|   | 
Details
   web
Records
Author Zhang, Y.; Bals, S.; Van Tendeloo, G.
Title Understanding CeO2-Based Nanostructures through Advanced Electron Microscopy in 2D and 3D Type A1 Journal article
Year 2019 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 36 Issue 36 Pages 1800287
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Engineering morphology and size of CeO2-based nanostructures on a (sub)nanometer scale will greatly influence their performance; this is because of their high oxygen storage capacity and unique redox properties, which allow faster switching of the oxidation state between Ce4+ and Ce3+. Although tremendous research has been carried out on the shapecontrolled synthesis of CeO2, the characterization of these nanostructures at the atomic scale remains a major challenge and the origin of debate. The rapid developments of aberration-corrected transmission electron microscopy (AC-TEM) have pushed the resolution below 1 Å, both in TEM and in scanning transmission electron microscopy (STEM) mode. At present, not only morphology and structure, but also composition and electronic structure can be analyzed at an atomic scale, even in 3D. This review summarizes recent significant achievements using TEM/ STEM and associated spectroscopic techniques to study CeO2-based nanostructures and related catalytic phenomena. Recent results have shed light on the understanding of the different mechanisms. The potential and limitations, including future needs of various techniques, are discussed with recommendations to facilitate further developments of new and highly efficient CeO2-based nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455414600012 Publication Date 2018-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 22 Open Access OpenAccess
Notes Y.Z. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska- Curie grant agreement no. 665501 through a FWO [PEGASUS]2 Marie Skłodowska-Curie fellowship (12U4917N). S.B. acknowledges funding from the European Research Council, ERC grant no. 335078-Colouratom. ; ecas_sara Approved Most recent IF: 4.474
Call Number EMAT @ emat @UA @ admin @ c:irua:156391 Serial (down) 5151
Permanent link to this record
 

 
Author Altantzis, T.; Lobato, I.; De Backer, A.; Béché, A.; Zhang, Y.; Basak, S.; Porcu, M.; Xu, Q.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Van Tendeloo, G.; Van Aert, S.; Bals, S.
Title Three-Dimensional Quantification of the Facet Evolution of Pt Nanoparticles in a Variable Gaseous Environment Type A1 Journal article
Year 2019 Publication Nano letters Abbreviated Journal Nano Lett
Volume 19 Issue 19 Pages 477-481
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Pt nanoparticles play an essential role in a wide variety of catalytic reactions. The activity of the particles strongly depends on their three-dimensional (3D) structure and exposed facets, as well as on the reactive environment. High-resolution electron microscopy has often been used to characterize nanoparticle catalysts but unfortunately most observations so far have been either performed in vacuum and/or using conventional (2D) in situ microscopy. The latter however does not provide direct 3D morphological information. We have implemented a quantitative methodology to measure variations of the 3D atomic structure of nanoparticles under the flow of a selected gas. We were thereby able to quantify refaceting of Pt nanoparticles with atomic resolution during various oxidation−reduction cycles. In a H2 environment, a more faceted surface morphology of the particles was observed with {100} and {111} planes being dominant. On the other hand, in O2 the percentage of {100} and {111} facets decreased and a significant increase of higher order facets was found, resulting in a more rounded morphology. This methodology opens up new opportunities toward in situ characterization of catalytic nanoparticles because for the first time it enables one to directly measure 3D morphology variations at the atomic scale in a specific gaseous reaction environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455561300061 Publication Date 2019-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 82 Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 335078 COLOURATOM to S.B. and Grant 770887 PICOMETRICS to S.V.A.). The authors acknowledge funding from the European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M., and Q.X. and MUMMERING 765604 to S.B. and Q.X.). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0368.15N, G.0369.15N, and G.0267.18N), postdoctoral grants to T.A. and A.D.B, and an FWO [PEGASUS]2 Marie Sklodowska-Curie fellowship to Y.Z. (12U4917N). L.M.L.-M. acknowledges funding from the Spanish Ministerio de Economía y Competitividad (Grant MAT2017-86659-R). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research. ecas_sara Realnano 815128; sygma Approved Most recent IF: 12.712
Call Number EMAT @ emat @UA @ admin @ c:irua:156390 Serial (down) 5150
Permanent link to this record
 

 
Author Gkanatsiou, A.; Lioutas, C.B.; Frangis, N.; Polychroniadis, E.K.; Prystawko, P.; Leszczynski, M.; Altantzis, T.; Van Tendeloo, G.
Title Influence of 4H-SiC substrate miscut on the epitaxy and microstructure of AlGaN/GaN heterostructures Type A1 Journal article
Year 2019 Publication Materials science in semiconductor processing Abbreviated Journal Mat Sci Semicon Proc
Volume 91 Issue Pages 159-166
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract AlGaN/GaN heterostructures were grown on “on-axis” and 2° off (0001) 4H-SiC substrates by metalorganic vapor phase epitaxy (MOVPE). Structural characterization was performed by transmission electron microscopy. The dislocation density, being greater in the on-axis case, is gradually reduced in the GaN layer and is forming

dislocation loops in the lower region. Steps aligned along [11̅00] in the off-axis case give rise to simultaneous defect formation. In the on-axis case, an almost zero density of steps is observed, with the main origin of defects probably being the orientation mismatch at the grain boundaries between the small not fully coalesced AlN grains. V-shaped formations are observed in the AlN nucleation layer, but are more frequent in the off-axis case, probably enhanced by the presence of steps. These V-shaped formations are completely overgrown by the GaN layer, during the subsequent deposition, presenting AlGaN areas in the walls of the defect, indicating an interdiffusion between the layers. Finally, at the AlGaN/GaN heterostructure surface in the on-axis case, V-shapes are observed, with the AlN spacer and AlGaN (21% Al) thickness on relaxed GaN exceeding the critical thickness for relaxation. On the other hand, no relaxation in the form of V-shape creation is observed in the off-axis case, probably due to the smaller AlGaN thickness (less than 21% Al). The AlN spacer layer, grown in between the heterostructure, presents a uniform thickness and clear interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454537700022 Publication Date 2018-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1369-8001 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.359 Times cited 1 Open Access Not_Open_Access
Notes Funding: This work was supported by the IKY Fellowships of Excellence for Postgraduate Studies in Greece-SIEMENS Program; the Greek General Secretariat for Research and Technology, contract SAE 013/8–2009SE 01380012; and the JU ENIAC Project LAST POWER Large Area silicon carbide Substrates and heteroepitaxial GaN for POWER device applications [grant number 120218]. Also part of the research leading to these results has received funding from the European Union Seventh Framework Program under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a post-doctoral grant. Approved Most recent IF: 2.359
Call Number EMAT @ emat @UA @ admin @ c:irua:156200 Serial (down) 5149
Permanent link to this record
 

 
Author Barreca, D.; Gri, F.; Gasparotto, A.; Carraro, G.; Bigiani, L.; Altantzis, T.; Žener, B.; Lavrenčič Štangar, U.; Alessi, B.; Padmanaban, D.B.; Mariotti, D.; Maccato, C.
Title Multi-functional MnO2nanomaterials for photo-activated applications by a plasma-assisted fabrication route Type A1 Journal article
Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 11 Issue 1 Pages 98-108
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Supported MnO2-based nanomaterials were fabricated on fluorine-doped tin oxide substrates by plasma enhanced-chemical vapor deposition (PE-CVD) between 100 °C and 400 °C, starting from a fluorinated Mn(II) diamine diketonate precursor. Growth experiments yielded -MnO2 nanosystems with hierarchical morphology tuneable from dendritic structures to quasi-1D nanosystems as a function of growth temperature, whose variation enabled also a concomitant tailoring of the system fluorine content, and of the optical absorption and band gap. Preliminary photocatalytic tests were aimed at the investigation of photoinduced hydrophilic (PH) and solid phase photocatalytic (PC) performances of the present nanomaterials, as well as at the photodegradation of Plasmocorinth B azo-dye aqueous solutions. The obtained findings highlighted an attractive system photoactivity even under visible light, finely tailored by fluorine content, morphological organization and optical properties of the prepared nanostructures. The results indicate that the synthesized MnO2 nanosystems have potential applications as advanced smart materials for anti-fogging/self-cleaning end uses and water purification.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454327500037 Publication Date 2018-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 7 Open Access OpenAccess
Notes Padova University DOR 2016–2017, P-DiSC #03BIRD2016-UNIPD projects, HERALD Cost Action MP1402 – 37831 and ACTION post-doc fellowship are acknowledged for financial support. T.A. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO). Thanks are also due to Prof. Sara Bals (EMAT, University of Antwerp, Belgium), Prof. Romana Cerc Korošec and to Dr. Lev Matoh (University of Ljubljana, Slovenia), and to Prof. Elza Bontempi (Brescia University, Italy). The work was also supported by EPSRC (award EP/R008841/1, EP/M024938/1). Approved Most recent IF: 7.367
Call Number EMAT @ emat @UA @ admin @ c:irua:156388 Serial (down) 5148
Permanent link to this record
 

 
Author Brandenburg, R.; Bogaerts, A.; Bongers, W.; Fridman, A.; Fridman, G.; Locke, B.R.; Miller, V.; Reuter, S.; Schiorlin, M.; Verreycken, T.; Ostrikov, K.K.
Title White paper on the future of plasma science in environment, for gas conversion and agriculture Type A1 Journal article
Year 2019 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 16 Issue 1 Pages 1700238
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Climate change, environmental pollution control, and resource utilization efficiency, as well as food security, sustainable agriculture, and water supply are among the main challenges facing society today. Expertise across different academic fields, technologies,anddisciplinesisneededtogeneratenewideastomeetthesechallenges. This “white paper” aims to provide a written summary by describing the main aspects and possibilities of the technology. It shows that plasma science and technology can make significant contributions to address the mentioned issues. The paper also addresses to people in the scientific community (inside and outside plasma science) to give inspiration for further work in these fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455413600004 Publication Date 2018-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 19 Open Access Not_Open_Access
Notes This paper is a result of the PlasmaShape project, supported by funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 316216. During this project, young scientists and renowned and outstanding scientists collaborated in the development of a political-scientific consensus paper as well as six scientific, strategic white papers. In an unique format core themes such as energy, optics and glass, medicine and hygiene, aerospace and automotive, plastics and textiles, environment and agriculture and their future development were discussed regarding scientific relevance and economic impact. We would like to thank our colleagues from 18 nations from all over the world (Australia, Belgium, Czech Republic, PR China, France, Germany, Great Britain, Italy, Japan, The Netherlands, Poland, Romania, Russia, Slovakia, Slovenia, Sweden, Switzerland, USA) who have participated both workshops of Future in Plasma Science I and II in Greifswald in 2015/2016. The valuable contribution of all participants during the workshops, the intensive cooperation between the project partners, and the comprehensive input of all working groups of Future in Plasma Science was the base for the present paper. Kindly acknowledged is the support of graphical work by C. Desjardins and K. Drescher. Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:156389 Serial (down) 5146
Permanent link to this record
 

 
Author Gröger, S.; Ramakers, M.; Hamme, M.; Medrano, J.A.; Bibinov, N.; Gallucci, F.; Bogaerts, A.; Awakowicz, P.
Title Characterization of a nitrogen gliding arc plasmatron using optical emission spectroscopy and high-speed camera Type A1 Journal article
Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue 6 Pages 065201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A gliding arc plasmatron (GAP), which is very promising for purification and gas conversion,

is characterized in nitrogen using optical emission spectroscopy and high-speed photography,

because the cross sections of electron impact excitation of N 2 are well known. The gas

temperature (of about 5500 K), the electron density (up to 1.5 × 10 15 cm −3 ) and the reduced

electric field (of about 37 Td) are determined using an absolutely calibrated intensified charge-

coupled device (ICCD) camera, equipped with an in-house made optical arrangement for

simultaneous two-wavelength diagnostics, adapted to the transient behavior of a GA channel

in turbulent gas flow. The intensities of nitrogen molecular emission bands, N 2 (C–B,0–0) as

well as N +

2 (B–X,0–0), are measured simultaneously. The electron density and the reduced

electric field are determined at a spatial resolution of 30 µm, using numerical simulation and

measured emission intensities, applying the Abel inversion of the ICCD images. The temporal

behavior of the GA plasma channel and the formation of plasma plumes are studied using a

high-speed camera. Based on the determined plasma parameters, we suggest that the plasma

plume formation is due to the magnetization of electrons in the plasma channel of the GAP by

an axial magnetic field in the plasma vortex.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451745900001 Publication Date 2018-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 7 Open Access Not_Open_Access: Available from 30.11.2019
Notes The authors are very grateful to Professor Kurt Behringer for the development of the program code for simulation of emis- sion spectra of nitrogen. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:155974 Serial (down) 5141
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Janssens, L.; De Backer, A.; Nellist, P.D.; Van Aert, S.
Title The atomic lensing model: new opportunities for atom-by-atom metrology of heterogeneous nanomaterials Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 203 Issue Pages 155
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The atomic lensing model has been proposed as a promising method facilitating atom-counting in heterogeneous nanocrystals [1]. Here, image simulations will validate the model, which describes dynamical diffraction as a superposition of individual atoms focussing the incident electrons. It will be demonstrated that the model is reliable in the annular dark field regime for crystals having columns containing dozens of atoms. By using the principles of statistical detection theory, it will be shown that this model gives new opportunities for detecting compositional differences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465021000020 Publication Date 2018-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 4 Open Access OpenAccess
Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0369.15N, G.0502.18N and WO.010.16N), and by personal grants to K.H.W. van den Bos and A. De Backer. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 770887). Approved Most recent IF: 2.843
Call Number EMAT @ emat @UA @ admin @ c:irua:155721 Serial (down) 5074
Permanent link to this record
 

 
Author Jimenez-Mena, N.; Jacques, P.J.; Ding, L.; Gauquelin, N.; Schryvers, D.; Idrissi, H.; Delannay, F.; Simar, A.
Title Enhancement of toughness of Al-to-steel Friction Melt Bonded welds via metallic interlayers Type A1 Journal article
Year 2019 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 740-741 Issue Pages 274-284
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The toughness of Al-to-steel welds decreases with increasing thickness of the intermetallic (IM) layer formed at the interface. Co plating has been added as interlayer in Al-to-steel Friction Melt Bonded (FMB) welds to control the nature and thickness of the IM layer. In comparison to a weld without interlayer, Co plating brings about a reduction of the thickness of the IM layer by 70%. The critical energy release rate of the crack propagating in the weld is used as an indicator of toughness. It is evaluated via an adapted crack propagation test using an energy conservation criterion. For a weld without interlayer, critical energy release rate is found to increase when the thickness of the intermetallic layer decreases. When the intermetallic layer is thick, the crack propagates in a brittle manner through the intermetallic whereas, at low layer thickness, the crack deviates and partially propagates through the Al plate, which causes an increase of toughness. The use of a Co interlayer brings about an increase of toughness by causing full deviation of the crack towards the Al plate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453494500029 Publication Date 2018-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 4 Open Access Not_Open_Access: Available from 25.10.2020
Notes The authors acknowledge the financial support of the Interuniversity Attraction Poles Program from the Belgian State through the Belgian Policy Agency, Belgium, contract IAP7/21 INTEMATE. N. Jimenez-Mena acknowledges the financial support of the (Fonds pour la formation à la recherchedans l'industrie et dans l'agriculture (FRIA), Belgium. A. Simar acknowledges the financial support of the (European Research Council – Starting Grant (ERC-StG), project ALUFIX, grant agreement no 716678. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS), Belgium. The authors also acknowledge M. Coulombier for the help provided in the measurement of the friction coefficient, and T. Pardoen and F. Lani for the fruitful discussions. Approved Most recent IF: 3.094
Call Number EMAT @ emat @c:irua:154866UA @ admin @ c:irua:154866 Serial (down) 5061
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Stergar, E.; Schryvers, D.; Verwerft, M.
Title Characterization of (Ti,Mo,Cr)C nanoprecipitates in an austenitic stainless steel on the atomic scale Type A1 Journal article
Year 2019 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 164 Issue Pages 90-98
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanometer sized (Ti,Mo,Cr)C (MX-type) precipitates that grew in a 24% cold worked Ti-stabilized austenitic stainless steel (grade DIN 1.4970, member of the 15-15Ti austenitic stainless steels) after heat treatment were fully characterized with transmission electron microscopy (TEM), probe corrected high angle annular dark field scanning transmission electron microscopy (HR-HAADF STEM), and atom probe tomography (APT). The precipitates shared the cube-on-cube orientation with the matrix and were facetted on {111} planes, yielding octahedral and elongated octahedral shapes. The misfit dislocations were believed to have Burgers vectors a/6<112> which was verified by geometrical phase analysis (GPA) strain mapping of a matrix-precipitate interface. The dislocations were spaced five to seven atomic

planes apart, on average slightly wider than expected for the lattice parameters of steel and TiC. Quantitative atom probe tomography analysis of the precipitates showed that precipitates were significantly enriched in Mo, Cr and V, and that they were hypostoichiometric with respect to C. These findings were consistent with a reduced lattice parameter. The precipitates were found primarily on Shockley

partial dislocations originating from the original perfect dislocation network. These novel findings could contribute to the understanding of how TiC nanoprecipitates interact with point defects and matrix dislocations. This is essential for the application of these Ti-stabilized steels in high temperature environments or fast spectrum nuclear fission reactors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000456902800008 Publication Date 2018-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 2 Open Access Not_Open_Access: Available from 12.10.2020
Notes This work was supported by ENGIE [contract number 2015-AC- 007 e BSUEZ6900]; the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07- 051D14517 as part of a Nuclear Science User Facilities experiment; and by the MYRRHA program in development at SCKCEN, Belgium. Special thanks to Dr. H. Mezerji and Dr. T. Altantzis for the work on the FEI Titan microscope.We also want to thank Ms. J. Burns for the help on the FIB and Dr. Y. Wu at CAES for conducting the APT measurements. Approved Most recent IF: 5.301
Call Number EMAT @ emat @c:irua:154873UA @ admin @ c:irua:154873 Serial (down) 5060
Permanent link to this record