toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gao, J.; Lebedev, O.I.; Turner, S.; Li, Y.F.; Lu, Y.H.; Feng, Y.P.; Boullay, P.; Prellier, W.; Van Tendeloo, G.; Wu, T. pdf  doi
openurl 
  Title Phase selection enabled formation of abrupt axial heterojunctions in branched oxide nanowires Type A1 Journal article
  Year 2012 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 12 Issue 1 Pages 275-280  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Rational synthesis of nanowires via the vaporliquidsolid (VLS) mechanism with compositional and structural controls is vitally important for fabricating functional nanodevices from bottom up. Here, we show that branched indium tin oxide nanowires can be in situ seeded in vapor transport growth using tailored AuCu alloys as catalyst. Furthermore, we demonstrate that VLS synthesis gives unprecedented freedom to navigate the ternary InSnO phase diagram, and a rare and bulk-unstable cubic phase can be selectively stabilized in nanowires. The stabilized cubic fluorite phase possesses an unusual almost equimolar concentration of In and Sn, forming a defect-free epitaxial interface with the conventional bixbyite phase of tin-doped indium oxide that is the most employed transparent conducting oxide. This rational methodology of selecting phases and making abrupt axial heterojunctions in nanowires presents advantages over the conventional synthesis routes, promising novel composition-modulated nanomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000298943100048 Publication Date 2011-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 25 Open Access  
  Notes Fwo Approved Most recent IF: 12.712; 2012 IF: 13.025  
  Call Number UA @ lucian @ c:irua:94209 Serial (down) 2587  
Permanent link to this record
 

 
Author Kaminsky, F.V.; Ryabchikov, I.D.; McCammon, C.A.; Longo, M.; Abakumov, A.M.; Turner, S.; Heidari, H. pdf  doi
openurl 
  Title Oxidation potential in the Earth's lower mantle as recorded by ferropericlase inclusions in diamond Type A1 Journal article
  Year 2015 Publication Earth and planetary science letters Abbreviated Journal Earth Planet Sc Lett  
  Volume 417 Issue 417 Pages 49-56  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ferropericlase (fPer) inclusions from kimberlitic lower-mantle diamonds recovered in the Juina area, Mato Grosso State, Brazil were analyzed with transmission electron microscopy, electron energy-loss spectroscopy and the flank method. The presence of exsolved non-stoichiometric Fe3+-enriched clusters, varying in size from 1-2 nm to 10-15 nm and comprising similar to 3.64 vol.% of fPer was established. The oxidation conditions necessary for fPer formation within the uppermost lower mantle (P = 25 GPa, T = 1960 K) vary over a wide range: Delta log f(o2) (IW) from 1.58 to 7.76 (Delta = 6.2), reaching the fayalite-magnetite-quartz (FMQ) oxygen buffer position. This agrees with the identification of carbonates and free silica among inclusions within lower-mantle Juina diamonds. On the other hand, at the base of the lower mantle Delta log f(o2) values may lie at and below the iron-wustite (IW) oxygen buffer. Hence, the variations of Delta log f(o2) values within the entire sequence of the lower mantle may reach ten logarithmic units, varying from the IW buffer to the FMQ buffer values. The similarity between lower- and upper-mantle redox conditions supports whole mantle convection, as already suggested on the basis of nitrogen and carbon isotopic compositions in lower- and upper-mantle diamonds. The mechanisms responsible for redox differentiation in the lower mantle may include subduction of oxidized crustal material, mechanical separation of metallic phase(s) and silicate-oxide mineral assemblages enriched in ferric iron, as well as transfer of fused silicate-oxide material presumably also enriched in ferric iron through the mantle. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000351799400006 Publication Date 2015-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-821X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.409 Times cited 23 Open Access  
  Notes Approved Most recent IF: 4.409; 2015 IF: 4.734  
  Call Number c:irua:125451 Serial (down) 2539  
Permanent link to this record
 

 
Author Lorenz, H.; Zhao, Q.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Kloetzer, B.; Rameshan, C.; Pfaller, K. pdf  doi
openurl 
  Title Origin of different deactivation of Pd/SnO2 and Pd/GeO2 catalysts in methanol dehydrogenation and reforming: a comparative study Type A1 Journal article
  Year 2010 Publication Applied catalysis : A : general Abbreviated Journal Appl Catal A-Gen  
  Volume 381 Issue 1/2 Pages 242-252  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pd particles supported on SnO2 and GeO2 have been structurally investigated by X-ray diffraction, (High-Resolution) transmission and scanning electron microscopy after different reductive treatments to monitor the eventual formation of bimetallic phases and catalytically tested in methanol dehydrogenation/ reforming. For both oxides this included a thin film sample with well-defined Pd particles and a powder catalyst prepared by incipient wetness impregnation. The hexagonal and the tetragonal polymorph were studied for powder GeO2. Pd2Ge formation was observed on all GeO2-supported catalysts, strongly depending on the specific sample used. Reduction of the thin film at 573K resulted in full transformation into the bimetallic state. The partial solubility of hexagonal GeO2 in water and its thermal structural instability yielded Pd2Ge formation at 473 K, at the cost of a structurally inhomogeneous support and Ge metal formation at higher reduction temperatures. Pd on tetragonal GeO2 entered a state of strong metalsupport interaction after reduction at 573673 K, resulting in coalescing Pd2Ge particles on a sintered and re-crystallized support, apparently partially covering the bimetallic particles and decreasing the catalytic activity. Pd2Ge on amorphous thin film and hexagonal GeO2 converted methanol primarily via dehydrogenation to CO and H2. At 573 K, formation of Pd2Sn and also PdSn occurred on the Pd/SnO2 thin film. Pd3Sn2 (and to some extent Pd2Sn) were predominantly obtained on the respective powder catalyst. Strong deactivation with increasing reduction temperature was observed, likely not based on the classical strong metalsupport interaction effect, but rather on a combination of missing active structural ensembles on Sn-enriched bimetallic phases and the formation of metallic -Sn. Correlations to Pd and its bimetallics supported on ZnO, Ga2O3 and In2O3 were also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000279100700029 Publication Date 2010-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-860X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.339 Times cited 14 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 4.339; 2010 IF: 3.384  
  Call Number UA @ lucian @ c:irua:83927 Serial (down) 2522  
Permanent link to this record
 

 
Author Proost, J.; Blaffart, F.; Turner, S.; Idrissi, H. doi  openurl
  Title On the Origin of Damped Electrochemical Oscillations at Silicon Anodes (Revisited) Type A1 Journal article
  Year 2014 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem  
  Volume 15 Issue 14 Pages 3116-3124  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electrochemical oscillations accompanying the formation of anodic silica have been shown in the past to be correlated with rather abrupt changes in the mechanical stress state of the silica film, commonly associated with some kind of fracture or porosification of the oxide. To advance the understanding on the origin of such oscillations in fluoride-free electrolytes, we have revisited a seminal experiment reported by Lehmann almost two decades ago. We thereby demonstrate that the oscillations are not stress-induced, and do not originate from a morphological transformation of the oxide in the course of anodisation. Alternatively, the mechanical features accompanying the oscillations can be explained by a partial relaxation of the field-induced electrostrictive stress. Furthermore, our observations suggest that the oscillation mechanism more likely results from a periodic depolarisation of the anodic silica.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000342770500029 Publication Date 2014-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.075 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.075; 2014 IF: 3.419  
  Call Number UA @ lucian @ c:irua:121086 Serial (down) 2444  
Permanent link to this record
 

 
Author Koblischka, M.R.; Winter, M.; Das, P.; Koblischka-Veneva, A.; Muralidhar, M.; Wolf, T.; Babu, N.H.; Turner, S.; Van Tendeloo, G.; Hartmann, U. pdf  doi
openurl 
  Title Observation of nanostripes and -clusters in (Nd, EuGd)Ba2Cu3Ox superconductors Type A1 Journal article
  Year 2009 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 469 Issue 4 Pages 168-176  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanostripes are observed in melt-textured and single-crystalline samples of the ternary light rare earth (LRE)-compound (Nd0.33Eu0.33Gd0.33)Ba2Cu3Ox (NEG) by means of atomic force microscopy, scanning tunnelling microscopy at ambient conditions, combined with transmission electron microscopy and electron backscatter diffraction. This enables the observation of several important features: The nanostripes are formed by chains of nanoclusters, representing the LRE/Ba substitution. The dimensions of the nanostripes are similar for both types of NEG samples. The periodicity of the nanostripes is found to range between 40 and 60 nm; the shape of the nanoclusters is elliptic with a major axis length between 300 and 500 nm and a minor axis length of about 30150 nm. The stripes are filling effectively the space in between the twin boundaries. Concerning the flux pinning, the nanoclusters are the important pinning sites, not the nanostripes themselves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000264657100008 Publication Date 2009-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 6 Open Access  
  Notes Approved Most recent IF: 1.404; 2009 IF: 0.723  
  Call Number UA @ lucian @ c:irua:76403 Serial (down) 2418  
Permanent link to this record
 

 
Author Wu, S.; Luo, X.; Turner, S.; Peng, H.; Lin, W.; Ding, J.; David, A.; Wang, B.; Van Tendeloo, G.; Wang, J.; Wu, T.; url  doi
openurl 
  Title Nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures Type A1 Journal article
  Year 2013 Publication Physical review X Abbreviated Journal Phys Rev X  
  Volume 3 Issue 4 Pages 041027-14  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Resistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures, where the conducting layer near the LaAlO3/SrTiO3 interface serves as the unconventional bottom electrode although both oxides are band insulators. Interestingly, the switching between low-resistance and high-resistance states is accompanied by reversible transitions between tunneling and Ohmic characteristics in the current transport perpendicular to the planes of the heterojunctions. We propose that the observed resistive switching is likely caused by the electric-field-induced drift of charged oxygen vacancies across the LaAlO3/SrTiO3 interface and the creation of defect-induced gap states within the ultrathin LaAlO3 layer. These metal-oxide-oxide heterojunctions with atomically smooth interfaces and defect-controlled transport provide a platform for the development of nonvolatile oxide nanoelectronics that integrate logic and memory devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication College Park, Md Editor  
  Language Wos 000328862400001 Publication Date 2013-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2160-3308; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.789 Times cited 77 Open Access  
  Notes FWO;FP7;IFOX; Countatoms; Hercules Approved Most recent IF: 12.789; 2013 IF: 8.463  
  Call Number UA @ lucian @ c:irua:112524 Serial (down) 2365  
Permanent link to this record
 

 
Author Mai, H.H.; Kaydashev, V.E.; Tikhomirov, V.K.; Janssens, E.; Shestakov, M.V.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Moshchalkov, V.V.; Lievens, P. pdf  url
doi  openurl
  Title Nonlinear optical properties of Ag nanoclusters and nanoparticles dispersed in a glass host Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 29 Pages 15995-16002  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The nonlinear absorption of Ag atomic clusters and nanoparticles dispersed in a transparent oxyfluoride glass host has been studied. The as-prepared glass, containing 0.15 atom % Ag, shows an absorption band in the UV/violet attributed to the presence of amorphous Ag atomic nanoclusters with an average size of 1.2 nm. Upon heat treatment the Ag nanoclusters coalesce into larger nanoparticles that show a surface plasmon absorption band in the visible. Open aperture z-scan experiments using 480 nm nanosecond laser pulses demonstrated nonsaturated and saturated nonlinear absorption with large nonlinear absorption indices for the Ag nanoclusters and nanoparticles, respectively. These properties are promising, e.g., for applications in optical limiting and objects contrast enhancement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000339540700049 Publication Date 2014-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 43 Open Access  
  Notes FWO; Methusalem; funding from the European Research Council under the seventh Framework Program (FP7); ERC Grant 246791 COUNTATOMS and the EC project IFOX. Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:118626 Serial (down) 2353  
Permanent link to this record
 

 
Author Shenderova, O.A.; Vlasov, I.I.; Turner, S.; Van Tendeloo, G.; Orlinskii, S.B.; Shiryaev, A.A.; Khomich, A.A.; Sulyanov, S.N.; Jelezko, F.; Wrachtrup, J. pdf  doi
openurl 
  Title Nitrogen control in nanodiamond produced by detonation shock-wave-assisted synthesis Type A1 Journal article
  Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 115 Issue 29 Pages 14014-14024  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Development of efficient production methods of nanodiamond (ND) particles containing substitutional nitrogen and nitrogen-vacancy (NV) complexes remains an important goal in the nanodiamond community. ND synthesized from explosives is generally not among the preferred candidates for imaging applications owing to lack of optically active particles containing NV centers. In this paper, we have systematically studied representative classes of NDs produced by detonation shock wave conversion of different carbon precursor materials, namely, graphite and a graphite/hexogen mixture into ND, as well as ND produced from different combinations of explosives using different cooling methods (wet or dry cooling). We demonstrate that (i) the N content in nanodiamond particles can be controlled through a correct selection of the carbon precursor material (addition of graphite, explosives composition); (ii) particles larger than approximately 20 nm may contain in situ produced optically active NV centers, and (iii) in ND produced from explosives, NV centers are detected only in ND produced by wet synthesis. ND synthesized from a mixture of graphite/explosive contains the largest amount of NV centers formed during synthesis and thus deserves special attention.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000292892500009 Publication Date 2011-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 54 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 4.536; 2011 IF: 4.805  
  Call Number UA @ lucian @ c:irua:91259 Serial (down) 2342  
Permanent link to this record
 

 
Author Vlasov, I.I.; Shenderova, O.; Turner, S.; Lebedev, O.I.; Basov, A.A.; Sildos, I.; Rähn, M.; Shiryaev, A.A.; Van Tendeloo, G. pdf  doi
openurl 
  Title Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond Type A1 Journal article
  Year 2010 Publication Small Abbreviated Journal Small  
  Volume 6 Issue 5 Pages 687-694  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An efficient method to investigate the microstructure and spatial distribution of nitrogen and nitrogen-vacancy (N-V) defects in detonation nanodiamond (DND) with primary particle sizes ranging from approximately 3 to 50 nm is presented. Detailed analysis reveals atomic nitrogen concentrations as high as 3 at% in 50% of diamond primary particles with sizes smaller than 6 nm. A non-uniform distribution of nitrogen within larger primary DND particles is also presented, indicating a preference for location within the defective central part or at twin boundaries. A photoluminescence (PL) spectrum with well-pronounced zero-phonon lines related to the N-V centers is demonstrated for the first time for electron-irradiated and annealed DND particles at continuous laser excitation. Combined Raman and PL analysis of DND crystallites dispersed on a Si substrate leads to the conclusion that the observed N-V luminescence originates from primary particles with sizes exceeding 30 nm. These findings demonstrate that by manipulation of the size/nitrogen content in DND there are prospects for mass production of nanodiamond photoemitters based on bright and stable luminescence from nitrogen-related defects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000275972400013 Publication Date 2010-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810;1613-6829; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 84 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 8.643; 2010 IF: 7.336  
  Call Number UA @ lucian @ c:irua:82364 Serial (down) 2341  
Permanent link to this record
 

 
Author Lebedev, O.I.; Turner, S.; Liu, S.; Cool, P.; Van Tendeloo, G. pdf  doi
openurl 
  Title New nano-architectures of mesoporous silica spheres analyzed by advanced electron microscopy Type A1 Journal article
  Year 2012 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 4 Issue 5 Pages 1722-1727  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Using template-containing silica microspheres as a precursor, novel ordered mesoporous silica nanoparticles with a narrow pore size distribution and high crystallinity have been synthesized by various hydrothermal merging processes. Several architectures like chains, dumbbells, triangles, squares and flowers have been discovered. The linking mechanisms of these interacting silica spheres leading to the formation of ordered nano-structures are studied by HRTEM, HAADF-STEM and electron tomography and a plausible model is presented for several merging processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000300433700051 Publication Date 2011-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 5 Open Access  
  Notes Fwo Approved Most recent IF: 7.367; 2012 IF: 6.233  
  Call Number UA @ lucian @ c:irua:95038 Serial (down) 2328  
Permanent link to this record
 

 
Author Volkova, N.E.; Lebedev, O.I.; Gavrilova, L.Y.; Turner, S.; Gauquelin, N.; Seikh, M.M.; Caignaert, V.; Cherepanov, V.A.; Raveau, B.; Van Tendeloo, G. doi  openurl
  Title Nanoscale ordering in oxygen deficient quintuple perovskite Sm2-\epsilonBa3+\epsilonFe5O15-\delta : implication for magnetism and oxygen stoichiometry Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 21 Pages 6303-6310  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The investigation of the system SmBaFe-O in air has allowed an oxygen deficient perovskite Sm2-epsilon Ba3+epsilon Fe5O15-delta (delta = 0.75, epsilon = 0.125) to be synthesized. In contrast to the XRPD pattern which gives a cubic symmetry (a(p) = 3.934 angstrom), the combined HREM/EELS study shows that this phase is nanoscale ordered with a quintuple tetragonal cell, a(p) X a(p) X 5(ap). The nanodomains exhibit a unique stacking sequence of the A-site cationic layers along the crystallographic c-axis, namely SmBaBa/SmBa/SmBaSm, and are chemically twinned in the three crystallographic directions. The nanoscale ordering of this perovskite explains its peculiar magnetic properties on the basis of antiferromagnetic interactions with spin blockade at the boundary between the nanodomains. The variation of electrical conductivity and oxygen content of this oxide versus temperature suggest potential SOFC applications. They may be related to the particular distribution of oxygen vacancies in the lattice and to the 3d(5)(L) under bar configuration of iron.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344905600029 Publication Date 2014-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 16 Open Access  
  Notes The UrFU authors were financially supported by the Ministry of Education and Science of Russian Federation (project N 4.1039.2014/K) and by UrFU under the Framework Program of development of UrFU through the «Young scientists UrFU» competition. The CRISMAT authors gratefully acknowledge the EC, the CNRS and the French Minister of Education and Research for financial support through their Research, Strategic and Scholarship programs. This work was supported by funding from the European Research Council under the Seventh Framework Program (FP7), ERC grant N°246791 – COUNTATOMS. S.T. gratefully acknowledges the fund for scientific research Flanders for a post-doctoral fellowship and for financial support under contract number G004413N. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC starting grant number 278510 – VORTEX; ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:122137 Serial (down) 2269  
Permanent link to this record
 

 
Author Shenderova, O.; Vargas, A.; Turner, S.; Ivanov, D.M.; Ivanov, M.G. doi  openurl
  Title Nanodiamond-based nanolubricants : investigation of friction surfaces Type A1 Journal article
  Year 2014 Publication Tribology transactions Abbreviated Journal Tribol T  
  Volume 57 Issue 6 Pages 1051-1057  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synergistic compositions of detonation nanodiamond (DND) particles with polytetrafluoroethylene and molybdenum dialkyldithiophosphate were used in ring-on-ring, four-ball, and block-on-ring tests as an additive to polyalphaolefins and engine oils. Modest to significant reductions in the friction coefficients, wear, or both were observed. In the wear scars produced in the block-on-ring tests, the friction surfaces were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and profilometry. Significant polishing effects of the friction surfaces in lubricants containing DND were revealed in SEM observations and roughness measurements. The roughness of the scar surfaces produced in the presence of DND additives was about 35% lower than the roughness of the scars observed in pure oil experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Park Ridge, Ill. Editor  
  Language Wos 000345317900009 Publication Date 2014-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-2004;1547-397X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.685 Times cited 23 Open Access  
  Notes Approved Most recent IF: 1.685; 2014 IF: 1.349  
  Call Number UA @ lucian @ c:irua:122161 Serial (down) 2252  
Permanent link to this record
 

 
Author Vorobyeva, N.; Rumyantseva, M.; Filatova, D.; Konstantinova, E.; Grishina, D.; Abakumov, A.; Turner, S.; Gaskov, A. pdf  doi
openurl 
  Title Nanocrystalline ZnO(Ga) : paramagnetic centers, surface acidity and gas sensor properties Type A1 Journal article
  Year 2013 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 182 Issue Pages 555-564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline ZnO and ZnO(Ga) samples with different gallium content were prepared by wet-chemical method. Introduction of gallium leads to the increase of amount of weak acid sites such as surface hydroxyl groups. Gas sensing properties toward 0.22 ppm H2S and NO2 were studied at 100450 °C by DC conductance measurements. The optimal temperature for gas sensing experiments was determined. Sensor signal toward H2S decreases with increase of Ga concentration. The dependence of ZnO(Ga) sensor signal to NO2 on the gallium content has non-monotonous character, which correlates with the change of conductivity of the samples in air and concentration of paramagnetic donor states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000319488800075 Publication Date 2013-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 42 Open Access  
  Notes Hercules; FWO Approved Most recent IF: 5.401; 2013 IF: 3.840  
  Call Number UA @ lucian @ c:irua:107346 Serial (down) 2250  
Permanent link to this record
 

 
Author Van Gompel, M.; Atalay, A.Y.; Gaulke, A.; Van Bael, M.K.; D'Haen, J.; Turner, S.; Van Tendeloo, G.; Vanacken, J.; Moshchalkov, V.V.; Wagner, P. pdf  doi
openurl 
  Title Morphological TEM studies and magnetoresistance analysis of sputtered Al-substituted ZnO films : the role of oxygen Type A1 Journal article
  Year 2015 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 212 Issue 212 Pages 1191-1201  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this article, we report on the synthesis of thin, epitaxial films of the transparent conductive oxide Al:ZnO on (0001)-oriented synthetic sapphire substrates by DC sputtering from targets with a nominal 1 at.% Al substitution. The deposition was carried out at an unusually low substrate temperature of only 250 °C in argonoxygen mixtures as well as in pure argon. The impact of the processgas composition on the morphology was analysed by transmission electron microscopy, revealing epitaxial growth in all the cases with a minor impact of the process parameters on the resulting grain sizes. The transport properties resistivity, Hall effect and magnetoresistance were studied in the range from 10 to 300 K in DC and pulsed magnetic fields up to 45 T. While the carrier density and mobility are widely temperature independent, we identified a low fieldlow temperature regime in which the magnetoresistance shows an anomalous, negative behaviour. At higher fields and temperatures, the magnetoresistance exhibits a more conventional, positive curvature with increasing field strength. As a possible explanation, we propose carrier scattering at localised magnetic trace impurities and magnetic correlations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000356706500003 Publication Date 2015-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.775 Times cited Open Access  
  Notes Methusalem project NANO; FWO; 246791 COUNTATOMS Approved Most recent IF: 1.775; 2015 IF: 1.616  
  Call Number c:irua:126732 Serial (down) 2204  
Permanent link to this record
 

 
Author Zhang, L.; Turner, S.; Brosens, F.; Verbeeck, J. url  doi
openurl 
  Title Model-based determination of dielectric function by STEM low-loss EELS Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 3 Pages 035102  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Theory of quantum systems and complex systems  
  Abstract Dielectric properties of materials are crucial in describing the electromagnetic response of materials. As devices are becoming considerably smaller than the optical wavelength, the conventional measuring methods based on optical response are limited by their spatial resolution. Electron energy loss spectroscopy performed in a scanning transmission electron microscope is a good alternative to obtain the dielectric properties with excellent spatial resolution. Due to the overlap of diffraction discs in scanning transmission electron microscopy, it is difficult to apply conventional experimental settings to suppress retardation losses. In this contribution, a relativistic dielectric model for the loss function is presented which is used in a model based optimization scheme to estimate the complex dielectric function of a material. The method is applied to experiments on bulk diamond and SrTiO3 and shows a good agreement with optical reference data when retardation effects are included. Application of this technique to nanoparticles is possible but several theoretical assumptions made in the model of the loss function are violated and interpretation becomes problematic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000274002300027 Publication Date 2010-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes Esteem – 026019; Fwo Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:81258UA @ admin @ c:irua:81258 Serial (down) 2098  
Permanent link to this record
 

 
Author Vassiliev, S.Y.; Laurinavichute, V.K.; Abakumov, A.M.; Govorov, V.A.; Bendovskii, E.B.; Turner, S.; Filatov, A.Y.; Tarasovskii, V.P.; Borzenko, A.G.; Alekseeva, A.M.; Antipov, E.V. pdf  doi
openurl 
  Title Microstructural aspects of the degradation behavior of SnO2-based anodes for aluminum electrolysis Type A1 Journal article
  Year 2010 Publication Journal of the electrochemical society Abbreviated Journal J Electrochem Soc  
  Volume 157 Issue 5 Pages C178-C186  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The performance of SnO2 ceramic anodes doped with copper and antimony oxides was examined in cryolite alumina melts under anodic polarization at different cryolite ratios, temperatures, times, and current densities. The corroded part consists of a narrow strong corrosion zone at the anode surface with damage of the intergrain contacts and a large increase in porosity, a wider moderate corrosion zone with a smaller porosity increase, and a Cu depletion zone, where the ceramic retains its initial microstructure and a slight porosity increase occurs due to the removal of the Cu-rich inclusions. Mechanical destruction of the anode was never observed in the 10100 h tests. A microstructural model of the ceramic was suggested, consisting of grains with an Sb-doped SnO2 grain core surrounded by an ~200 to 500 nm grain shell where SnO2 was simultaneously doped with Sb and Mn+ (M=Cu2+,Fe3+,Al3+). The grains were separated by a few nanometers thick Cu-enriched grain boundaries. Different secondary charge carrier (holes) concentrations and electric conductivities in the grain core and grain shell result in a higher current density at the intergrain regions that leads to their profound degradation, especially in the low temperature acidic melt.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000276555300037 Publication Date 2010-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4651; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.259 Times cited 3 Open Access  
  Notes Approved Most recent IF: 3.259; 2010 IF: 2.427  
  Call Number UA @ lucian @ c:irua:82260 Serial (down) 2040  
Permanent link to this record
 

 
Author Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Metals@MOFs – loading MOFs with metal nanoparticles for hybrid functions Type A1 Journal article
  Year 2010 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume 2010 Issue 24 Pages 3701-3714  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metalorganic frameworks (MOFs) as well as porous coordination polymers (PCPs) are porous, organicinorganic hybrid solids with zeolite-like structures and properties. Due to their extraordinarily high surface area and well defined pore structure MOFs can be used for the stabilization of metal nanoparticles with adjustable size. The embedded metal nanoparticles are still accessible for other reagents due to the high porosity of the MOF systems. This fact makes metal@MOF systems especially interesting for heterogeneous catalysis, gas storage and chemical sensing. This review compiles the cases of metal nanoparticles supported by or embedded into MOFs reported so far and the main aspects and problems associated with these novel nanocomposite systems. The determination of the dispersion and the location of the particles at the MOF support, the control of the loading degree and its effect on the catalytic activity of the system are discussed as well as the partial degradation of the MOF structure upon particle formation. Examples of the introduction of stabilizing groups into the MOF network that direct the loading and can influence the size and shape of the embedded particles are still rare and point into the possible direction of future investigations. Finally, the formation of bimetallic nanoparticles, which are stabilized and supported by a MOF network, will also be reviewed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000281684300001 Publication Date 2010-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 366 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 2.444; 2010 IF: 2.910  
  Call Number UA @ lucian @ c:irua:85495 Serial (down) 2014  
Permanent link to this record
 

 
Author Kalidindi, S.B.; Hyunchul, O.; Hirscher, M.; Esken, D.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Metal@COFs : covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material Type A1 Journal article
  Year 2012 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 18 Issue 35 Pages 10848-10856  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(eta 3-C3H5)(eta 5-C5H5)]@COF-102 inclusion compound (synthesized by a gas-phase infiltration method) led to the formation of the Pd@COF-102 hybrid material. Advanced electron microscopy techniques (including high-angle annular dark-field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4 +/- 0.5) nm) were evenly distributed inside the COF-102 framework. The Pd@COF-102 hybrid material is a rare example of a metal-nanoparticle-loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal-decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metalorganic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2-3 through Pd impregnation on COF-102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000307782800013 Publication Date 2012-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 88 Open Access  
  Notes Fwo Approved Most recent IF: 5.317; 2012 IF: 5.831  
  Call Number UA @ lucian @ c:irua:100469 Serial (down) 2007  
Permanent link to this record
 

 
Author Singh, K.; Maignan, A.; Simon, C.; Kumar, S.; Martin, C.; Lebedev, O.; Turner, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Magnetodielectric CuCr0.5V0.5O2 : an example of a magnetic and dielectric multiglass Type A1 Journal article
  Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 22 Pages 226002-226002,4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The complex dielectric susceptibility and spin glass properties of polycrystalline CuCr0.5V 0.5O2 delafossite have been investigated. Electron diffraction, high resolution electron microscopy and electron energy loss spectroscopy show that the Cr3+ and V 3+ magnetic cations are randomly distributed on the triangular network of CdI2-type layers. In contrast to CuCrO2, CuCr0.5V 0.5O2 exhibits two distinctive (magnetic and electric) glassy states evidenced by memory effects in electric and magnetic susceptibilities. A large magnetodielectric coupling is observed at low temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000304873300027 Publication Date 2012-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 19 Open Access  
  Notes Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:98380 Serial (down) 1916  
Permanent link to this record
 

 
Author Meledina, M.; Turner, S.; Galvita, V.V.; Poelman, H.; Marin, G.B.; Van Tendeloo, G. doi  openurl
  Title Local environment of Fe dopants in nanoscale Fe : CeO2-x oxygen storage material Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 7 Issue 7 Pages 3196-3204  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale Fe : CeO2-x oxygen storage material for the process of chemical looping has been investigated by advanced transmission electron microscopy and electron energy-loss spectroscopy before and after a model looping procedure, consisting of redox cycles at heightened temperature. Separately, the activity of the nanomaterial has been tested in a toluene total oxidation reaction. The results show that the material consists of ceria nanoparticles, doped with single Fe atoms and small FeOx clusters. The iron ion is partially present as Fe3+ in a solid solution within the ceria lattice. Furthermore, enrichment of reduced Fe2+ species is observed in nanovoids present in the ceria nanoparticles, as well as at the ceria surface. After chemical looping, agglomeration occurs and reduced nanoclusters appear at ceria grain boundaries formed by sintering. These clusters originate from surface Fe2+ aggregation, and from bulk Fe3+, which “leaks out” in reduced state after cycling to a slightly more agglomerated form. The activity of Fe : CeO2 during the toluene total oxidation part of the chemical looping cycle is ensured by the dopant Fe in the Fe1-xCexO2 solid solution, and by surface Fe species. These measurements on a model Fe : CeO2-x oxygen storage material give a unique insight into the behavior of dopants within a nanosized ceria host, and allow to interpret a plethora of (doped) cerium oxide-based reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000349473200046 Publication Date 2015-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 17 Open Access  
  Notes Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number c:irua:125299 Serial (down) 1828  
Permanent link to this record
 

 
Author Turner, S.; Lu, Y.-G.; Janssens, S.D.; da Pieve, F.; Lamoen, D.; Verbeeck, J.; Haenen, K.; Wagner, P.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Local boron environment in B-doped nanocrystalline diamond films Type A1 Journal article
  Year 2012 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 4 Issue 19 Pages 5960-5964  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Thin films of heavily B-doped nanocrystalline diamond (B:NCD) have been investigated by a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy performed on a state-of-the-art aberration corrected instrument to determine the B concentration, distribution and the local B environment. Concentrations of [similar]1 to 3 at.% of boron are found to be embedded within individual grains. Even though most NCD grains are surrounded by a thin amorphous shell, elemental mapping of the B and C signal shows no preferential embedding of B in these amorphous shells or in grain boundaries between the NCD grains, in contrast with earlier work on more macroscopic superconducting polycrystalline B-doped diamond films. Detailed inspection of the fine structure of the boron K-edge and comparison with density functional theory calculated fine structure energy-loss near-edge structure signatures confirms that the B atoms present in the diamond grains are substitutional atoms embedded tetrahedrally into the diamond lattice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000308705900026 Publication Date 2012-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 39 Open Access  
  Notes FWO G056810N; GOA XANES meets ELNES; 246791 COUNTATOMS; Hercules; 262348 ESMI; Methusalem Nano Approved Most recent IF: 7.367; 2012 IF: 6.233  
  Call Number UA @ lucian @ c:irua:101227UA @ admin @ c:irua:101227 Serial (down) 1825  
Permanent link to this record
 

 
Author Lu, Y.-G.; Turner, S.; Verbeeck, J.; Janssens, S.D.; Haenen, K.; Van Tendeloo, G. pdf  doi
openurl 
  Title Local bond length variations in boron-doped nanocrystalline diamond measured by spatially resolved electron energy-loss spectroscopy Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue 3 Pages 032105-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Variations in local bond length and coordination in boron-doped nanocrystalline diamond (NCD) films have been studied through changes in the fine structure of boron and carbon K-edges in electron energy-loss spectra, acquired in a scanning transmission electron microscope. The presence of high concentrations of B in pristine diamond regions and enrichment of B at defects in single NCD grains is demonstrated. Local bond length variations are evidenced through an energy shift of the carbon 1s → σ* edge at B-rich defective regions within single diamond grains, indicating an expansion of the diamond bond length at sites with local high B content.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000322146300049 Publication Date 2013-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 15 Open Access  
  Notes Iap P6/42; Fwo G056810n; 262348 Esmi; 246791 Countatoms; 278510 Vortex; Fwo ECASJO_; Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:109210UA @ admin @ c:irua:109210 Serial (down) 1824  
Permanent link to this record
 

 
Author Van Rompaey, S.; Dachraoui, W.; Turner, S.; Podyacheva, O.Y.; Tan, H.; Verbeeck, J.; Abakumov, A.; Hadermann, J. pdf  url
doi  openurl
  Title Layered oxygen vacancy ordering in Nb-doped SrCo1-xFexO3-\delta perovskite Type A1 Journal article
  Year 2013 Publication Zeitschrift für Kristallographie Abbreviated Journal Z Krist-Cryst Mater  
  Volume 228 Issue 1 Pages 28-34  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure of SrCo0.7Fe0.2Nb0.1O2.72 was determined using a combination of precession electron diffraction (PED), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and spatially resolved electron energy loss spectroscopy (STEM-EELS). The structure has a tetragonal P4/mmm symmetry with cell parameters a = b = a(p), c = 2a(p) (a(p) being the cell parameter of the perovskite parent structure). Octahedral BO2 layers alternate with the anion-deficient BO1.4 layers, the different B cations are randomly distributed over both layers. The specific feature of the SrCo0.7Fe0.2NB0.1O2.72 microstructure is a presence of extensive nanoscale twinning resulting in domains with alignment of the tetragonal c-axis along all three cubic direction of the perovskite subcell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication München Editor  
  Language Wos 000315475900004 Publication Date 2013-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-4946; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.179 Times cited 9 Open Access  
  Notes Fwo; Countatoms Approved Most recent IF: 3.179; 2013 IF: NA  
  Call Number UA @ lucian @ c:irua:107698UA @ admin @ c:irua:107698 Serial (down) 1808  
Permanent link to this record
 

 
Author Molina, L.; Egoavil, R.; Turner, S.; Thersleff, T.; Verbeeck, J.; Holzapfel, B.; Eibl, O.; Van Tendeloo, G. pdf  doi
openurl 
  Title Interlayer structure in YBCO-coated conductors prepared by chemical solution deposition Type A1 Journal article
  Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 26 Issue 7 Pages 075016-75018  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The functionality of YBa2Cu3O7−δ (YBCO)-coated conductor technology depends on the reliability and microstructural properties of a given tape or wire architecture. Particularly, the interface to the metal tape is of interest since it determines the adhesion, mechanical stability of the film and thermal contact of the film to the substrate. A trifluoroacetate (TFA)metal organic deposition (MOD) prepared YBCO film deposited on a chemical solution-derived buffer layer architecture based on CeO2/La2Zr2O7 and grown on a flexible Ni5 at.%W substrate with a {100}⟨001⟩ biaxial texture was investigated. The YBCO film had a thickness was 440 nm and a jc of 1.02 MA cm−2 was determined at 77 K and zero external field. We present a sub-nanoscale analysis of a fully processed solution-derived YBCO-coated conductor by aberration-corrected scanning transmission electron microscopy (STEM) combined with electron energy-loss spectroscopy (EELS). For the first time, structural and chemical analysis of the valence has been carried out on the sub-nm scale. Intermixing of Ni, La, Ce, O and Ba takes place at these interfaces and gives rise to nanometer-sized interlayers which are a by-product of the sequential annealing process. Two distinct interfacial regions were analyzed in detail: (i) the YBCO/CeO2/La2Zr2O7 region (10 nm interlayer) and (ii) the La2Zr2O7/Ni5 at.%W substrate interface region (20 nm NiO). This is of particular significance for the functionality of these YBCO-coated conductor architectures grown by chemical solution deposition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000319973800024 Publication Date 2013-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 11 Open Access  
  Notes vortex; Countatoms; Fwo; Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.878; 2013 IF: 2.796  
  Call Number UA @ lucian @ c:irua:108704UA @ admin @ c:irua:108704 Serial (down) 1698  
Permanent link to this record
 

 
Author Ding, J.F.; Lebedev, O.I.; Turner, S.; Tian, Y.F.; Hu, W.J.; Seo, J.W.; Panagopoulos, C.; Prellier, W.; Van Tendeloo, G.; Wu, T. doi  openurl
  Title Interfacial spin glass state and exchange bias in manganite bilayers with competing magnetic orders Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 5 Pages 054428-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The magnetic properties of manganite bilayers composed of G-type antiferromagnetic (AFM) SrMnO3 and double-exchange ferromagnetic (FM) La0.7Sr0.3MnO3 are studied. A spin-glass state is observed as a result of competing magnetic orders and spin frustration at the La0.7Sr0.3MnO3/SrMnO3 interface. The dependence of the irreversible temperature on the cooling magnetic field follows the Almeida-Thouless line. Although an ideal G-type AFM SrMnO3 is featured with a compensated spin configuration, the bilayers exhibit exchange bias below the spin glass freezing temperature, which is much lower than the Néel temperature of SMO, indicating that the exchange bias is strongly correlated with the spin glass state. The results indicate that the spin frustration that originates from the competition between the AFM super-exchange and the FM double-exchange interactions can induce a strong magnetic anisotropy at the La0.7Sr0.3MnO3/SrMnO3 interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315271200002 Publication Date 2013-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 98 Open Access  
  Notes FWO; COUNTATOMS; Hercules Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107349 Serial (down) 1696  
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Bontempi, E.; Gasparotto, A.; Lebedev, O.I.; Turner, S.; Depero, L.E.; Van Tendeloo, G.; Barreca, D. pdf  doi
openurl 
  Title Insights on growth and nanoscopic investigation of uncommon iron oxide polymorphs Type A1 Journal article
  Year 2013 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume Issue 31 Pages 5454-5461  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Si(100)-supported Fe2O3 nanomaterials were developed by a chemical vapor deposition (CVD) approach. The syntheses, which were performed at temperatures between 400 and 550 °C, selectively yielded the scarcely studied β- and ϵ-Fe2O3 polymorphs under O2 or O2 + H2O reaction environments, respectively. Correspondingly, the observed morphology underwent a progressive evolution from interconnected nanopyramids to vertically aligned nanorods. The present study aims to provide novel insights into Fe2O3 nano-organization by a systematic investigation of the system structure/morphology and of their interrelations with growth conditions. In particular, for the first time, the β- and ϵ-Fe2O3 preparation process has been accompanied by a thorough multitechnique investigation, which, beyond X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FESEM), is carried out by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDXS), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), scanning TEM electron energy-loss spectroscopy (STEM-EELS), and high-angle annular dark-field STEM (HAADF-STEM). Remarkably, the target materials showed a high structural and compositional homogeneity throughout the whole thickness of the nanodeposit. In particular, spatially resolved EELS chemical maps through the spectrum imaging (SI) technique enabled us to gain important information on the local Fe coordination, which is of crucial importance in determining the system reactivity. The described preparation method is in fact a powerful tool to simultaneously tailor phase composition and morphology of iron(III) oxide nanomaterials, the potential applications of which include photocatalysis, magnetic devices, gas sensors, and anodes for Li-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000330567000009 Publication Date 2013-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 18 Open Access  
  Notes Fwo; Countatoms Approved Most recent IF: 2.444; 2013 IF: 2.965  
  Call Number UA @ lucian @ c:irua:110946 Serial (down) 1676  
Permanent link to this record
 

 
Author Wiktor, C.; Turner, S.; Zacher, D.; Fischer, R.A.; Van Tendeloo, G. pdf  doi
openurl 
  Title Imaging of intact MOF-5 nanocrystals by advanced TEM at liquid Type A1 Journal article
  Year 2012 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 162 Issue Pages 131-135  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract First results on the imaging of intact metalorganic framework (MOF) pores in MOF-5 nanocrystals by aberration corrected transmission electron microscopy (TEM) under liquid nitrogen conditions are presented. The applied technique is certainly transferable to other MOF systems, permitting detailed studies of MOF interfaces, MOFnanoparticle interaction and MOF thin films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000308284800018 Publication Date 2012-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 30 Open Access  
  Notes Fwo Approved Most recent IF: 3.615; 2012 IF: 3.365  
  Call Number UA @ lucian @ c:irua:100467 Serial (down) 1554  
Permanent link to this record
 

 
Author Orlinskii, S.B.; Bogomolov, R.S.; Kiyamova, A.M.; Yavkin, B.V.; Mamin, G.M.; Turner, S.; Van Tendeloo, G.; Shiryaev, A.A.; Vlasov, I.I.; Shenderova, O. pdf  doi
openurl 
  Title Identification of substitutional nitrogen and surface paramagnetic centers in nanodiamond of dynamic synthesis by electron paramagnetic resonance Type A1 Journal article
  Year 2011 Publication Nanoscience and nanotechnology letters Abbreviated Journal Nanosci Nanotech Let  
  Volume 3 Issue 1 Pages 63-67  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Production of nanodiamond particles containing substitutional nitrogen is important for a wide variety of advanced applications. In the current work nanodiamond particles synthesized from a mixture of graphite and hexogen were analyzed to determine the presence of substitutional nitrogen using pulsed electron paramagnetic resonance (EPR) spectroscopy. Nitrogen paramagnetic centers in the amount of 1.2 ppm have been identified. The spin relaxation characteristics for both nitrogen and surface defects are also reported. A new approach for efficient depletion of the strong non-nitrogen EPR signal in nanodiamond material by immersing nanodiamond particles into ice matrix is suggested. This approach allows an essential decrease of the spin relaxation time of the dominant non-nitrogen defects, while preserving the substitutional nitrogen spin relaxation time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293211200012 Publication Date 2011-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1941-4900;1941-4919; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.889 Times cited 14 Open Access  
  Notes Approved Most recent IF: 1.889; 2011 IF: 0.528  
  Call Number UA @ lucian @ c:irua:91943 Serial (down) 1548  
Permanent link to this record
 

 
Author Turner, S.; Lazar, S.; Freitag, B.; Egoavil, R.; Verbeeck, J.; Put, S.; Strauven, Y.; Van Tendeloo, G. pdf  doi
openurl 
  Title High resolution mapping of surface reduction in ceria nanoparticles Type A1 Journal article
  Year 2011 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 3 Issue 8 Pages 3385-3390  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Surface reduction of ceria nano octahedra with predominant {111} and {100} type surfaces is studied using a combination of aberration-corrected Transmission Electron Microscopy (TEM) and spatially resolved electron energy-loss spectroscopy (EELS) at high energy resolution and atomic spatial resolution. The valency of cerium ions at the surface of the nanoparticles is mapped using the fine structure of the Ce M4,5 edge as a fingerprint. The valency of the surface cerium ions is found to change from 4+ to 3+ owing to oxygen deficiency (vacancies) close to the surface. The thickness of this Ce3+ shell is measured using atomic-resolution Scanning Transmission Electron Microscopy (STEM)-EELS mapping over a {111} surface (the predominant facet for this ceria morphology), {111} type surface island steps and {100} terminating planes. For the {111} facets and for {111} surface islands, the reduction shell is found to extend over a single fully reduced surface plane and 12 underlying mixed valency planes. For the {100} facets the reduction shell extends over a larger area of 56 oxygen vacancy-rich planes. This finding provides a plausible explanation for the higher catalytic activity of the {100} surface facets in ceria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000293521700057 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 127 Open Access  
  Notes Fwo Approved Most recent IF: 7.367; 2011 IF: 5.914  
  Call Number UA @ lucian @ c:irua:90361UA @ admin @ c:irua:90361 Serial (down) 1458  
Permanent link to this record
 

 
Author Pospisilova, A.; Filippov, S.K.; Bogomolova, A.; Turner, S.; Sedlacek, O.; Matushkin, N.; Cernochova, Z.; Stepanek, P.; Hruby, M. url  doi
openurl 
  Title Glycogen-graft-poly(2-alkyl-2-oxazolines) – the new versatile biopolymer-based thermoresponsive macromolecular toolbox Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue 106 Pages 61580-61588  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This study is focused on thermoresponsive glycogen-graft-poly(2-alkyl-2-oxazolines), a new group of nanostructured hybrid dendrimeric stimuli-responsive polymers connecting the body's own biodegradable polysaccharidic dendrimer glycogen with the widely tuneable thermoresponsive behavior of polypeptide-analogic poly(2-alkyl-2-oxazolines), which are known to be biocompatible. Glycogen-graft-poly(2-alkyl-2-oxazolines) were prepared by a simple one-pot two-step procedure involving cationic ring-opening polymerization of 2-alkyl-2-oxazolines followed by termination of the living cationic ends with sodium glycogenate. As confirmed by light and X-ray scattering, as well as cryo-transmission electron microscopy, the grafted dendrimer structure allows easy adjustment of the cloud point temperature, the concentration dependence and nanostructure of the self-assembled phase separated polymer by crosstalk during graft composition, the graft length and the grafting density, in a very wide range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000345656600045 Publication Date 2014-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:122222 Serial (down) 1355  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: