|   | 
Details
   web
Records
Author Omranian, S.R.; Geluykens, M.; Van Hal, M.; Hasheminejad, N.; Rocha Segundo, I.; Pipintakos, G.; Denys, S.; Tytgat, T.; Fraga Freitas, E.; Carneiro, J.; Verbruggen, S.; Vuye, C.
Title Assessing the potential of application of titanium dioxide for photocatalytic degradation of deposited soot on asphalt pavement surfaces Type A1 Journal article
Year 2022 Publication Construction and building materials Abbreviated Journal Constr Build Mater
Volume 350 Issue Pages 128859-13
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract It is known that pollutants and their irreparable influence can considerably jeopardize the environment and human health. Such disastrous, growing, hazardous particles urged researchers to find effective ways and diminish their destructive impacts and preserve our planet. This study evaluates the potential of incorporating Titanium Dioxide (TiO2) semiconductor nanoparticles on asphalt pavements to degrade pollutants without compromising bitumen performance. Accordingly, the Response Surface Method (RSM) was employed to develop an experimental matrix based on the central composite design. Image Analysis (IA) was used to determine the rate of soot degradation (as pollutant representative) using MATLAB and ImageJ software. Confocal Laser Scanning Microscopy (CLSM), Fourier Transform Infrared spectroscopy (FTIR), and Dynamic Shear Rheometer (DSR) were finally carried out to estimate the effects of adding different percentages of TiO2 on the micro -structural features and dispersion of the TiO2, chemical fingerprinting, and rheological performance of the bituminous binder. The results showed a promising potential of TiO2 to degrade soot (over 50%) during the conducted experiments. In addition, the RSM outcomes showed that applying a higher amount of TiO2 is more efficient for pollutant degradation. Finally, no negative impact was observed, neither on the rheological behavior nor on the aging susceptibility of the bitumen, even though the homogenous dispersion of the TiO2 was clearly captured via CLSM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000848227000001 Publication Date 2022-08-20
Series Editor (down) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0618 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.4
Call Number UA @ admin @ c:irua:189820 Serial 7128
Permanent link to this record
 

 
Author Abadeen, A.Z.U.; Omranian, S.R.; Abdellati, Y.; Ag, K.R.; Verbruggen, S.; Vuye, C.
Title Investigating the potential effects of limestone and bitumen substrates on photocatalytic NOx degradation Type P1 Proceeding
Year 2024 Publication Abbreviated Journal
Volume 1 Issue Pages 3-12 T2 - Proceedings of the 10th International Co
Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Pavements and Asphalt Research (SuPAR); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)
Abstract NOx emissions commonly emitted by vehicles, pose environmental and health challenges worldwide. Photocatalytic asphalt pavements, used in urban settings, are in close contact with these emissions. In this study, the contribution and role of asphalt mix components—stone and bitumen—were analyzed in the degradation process. The effectiveness of TiO2 coatings on limestone-bitumen composites of varying ratios (100%, 75%, 50%, 25%, and 0%) was assessed using X-ray diffraction analysis (XRD), Confocal Laser Scanning Microscopy (CLSM), Fourier-transform infrared spectroscopy (FTIR), and the modified ISO 22197-1:2016 standard for NO removal. XRD verified the presence of calcite in limestone. CLSM revealed surface modifications and coating morphology, FTIR verified successful TiO2 PF2 coating deposition and NOx degradation quantified the NOx degradation (%), NO degradation (%) and NO2 formation (%) during photocatalytic activity. It was evident that samples with a higher ratio of stone-to-bitumen exhibited an elevated NOx degradation, reaching up to 29.11% for NOx, 43.79% for NO, and 13.96% for NO2 formation. Conversely, samples with a lower stone-to-bitumen ratio recorded values as low as 8.93% for NOx degradation (%), 10.30% for NO degradation (%), and 0.95% for NO2 formation (%). These outcomes firmly establish the inhibitory effect of the bitumen substrate on NOx and NO degradation but a positive effect on NO2 formation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-07-20
Series Editor (down) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-3-031-63587-8 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:207349 Serial 9299
Permanent link to this record