 Pages 52140-52146
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200-400 degrees C) is reported. The use of the fluorinated Fe(hfa)(2)TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine) molecular precursor in Ar/O-2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in gamma-Fe2O3 at 200 degrees C and alpha-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 degrees C the formation of highly oriented alpha-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344389000041 Publication Date 2014-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 4 Open Access
Notes Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:121239 Serial 2813
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D.
Title Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
Year 2014 Publication Rsc Advances Abbreviated Journal Rsc Adv
Volume Issue 94 Pages 52140-52146
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200400 °C) is reported. The use of the fluorinated Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) molecular precursor in Ar/O2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in γ-Fe2O3 at 200 °C and α-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 °C the formation of highly oriented α-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344389000041 Publication Date 2014-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 4 Open Access
Notes Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:119529 Serial 2814
Permanent link to this record
 

 
Author Norén, L.; Van Tendeloo, G.; Withers, R.L.
Title The real (incommensurate interface modulated) structure of Ni6\pm xSe5 Type A1 Journal article
Year 2001 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 162 Issue 1 Pages 122-127
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000172586400016 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 4 Open Access
Notes Approved Most recent IF: 2.299; 2001 IF: 1.614
Call Number UA @ lucian @ c:irua:54709 Serial 2826
Permanent link to this record
 

 
Author Rodewald, M.; Rodewald, K.; De Meulenaere, P.; Van Tendeloo, G.
Title Real-space characterization of short-range order in Cu-Pd alloys Type A1 Journal article
Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 55 Issue 21 Pages 14173-14181
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Cu-Pd alloys containing 10, 20, 30, 40, and 50 at. % Pd and quenched from a temperature just above the ordering temperature T-c are investigated by electron diffraction and high-resolution electron microscopy (HREM). The results show diffuse electron diffraction intensities at {100} and {110} positions for the alloy with 10 at. % Pd, but with a characteristic twofold and fourfold splitting for the alloys with more than 10 at. % Pd. High-resolution images show the formation of microdomains best developed between 20 and 30 at. % Pd. A real-space characterization has been performed by applying videographic real-structure simulations revealing that the splitting of the diffuse maxima depends on the average distance between microdomains of Cu3Au type in antiphase with each other. By applying image processing routines on the HREM images, correlation vectors are identified which correspond to correlations between microdomains.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1997XE37100036 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes Approved Most recent IF: 3.836; 1997 IF: NA
Call Number UA @ lucian @ c:irua:21439 Serial 2828
Permanent link to this record