|   | 
Details
   web
Records
Author Vandekerckhove, T.G.L.; Kobayashi, K.; Janda, J.; Van Nevel, S.; Vlaeminck, S.E.
Title Sulfur-based denitrification treating regeneration water from ion exchange at high performance and low cost Type A1 Journal article
Year 2018 Publication Bioresource technology Abbreviated Journal
Volume 257 Issue Pages 266-273
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Autotrophic denitrification with sulfur is an underexplored alternative to heterotrophic denitrification to remove nitrate from wastewater poor in organics. The application on ion exchange regeneration water (19.432.1 mS cm−1) is novel. Three fixed bed reactors were tested at 15 °C for >4 months, inoculated with activated sludge from sewage treatment. All were fast in start-up (<10 days) with high performance (94 ± 2% removal efficiency). pH control with NaOH rendered higher nitrate removal rates than limestone addition to the bed (211 ± 13 vs. 102 ± 13 mg N L−1 d−1), related to higher pH (6.64 vs. 6.24) and sulfur surface area. Bacterial communities were strongly enriched in Sulfurimonas (6367%) and Thiobacillus (2426%). In an economic comparison, sulfur-based denitrification (5.3 kg−1 N) was 15% cheaper than methanol-based denitrification (6.22 kg−1 N) and both treatments were opex dominated (85.9 vs. 86.5%). Overall, the technological and economic feasibility should boost further implementation of sulfurotrophic denitrification.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430401100033 Publication Date 2018-02-13
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:149975 Serial 8619
Permanent link to this record
 

 
Author Vlaeminck, S.E.; Kobayashi, K.; Jandra, J.; Van Nevel, S.; Vandekerckhove, T.G.L.
Title Sulphidotrophic denitrification treating regeneration water from ion exchange at high performance and low opex Type P3 Proceeding
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 3 p. T2 - IWA 2017 Conference on Sustainable Waste
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151108 Serial 8620
Permanent link to this record
 

 
Author Zhang, Q.; Vlaeminck, S.E.; DeBarbadillo, C.; Su, C.; Al-Omari, A.; Wett, B.; Pümpel, T.; Shaw, A.; Chandran, K.; Murthy, S.; De Clippeleir, H.
Title Supernatant organics from anaerobic digestion after thermal hydrolysis cause direct and/or diffusional activity loss for nitritation and anammox Type A1 Journal article
Year 2018 Publication Water research Abbreviated Journal
Volume 143 Issue Pages 270-281
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Treatment of sewage sludge with a thermal hydrolysis process (THP) followed by anaerobic digestion (AD) enables to boost biogas production and minimize residual sludge volumes. However, the reject water can cause inhibition to aerobic and anoxic ammonium-oxidizing bacteria (AerAOB & AnAOB), the two key microbial groups involved in the deammonification process. Firstly, a detailed investigation elucidated the impact of different organic fractions present in THP-AD return liquor on AerAOB and AnAOB activity. For AnAOB, soluble compounds linked to THP conditions and AD performance caused the main inhibition. Direct inhibition by dissolved organics was also observed for AerAOB, but could be overcome by treating the filtrate with extended aerobic or anaerobic incubation or with activated carbon. AerAOB additionally suffered from particulate and colloidal organics limiting the diffusion of substrates. This was resolved by improving the dewatering process through an optimized flocculant polymer dose and/or addition of coagulant polymer to better capture the large colloidal fraction, especially in case of unstable AD performance. Secondly, a new inhibition model for AerAOB included diffusion-limiting compounds based on the porter-equation, and achieved the best fit with the experimental data, highlighting that AerAOB were highly sensitive to large colloids. Overall, this paper for the first time provides separate identification of organic fractions within THP-AD filtrate causing differential types of inhibition. Moreover, it highlights the combined effect of the performance of THP, AD and dewatering on the downstream autotrophic nitrogen removal kinetics. (C) 2018 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000443664000027 Publication Date 2018-06-18
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152911 Serial 8623
Permanent link to this record
 

 
Author Seuntjens, D.; Van Tendeloo, M.; Chatzigiannidou, I.; Carvajal-Arroyo, J.M.; Vandendriessche, S.; Vlaeminck, S.E.; Boon, N.
Title Synergistic exposure of return-sludge to anaerobic starvation, sulfide and free ammonia to suppress nitrite oxidizing bacteria Type A1 Journal article
Year 2018 Publication Environmental science and technology Abbreviated Journal
Volume 52 Issue 15 Pages 8725-8732
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A key step toward energy-positive sewage treatment is the development of mainstream partial nitritation/anammox, a nitrogen removal technology where aerobic ammonium-oxidizing bacteria (AerAOB) are desired, while nitrite-oxidizing bacteria (NOB) are not. To suppress NOB, a novel return-sludge treatment was investigated. Single and combined effects of sulfide (0-600 mg S L-1), anaerobic starvation (0-8 days), and a free ammonia (FA) shock (30 mg FA-N L-1 for 1 h) were tested for immediate effects and long-term recovery. AerAOB and NOB were inhibited immediately and proportionally by sulfide, with AerAOB better coping with the inhibition, while the short FA shock and anaerobic starvation had minor effects. Combinatory effects inhibited AerAOB and NOB more strongly. A combined treatment of sulfide (150 mg S L-1), 2 days of anaerobic starvation, and FA shock (30 mg FA-N L-1) inhibited AerAOB 14% more strongly compared to sulfide addition alone, while the AerAOB/NOB activity ratio remained constant. Despite no positive change being observed in the immediate-stress response, AerAOB recovered much faster than NOB, with a nitrite accumulation ratio (effluent nitrite on nitrite + nitrate) peak of 50% after 12 days. Studying long-term recovery is therefore crucial for design of an optimal NOB-suppression treatment, while applying combined stressors regularly may lead toward practical implementation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441477600073 Publication Date 2018-05-22
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152909 Serial 8635
Permanent link to this record
 

 
Author Muys, M.; Phukan, R.; Brader, G.; Samad, A.; Moretti, M.; Haiden, B.; Pluchon, S.; Roest, K.; Vlaeminck, S.E.; Spiller, M.
Title A systematic comparison of commercially produced struvite : quantities, qualities and soil-maize phosphorus availability Type A1 Journal article
Year 2021 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ
Volume 756 Issue Pages 143726-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Engineering Management (ENM)
Abstract Production of struvite (MgNH4PO4·6H2O) from waste streams is increasingly implemented to recover phosphorus (P), which is listed as a critical raw material in the European Union (EU). To facilitate EU-wide trade of P-containing secondary raw materials such as struvite, the EU issued a revised fertilizer regulation in 2019. A comprehensive overview of the supply of struvite and its quality is presently missing. This study aimed: i) to determine the current EU struvite production volumes, ii) to evaluate all legislated physicochemical characteristics and pathogen content of European struvite against newly set regulatory limits, and iii) to compare not-regulated struvite characteristics. It is estimated that in 2020, between 990 and 1250 ton P are recovered as struvite in the EU. Struvite from 24 European production plants, accounting for 30% of the 80 struvite installations worldwide was sampled. Three samples failed the physicochemical legal limits; one had a P content of <7% and three exceeded the organic carbon content of 3% dry weight (DW). Mineralogical analysis revealed that six samples had a struvite content of 80–90% DW, and 13 samples a content of >90% DW. All samples showed a heavy metal content below the legal limits. Microbiological analyses indicated that struvite may exceed certain legal limits. Differences in morphology and particle size distribution were observed for struvite sourced from digestate (rod shaped; transparent; 82 mass% < 1 mm), dewatering liquor (spherical; opaque; 65 mass% 1–2 mm) and effluent from upflow anaerobic sludge blanket reactor processing potato wastewater (spherical; opaque; 51 mass% < 1 mm and 34 mass% > 2 mm). A uniform soil-plant P-availability pattern of 3.5–6.5 mg P/L soil/d over a 28 days sampling period was observed. No differences for plant biomass yield were observed. In conclusion, the results highlight the suitability of most struvite to enter the EU fertilizer market.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000603487500029 Publication Date 2020-11-24
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.9
Call Number UA @ admin @ c:irua:173944 Serial 8638
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; De Mulder, C.; Boon, N.; Vlaeminck, S.E.
Title Temperature impact on sludge yield, settleability and kinetics of three heterotrophic conversions corroborates the prospect of thermophilic biological nitrogen removal Type A1 Journal article
Year 2018 Publication Bioresource technology Abbreviated Journal
Volume 269 Issue Pages 104-112
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In specific municipal and industrial cases, thermophilic wastewater treatment (>45 °C) might bring cost advantages over commonly applied mesophilic processes (1035 °C). To develop such a novel process, one needs sound parameters on kinetics, sludge yield and sludge settleability of three heterotrophic conversions: aerobic carbon removal, denitritation and denitrification. These features were evaluated in acetate-fed sequencing batch reactors (30, 40, 50 and 60 °C). Higher temperatures were accompanied by lower sludge production and maximum specific removal rates, resulting mainly from lower maximum growth rates. Thermophilic denitritation was demonstrated for the first time, with lower sludge production (1826%), higher nitrogen removal rates (2492%) and lower carbon requirement (40%) compared to denitrification. Acceptable settling of thermophilic aerobic (60 °C) and anoxic biomass (50 and 60 °C) was obtained. Overall, this parameter set may catalyze the establishment of thermophilic nitrogen removal, once nitritation and nitratation are characterized. Furthermore, waters with low COD/N ratio might benefit from thermophilic nitritation/denitritation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000445897400014 Publication Date 2018-08-04
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152946 Serial 8646
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Bodé, S.; De Mulder, C.; Vlaeminck, S.E.; Boon, N.
Title 13C incorporation as a tool to estimate biomass yields in thermophilic and mesophilic nitrifying communities Type A1 Journal article
Year 2019 Publication Frontiers in microbiology Abbreviated Journal
Volume 10 Issue Pages 192
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Current methods determining biomass yield require sophisticated sensors for in situ measurements or multiple steady-state reactor runs. Determining the yield of specific groups of organisms in mixed cultures in a fast and easy manner remains challenging. This study describes a fast method to estimate the maximum biomass yield (Ymax), based on 13C incorporation during activity measurements. It was applied to mixed cultures containing ammonia oxidizing bacteria (AOB) or archaea (AOA) and nitrite oxidizing bacteria (NOB), grown under mesophilic (1528∘C) and thermophilic (50∘C) conditions. Using this method, no distinction could be made between AOB and AOA co-existing in a community. A slight overestimation of the nitrifier biomass due to 13C redirection via SMP to heterotrophs could occur, meaning that this method determines the carbon fixation activity of the autotrophic microorganisms rather than the actual nitrifier biomass yield. Thermophilic AOA yields exceeded mesophilic AOB yields (0.22 vs. 0.060.11 g VSS g-1 N), possibly linked to a more efficient pathway for CO2 incorporation. NOB thermophilically produced less biomass (0.0250.028 vs. 0.0480.051 g VSS g-1 N), conceivably attributed to higher maintenance requirement, rendering less energy available for biomass synthesis. Interestingly, thermophilic nitrification yield was higher than its mesophilic counterpart, due to the dominance of AOA over AOB at higher temperatures. An instant temperature increase impacted the mesophilic AOB yield, corroborating the effect of maintenance requirement on production capacity. Model simulations of two realistic nitrification/denitrification plants were robust toward changing nitrifier yield in predicting effluent ammonium concentrations, whereas sludge composition was impacted. Summarized, a fast, precise and easily executable method was developed determining Ymax of ammonia and nitrite oxidizers in mixed communities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458681700001 Publication Date 2019-02-13
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-302x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:157126 Serial 8648
Permanent link to this record
 

 
Author Timmis, K.; de Vos, W.M.; Luis Ramos, J.; Vlaeminck, S.E.; Prieto, A.; Danchin, A.; Verstraete, W.; de Lorenzo, V.; Lee, S.Y.; Brussow, H.; Timmis, J.K.; Singh, B.K.
Title The contribution of microbial biotechnology to sustainable development goals Type Editorial
Year 2017 Publication Microbial biotechnology Abbreviated Journal
Volume 10 Issue 5 Pages 984-987
Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411491300001 Publication Date 2017-08-25
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1751-7915 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:146778 Serial 8653
Permanent link to this record
 

 
Author De Vrieze, J.; Smet, D.; Klok, J.; Colsen, J.; Angenent, L.T.; Vlaeminck, S.E.
Title Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants Type A1 Journal article
Year 2016 Publication Bioresource technology Abbreviated Journal
Volume 218 Issue Pages 1237-1245
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The conventional treatment of municipal wastewater by means of activated sludge is typically energy demanding. Here, the potential benefits of: (1) the optimization of mesophilic digestion; and (2) transitioning to thermophilic sludge digestion in three wastewater treatment plants (Tilburg-Noord, Land van Cuijk and Bath) in the Netherlands is evaluated, including a full-scale trial validation in Bath. In Tilburg-Noord, thermophilic sludge digestion covered the energy requirements of the plant (102%), whereas 111% of sludge operational treatment costs could be covered in Bath. Thermophilic sludge digestion also resulted in a strong increase in nutrient release. The potential for nutrient recovery was evaluated via: (1) stripping/absorption of ammonium; (2) autotrophic removal of ammonium via partial nitritation/anammox; and (3) struvite precipitation. This research shows that optimization of sludge digestion may lead to a strong increase in energy recovery, sludge treatment costs reduction, and the potential for advanced nutrient management in full-scale sewage treatment plants. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384710500155 Publication Date 2016-07-02
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:137236 Serial 8666
Permanent link to this record
 

 
Author Agrawal, S.; Weissbrodt, D.G.; Annavajhala, M.; Jensen, M.M.; Arroyo, J.M.C.; Wells, G.; Chandran, K.; Vlaeminck, S.E.; Terada, A.; Smets, B.F.; Lackner, S.
Title Time to act–assessing variations in qPCR analyses in biological nitrogen removal with examples from partial nitritation/anammox systems Type A1 Journal article
Year 2021 Publication Water Research Abbreviated Journal Water Res
Volume 190 Issue Pages 116604
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Quantitative PCR (qPCR) is broadly used as the gold standard to quantify microbial community fractions in environmental microbiology and biotechnology. Benchmarking efforts to ensure the comparability of qPCR data for environmental bioprocesses are still scarce. Also, for partial nitritation/anammox (PN/A) systems systematic investigations are still missing, rendering meta-analysis of reported trends and generic insights potentially precarious. We report a baseline investigation of the variability of qPCR-based analyses for microbial communities applied to PN/A systems. Round-robin testing was performed for three PN/A biomass samples in six laboratories, using the respective in-house DNA extraction and qPCR protocols. The concentration of extracted DNA was significantly different between labs, ranged between 2.7 and 328 ng mg−1 wet biomass. The variability among the qPCR abundance data of different labs was very high (1−7 log fold) but differed for different target microbial guilds. DNA extraction caused maximum variation (3–7 log fold), followed by the primers (1–3 log fold). These insights will guide environmental scientists and engineers as well as treatment plant operators in the interpretation of qPCR data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000632807700001 Publication Date 2020-11-05
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.942 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.942
Call Number UA @ admin @ c:irua:173838 Serial 8672
Permanent link to this record
 

 
Author Grunert, O.; Robles-Aguilar, A.A.; Hernandez-Sanabria, E.; Schrey, S.D.; Reheul, D.; Van Labeke, M.-C.; Vlaeminck, S.E.; Vanderkerckhove, T.G.L.; Mysara, M.; Monsieurs, P.; Temperton, V.M.; Boon, N.; Jablonowski, N.D.
Title Tomato plants rather than fertilizers drive microbial community structure in horticultural growing media Type A1 Journal article
Year 2019 Publication Scientific reports Abbreviated Journal
Volume 9 Issue Pages 9561
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Synthetic fertilizer production is associated with a high environmental footprint, as compounds typically dissolve rapidly leaching emissions to the atmosphere or surface waters. We tested two recovered nutrients with slower release patterns, as promising alternatives for synthetic fertilizers: struvite and a commercially available organic fertilizer. Using these fertilizers as nitrogen source, we conducted a rhizotron experiment to test their effect on plant performance and nutrient recovery in juvenile tomato plants. Plant performance was significantly improved when organic fertilizer was provided, promoting higher shoot biomass. Since the microbial community influences plant nitrogen availability, we characterized the root-associated microbial community structure and functionality. Analyses revealed distinct root microbial community structure when different fertilizers were supplied. However, plant presence significantly increased the similarity of the microbial community over time, regardless of fertilization. Additionally, the presence of the plant significantly reduced the potential ammonia oxidation rates, implying a possible role of the rhizosheath microbiome or nitrification inhibition by the plant. Our results indicate that nitrifying community members are impacted by the type of fertilizer used, while tomato plants influenced the potential ammonia-oxidizing activity of nitrogen-related rhizospheric microbial communities. These novel insights on interactions between recovered fertilizers, plant and associated microbes can contribute to develop sustainable crop production systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000473418000003 Publication Date 2019-07-02
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:160582 Serial 8674
Permanent link to this record
 

 
Author De Clippeleir, H.; Vlaeminck, S.E.; Courtens, E.N.P.; Jimenez, J.; Wadhawan, T.; Zhang, Q.
Title Toward energy autarky : carbon redirection coupled with shortcut nitrogen processes Type H3 Book chapter
Year 2015 Publication Abbreviated Journal
Volume Issue Pages 129-150 T2 - Shortcut nitrogen removal : nitrite s
Keywords H3 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-57278-313-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:130470 Serial 8676
Permanent link to this record
 

 
Author Mozo, I.; Lacoste, L.; aussenac, J.; De Cocker, P.; Vlaeminck, S.E.; Sperandio, M.; Caligaris, M.; Graveleau, L.; Barillon, B.; Martin Ruel, S.
Title Towards application of mainstream deammonification on municipal wastewater in warm and cold areas Type P3 Proceeding
Year 2016 Publication Abbreviated Journal
Volume Issue Pages 4 p. T2 - World Cities Summit, Singapore Internati
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151124 Serial 8678
Permanent link to this record
 

 
Author Mozo, I.; Lacoste, L.; Aussenac, J.; De Cocker, P.; Vlaeminck, S.E.; Sperandio, M.; Caligaris, M.; Barillon, B.; Martin Ruel, S.
Title Towards application of mainstream deammonification on municipal wastewater in warm and cold areas Type P3 Proceeding
Year 2016 Publication Abbreviated Journal
Volume Issue Pages 4 p. T2 - WEF/IWA Nutrient Removal and Recovery Co
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151136 Serial 8679
Permanent link to this record
 

 
Author Van Winckel, T.; Cools, J.; Vlaeminck, S.E.; Joos, P.; Van Meenen, E.; Borregán-Ochando, E.; Van Den Steen, K.; Geerts, R.; Vandermoere, F.; Blust, R.
Title Towards harmonization of water quality management : a comparison of chemical drinking water and surface water quality standards around the globe Type A1 Journal article
Year 2021 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage
Volume 298 Issue Pages 113447-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change
Abstract Water quality standards (WQS) set the legal definition for safe and desirable water. WQS impose regulatory concentration limits to act as a jurisdiction-specific legislative risk-management tool. Despite its importance in shaping a universal definition of safe, clean water, little information exists with respect to (dis)similarity of chemical WQS worldwide. Therefore, this paper compares chemical WQS for drinking and surface water matrices in eight jurisdictions representing a global geographic distribution: Australia, Brazil, Canada, China, the European Union, the region of Flanders in Belgium, the United States of America, and South Africa. The World Health Organization's list is used as a reference for drinking water standards. Sørensen–Dice indices (SDI) showed little qualitative similarity in the compounds that are regulated in drinking water (median SDI = 40%) and surface water (median SDI = 33%), indicating that the heterogeneity within a matrix is substantial at the level of the standard. Quantitative similarity for matching standards was higher than the qualitative per Kendall correlation (median = 0.73 and 0.58 for drinking water and surface water respectively), yet variance observed within standards remained inexplicably high for organic compounds. Variations in WQS were more pronounced for organic compounds. Most differences cannot be easily explained from a toxicological or risk-based point-of-view. Historical development, ease of measurement, and (toxicological) knowledge gaps on the risk of a vast number of organic compounds are theorized to be the drivers. Therefore, this study argues for a more tailored, risk-based approach in which standards incorporated into water safety plans are dynamically set for compounds that are persistent and could pose a risk for human health and/or aquatic ecosystems. Global variations in WQS should therefore not necessarily be avoided but rather globally harmonized with enough flexibility to ensure a global, up-to-date definition of safe and desirable water everywhere.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000700577400005 Publication Date 2021-08-19
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.01 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.01
Call Number UA @ admin @ c:irua:180765 Serial 8681
Permanent link to this record
 

 
Author Alloul, A.; Vlaeminck, S.E.
Title Towards upgrading of wastewater resources to microbial protein : volatile fatty acids impacting growth kinetics and yield of purple bacteria Type P3 Proceeding
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 2 p. T2 - 5th IWA Benelux Young Water Professional
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151115 Serial 8683
Permanent link to this record
 

 
Author Vandekerckhove, T.; Courtens, E.N.P.; Prat, D.; Vilchez-Vargas, R.; Vital, M.; Pieper, D.H.; Meerbergen, K.; Lievens, B.; Boon, N.; Vlaeminck, S.E.
Title Transitioning from mesophilic to thermophilic nitrification: shaping a niche for archaeal ammonia oxidizers Type P3 Proceeding
Year 2016 Publication Abbreviated Journal
Volume Issue Pages 9 p. T2 - WEF/IWA Nutrient Removal and Recovery Co
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151126 Serial 8697
Permanent link to this record
 

 
Author Han, M.; Vlaeminck, S.E.; Al-Omari, A.; Wett, B.; Bott, C.; Murthy, S.; De Clippeleir, H.
Title Uncoupling the solids retention times of flocs and granules in mainstream deammonification : a screen as effective out-selection tool for nitrite oxidizing bacteria Type A1 Journal article
Year 2016 Publication Bioresource technology Abbreviated Journal
Volume 221 Issue Pages 195-204
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This study focused on a physical separator in the form of a screen to out-select nitrite oxidizing bacteria (NOB) for mainstream sewage treatment. This separation relied on the principle that the NOB prefer to grow in flocs, while anammox bacteria (AnAOB) reside in granules. Two types of screens (vacuum and vibrating) were tested for separating these fractions. The vibrating screen was preferred due to more moderate normal forces and additional tangential forces, better balancing retention efficiency of AnAOB granules (41% of the AnAOB activity) and washout of NOB (92% activity washout). This operation resulted in increased NOB out-selection (AerAOB/NOB ratio of 2.3) and a total nitrogen removal efficiency of 70% at influent COD/N ratio of 1.4. An effluent total nitrogen concentration <10 mg N/L was achieved using this novel approach combining biological selection with physical separation, opening up the path towards energy positive sewage treatment. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386241000025 Publication Date 2016-09-08
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:138157 Serial 8705
Permanent link to this record
 

 
Author Defoirdt, T.; Vlaeminck, S.E.; Sun, X.; Boon, N.; Clauwaert, P.
Title Ureolytic activity and its regulation in vibrio campbellii and vibrio harveyi in relation to nitrogen recovery from human urine Type A1 Journal article
Year 2017 Publication Environmental science and technology Abbreviated Journal
Volume 51 Issue 22 Pages 13335-13343
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Human urine contains a high concentration of nitrogen and is therefore an interesting source for nutrient recovery. Ureolysis is a key requirement in many processes aiming at nitrogen recovery from urine. Although ureolytic activity is widespread in terrestrial and aquatic environments, very little is known about the urease activity and regulation in specific bacteria other than human pathogens. Given the relatively high salt concentration of urine, marine bacteria would be particularly well suited for biotechnological applications involving nitrogen recovery from urine, and therefore, in this study, we investigated ureolytic activity and its regulation in marine vibrios. Thirteen out of 14 strains showed ureolytic activity. The urease activity was induced by urea, since complete and very rapid hydrolysis, up to 4 g L-1 of urea, was observed in synthetic human urine when the bacteria were pretreated with 10 g L-1 urea, whereas slow hydrolysis occurred when they were pretreated with 1 g L-1 urea (14-35% hydrolysis after 2 days). There was no correlation between biofilm formation and "motility on one hand, and ureolysis on the other hand, and biofilm and motility inhibitors did not affect ureolysis. Together, our data demonstrate for the first time the potential of marine vibrios as fast urea hydrolyzers for biotechnological applications aiming at nutrient recovery from human urine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000416496700032 Publication Date 2017-10-30
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:147703 Serial 8716
Permanent link to this record
 

 
Author Christiaens, M.E.R.; De Paepe, J.; Ilgrande, C.; De Vrieze, J.; Barys, J.; Teirlinck, P.; Meerbergen, K.; Lievens, B.; Boon, N.; Clauwaert, P.; Vlaeminck, S.E.
Title Urine nitrification with a synthetic microbial community Type A1 Journal article
Year 2019 Publication Systematic and applied microbiology Abbreviated Journal
Volume 42 Issue 6 Pages Unsp 126021
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract During long-term extra-terrestrial missions, food is limited and waste is generated. By recycling valuable nutrients from this waste via regenerative life support systems, food can be produced in space. Astronauts' urine can, for instance, be nitrified by micro-organisms into a liquid nitrate fertilizer for plant growth in space. Due to stringent conditions in space, microbial communities need to be be defined (gnotobiotic); therefore, synthetic rather than mixed microbial communities are preferred. For urine nitrification, synthetic communities face challenges, such as from salinity, ureolysis, and organics. In this study, a synthetic microbial community containing an AOB (Nitrosomonas europaea), NOB (Nitrobacter winogradskyi), and three ureolytic heterotrophs (Pseudomonas fluorescens, Acidovorax delafieldii, and Delftia acidovorans) was compiled and evaluated for these challenges. In reactor 1, salt adaptation of the ammonium-fed AOB and NOB co-culture was possible up to 45 mS cm(-1), which resembled undiluted nitrified urine, while maintaining a 44 +/- 10 mg NH4+-N L-1 d(-1) removal rate. In reactor 2, the nitrifiers and ureolytic heterotrophs were fed with urine and achieved a 15 +/- 6 mg NO3--N L-1 d(-1) production rate for 1% and 10% synthetic and fresh real urine, respectively. Batch activity tests with this community using fresh real urine even reached 29 +/- 3 mg N L-1 d(-1). Organics removal in the reactor (69 +/- 15%) should be optimized to generate a nitrate fertilizer for future space applications. (C) 2019 Elsevier GmbH. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000494650600006 Publication Date 2019-09-23
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0723-2020; 1618-0984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:164650 Serial 8717
Permanent link to this record
 

 
Author Verstraete, W.; Clauwaert, P.; Vlaeminck, S.E.
Title Used water and nutrients : recovery perspectives in a 'panta rhei' context Type A1 Journal article
Year 2016 Publication Bioresource technology Abbreviated Journal
Volume 215 Issue Pages 199-208
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract There is an urgent need to secure global supplies in safe water and proteinaceous food in an eco-sustainable manner, as manifested from tensions in the nexus Nutrients-Energy-Water-Environment-Land. This paper is concept based and provides solutions based on resource recovery from municipal and industrial wastewater and from manure. A set of decisive factors is reviewed facilitating an attractive business case. Our key message is that a robust barrier must clear the recovered product from its original status. Besides refined inorganic fertilizers, a central role for five types of microbial protein is proposed. A resource cycling solution for the extremely confined environment of space habitation should serve as an incentive to assimilate a new user mindset. To achieve the ambitious goal of sustainable food security, the solutions suggested here need a broad implementation, hand in hand with minimizing losses along the entire fertilizer-feed-food-fork chain. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000377935100022 Publication Date 2016-04-29
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:134591 Serial 8726
Permanent link to this record
 

 
Author Alloul, A.; Wuyts, S.; Lebeer, S.; Vlaeminck, S.E.
Title Volatile fatty acids impacting phototrophic growth kinetics of purple bacteria : paving the way for protein production on fermented wastewater Type A1 Journal article
Year 2019 Publication Water research Abbreviated Journal
Volume 152 Issue Pages 138-147
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Nutrient losses in our food chain severely surpass our planetary boundaries. Resource recovery can contribute to mitigation, for instance through converting wastewater resources to microbial protein for animal feed. Wastewater typically holds a complex mixture of organics, posing a challenge to selectively produce heterotrophic biomass. Ensuring the product's quality could be achieved by anaerobic generation of volatile fatty acids (VFAs) followed by photoheterotrophic production of purple non-sulfur bacteria (PNSB) with infrared light. This study aimed to determine the most suitable PNSB culture for VFA conversion and map the effect of acetate, propionate, butyrate and a VFA mixture on growth and biomass yield. Six cultures were screened in batch: (i) Rhodopseudomonas palustris, (ii) Rhodobacter sphaeroides, (iii) Rhodospirillum rubrum, (iv) a 3-species synthetic community (i+ii+iii), (v) a community enriched on VFA holding Rb. capsulatus, and (vi) Rb. capsulatus (isolate v). The VFA mixture elevated growth rates with a factor 1.32.5 compared to individual VFA. Rb. capsulatus showed the highest growth rates: 1.82.2 d−1 (enriched) and 2.33.8 d−1 (isolated). In a photobioreactor (PBR) inoculated with the Rb. capsulatus enrichment, decreasing sludge retention time (SRT) yielded lower biomass concentrations, yet increased productivities, reaching 1.7 g dry weight (DW) L−1 d−1, the highest phototrophic rate reported thus far, and a growth rate of up to 5 d−1. PNSB represented 2657% of the community and the diversity index was low (37), with a dominance of Rhodopseudomonas at long SRT and Rhodobacter at short SRT. The biomass yield for all cultures, in batch and reactor cultivation, approached 1 g CODBiomass g−1 CODRemoved. An economic estimation for a two-stage approach on brewery wastewater (load 2427 kg COD d−1) showed that 0.5 d SRT allowed for the lowest production cost ( 10 kg−1 DW; equal shares for capex and opex). The findings strengthen the potential for a novel two-stage approach for resource recovery from industrial wastewater, enabling high-rate PNSB production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458223900013 Publication Date 2018-12-27
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156462 Serial 8739
Permanent link to this record
 

 
Author Lindeboom, R.E.F.; Clauwaert, P.; Alloul, A.; Coessens, W.; Christiaens, M.; Vanoppen, M.; Rabaey, K.; Verliefde, A.R.D.; Vlaeminck, S.E.
Title Water and nutrient recovery from combined urine and grey water treatment in Space Type P3 Proceeding
Year 2015 Publication Abbreviated Journal
Volume Issue Pages 3 p. T2 - IWA Resource Recovery Conference, 30 Aug
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151143 Serial 8747
Permanent link to this record
 

 
Author Han, M.; Seuntjens, D.; Al-Omari, A.; Takacs, I.; Meerburg, F.; Murthy, S.; Vlaeminck, S.E.; De Clippeleir, H.
Title Water and process parameters as controllers for the ammonia to nitrite oxidation rate ratio in activated sludge Type P3 Proceeding
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 3 p. T2 - IWA 2017 Conference on Sustainable Waste
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151110 Serial 8748
Permanent link to this record
 

 
Author de Paepe, J.; Lindeboom, R.E.F.; Vanoppen, M.; Alonso Farinas, B.; Coessens, W.; Abbas, A.; Christiaens, M.; Dotremont, C.; Beckers, H.; Lamaze, B.; Demey, D.; Rabaey, K.; Clauwaert, P.; Verliefde, A.R.D.; Vlaeminck, S.E.
Title Water treatment unit breadboard : ground test facility for the recycling of urine and shower water for one astronaut Type P3 Proceeding
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 2 p. T2 - 5th IWA Benelux Young Water Professional
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151114 Serial 8749
Permanent link to this record
 

 
Author Xie, Y.; Van Tendeloo, M.; Zhu, W.; Peng, L.; Vlaeminck, S.E.
Title Autotrophic nitrogen polishing of secondary effluents : Alkaline pH and residual nitrate control S0-driven denitratation for downstream anammox treatment Type A1 Journal article
Year 2023 Publication Journal of Water Process Engineering Abbreviated Journal
Volume 56 Issue Pages 104402-104409
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Energy-lean nitrogen removal technologies, such as partial nitritation/anammox, often encounter effluent issues due to elevated nitrate and ammonium levels. This study proposed a novel autotrophic polishing strategy coupling sulfur-driven denitratation with anammox. To explore the denitratation potential in obtaining stable and sufficient nitrite accumulation, the effects of pH, residual nitrate level, and biomass-specific nitrate loading rate (BSNLR) were investigated in an S0-packed bed reactor at low hydraulic retention time (i.e., 0.2 h). Implementing pH and residual nitrate control strategies would be easier in practice than BSNLR control to polish secondary effluent. Alkaline pH values could realize successful nitrite accumulation without residual nitrate, and further intensify the accumulation under increased residual nitrate levels. The nitrate level was positively correlated with the nitrite accumulation efficiency. At pH 8.5 and nitrate concentration of 1.0 ± 0.8 mg N L−1, sulfur-driven denitratation could successfully maintain nitrite accumulation of 6.4 ± 1.0 mg NO2−-N L−1, ideally for the downstream anammox in case of residual ammonium levels of around 5 mg N L−1. Since Thiobacillus members play a key role in managing nitrite accumulation, their abundance should be guaranteed in the practical application.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001103341400001 Publication Date 2023-10-18
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-7144 ISBN Additional Links UA library record; WoS full record
Impact Factor 7 Times cited Open Access Not_Open_Access: Available from 18.04.2024
Notes Approved Most recent IF: 7; 2023 IF: NA
Call Number UA @ admin @ c:irua:200036 Serial 8835
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; De Paepe, J.; Vlaeminck, S.E.
Title Comparison of typical nitrite oxidizing bacteria suppression strategies and the effect on nitrous oxide emissions in a biofilm reactor Type A1 Journal article
Year 2023 Publication Bioresource technology Abbreviated Journal
Volume 387 Issue Pages 129607-129609
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In mainstream partial nitritation/anammox (PN/A), suppression of nitrite oxidizing bacteria (NOB) and mitigation of N2O emissions are two essential operational goals. The N2O emissions linked to three typical NOB suppression strategies were tested in a covered rotating biological contactor (RBC) biofilm system at 21 degrees C: (i) low dissolved oxygen (DO) concentrations, and treatments with (ii) free ammonia (FA), and (iii) free nitrous acids (FNA). Low emerged DO levels effectively minimized NOB activity and decreased N2O emissions, but NOB adaptation appeared after 200 days of operation. Further NOB suppression was successfully achieved by periodic (3 h per week) treatments with FA (29.3 & PLUSMN; 2.6 mg NH3-N L-1) or FNA (3.1 & PLUSMN; 0.3 mg HNO2-N L-1). FA treatment, however, promoted N2O emissions, while FNA did not affect these. Hence, biofilm PN/A should be operated at relatively low DO levels with periodic FNA treatment to maximize nitrogen removal efficiency while avoiding high greenhouse gas emissions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001063180200001 Publication Date 2023-08-05
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.4 Times cited Open Access Not_Open_Access: Available from 21.02.2024
Notes Approved Most recent IF: 11.4; 2023 IF: 5.651
Call Number UA @ admin @ c:irua:199051 Serial 8843
Permanent link to this record
 

 
Author De Paepe, J.; Garcia Gragera, D.; Arnau Jimenez, C.; Rabaey, K.; Vlaeminck, S.E.; Gòdia, F.
Title Continuous cultivation of microalgae yields high nutrient recovery from nitrified urine with limited supplementation Type A1 Journal article
Year 2023 Publication Journal of environmental management Abbreviated Journal
Volume 345 Issue Pages 118500-118510
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Microalgae can play a key role in the bioeconomy, particularly in combination with the valorisation of waste streams as cultivation media. Urine is an example of a widely available nutrient-rich waste stream, and alkaline stabilization and subsequent full nitrification in a bioreactor yields a stable nitrate-rich solution. In this study, such nitrified urine served as a culture medium for the edible microalga Limnospira indica. In batch cultivation, nitrified urine without additional supplements yielded a lower biomass concentration, nutrient uptake and protein content compared to modified Zarrouk medium, as standard medium. To enhance the nitrogen uptake efficiency and biomass production, nitrified urine was supplemented with potentially limiting elements. Limited amounts of phosphorus (36 mg L−1), magnesium (7.9 mg L−1), calcium (12.2 mg L−1), iron (2.0 mg L−1) and EDTA (88.5 mg Na2-EDTA.2H2O L−1) rendered the nitrified urine matrix as effective as modified Zarrouk medium in terms of biomass production (OD750 of 1.2), nutrient uptake (130 mg N L−1) and protein yield (47%) in batch culture. Urine precipitates formed by alkalinisation could in principle supply enough phosphorus, calcium and magnesium, requiring only external addition of iron, EDTA and inorganic carbon. Subsequently, the suitability of supplemented nitrified urine as a culture medium was confirmed in continuous Limnospira cultivation in a CSTR photobioreactor. This qualifies nitrified urine as a valuable and sustainable microalgae growth medium, thereby creating novel nutrient loops on Earth and in Space, i.e., in regenerative life support systems for human deep-space missions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001052880800001 Publication Date 2023-08-03
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.7 Times cited Open Access Not_Open_Access: Available from 03.02.2024
Notes Approved Most recent IF: 8.7; 2023 IF: 4.01
Call Number UA @ admin @ c:irua:199049 Serial 8844
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; Alloul, A.; Vlaeminck, S.E.
Title Feasibility of a return-sludge nursery concept for mainstream anammox biostimulation : creating optimal conditions for anammox to recover and grow in a parallel tank Type A1 Journal article
Year 2023 Publication Bioresource technology Abbreviated Journal
Volume 385 Issue Pages 129359-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract To overcome limiting anammox activity under sewage treatment conditions, a return-sludge nursery concept is proposed. This concept involves blending sludge reject water treated with partial nitritation with mainstream effluent to increase the temperature, N levels, and electrical conductivity (EC) of the anammox nursery reactor, which sludge periodically passes through the return sludge line of the mainstream system. Various nursery frequencies were tested in two 2.5 L reactors, including 0.5-2 days of nursery treatment per 3.5-14 days of the total operation. Bioreactor experiments showed that nursery increased nitrogen removal rates during mainstream operation by 33-38%. The increased anammox activity can be partly (35-60%) explained by higher temperatures. Elevated EC, higher nitrogen concentrations, and a putative synergy and/or unknown factor were responsible for 15-16%, 12-14%, and 10-36%, respectively. A relatively stable microbial community was observed, dominated by a “Candidatus Brocadia” member. This new concept boosted activity and sludge growth, which may facilitate mainstream anammox implementations based on partial nitritation/anammox or partial nitrification/denitratation/anammox.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001031586400001 Publication Date 2023-06-19
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record
Impact Factor 11.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 11.4; 2023 IF: 5.651
Call Number UA @ admin @ c:irua:198259 Serial 8866
Permanent link to this record
 

 
Author Wittner, N.; Vasilakou, K.; Broos, W.; Vlaeminck, S.E.; Nimmegeers, P.; Cornet, I.
Title Investigating the technical and economic potential of solid-state fungal pretreatment at nonsterile conditions for sugar production from poplar wood Type A1 Journal article
Year 2023 Publication Industrial and engineering chemistry research Abbreviated Journal
Volume Issue Pages 1-11
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM); Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Pretreatment is crucial for the conversion of lignocellulose to biofuels. Unlike conventional chemical/physicochemical methods, fungal pretreatment uses white-rot fungi and mild reaction conditions. However, challenges, including substrate sterilization, long duration, and low sugar yields associated with this method, contribute to lower techno-economic performance, an aspect that has rarely been investigated. This study aimed to evaluate the feasibility of fungal pretreatment of nonsterilized poplar wood. Various factors, including inoculum types, fermentation supplements, and cultivation methods, were investigated to optimize the process. A techno-economic assessment of the optimized processes was performed at a full biorefinery scale. The scenario using nonsterilized wood as a substrate, precolonized wood as an inoculum, and a 4 week pretreatment showed a 14.5% reduction in sugar production costs (€2.15/kg) compared to using sterilized wood. Although the evaluation of nonsterilized wood pretreatment showed promising cost reductions, fungal pretreatment remained more expensive than conventional methods due to the significant capital investment required.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001102138000001 Publication Date 2023-10-25
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.2 Times cited Open Access Not_Open_Access: Available from 24.04.2024
Notes Approved Most recent IF: 4.2; 2023 IF: 2.843
Call Number UA @ admin @ c:irua:200155 Serial 8891
Permanent link to this record