toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Partoens, B.; Peeters, F.M. openurl 
  Title Artificial atoms and molecules Type A1 Journal article
  Year 2002 Publication Physicalia magazine Abbreviated Journal  
  Volume 24 Issue Pages 29  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Gent Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0770-0520 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:62455 Serial (down) 152  
Permanent link to this record
 

 
Author Szumniak, P.; Bednarek, S.; Pawlowski, J.; Partoens, B. url  doi
openurl 
  Title All-electrical control of quantum gates for single heavy-hole spin qubits Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 19 Pages 195307-195312  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper several nanodevices which realize basic single heavy-hole qubit operations are proposed and supported by time-dependent self-consistent Poisson-Schrodinger calculations using a four band heavy-hole-light-hole model. In particular we propose a set of nanodevices which can act as Pauli X, Y, Z quantum gates and as a gate that acts similar to a Hadamard gate (i.e., it creates a balanced superposition of basis states but with an additional phase factor) on the heavy-hole spin qubit. We also present the design and simulation of a gated semiconductor nanodevice which can realize an arbitrary sequence of all these proposed single quantum logic gates. The proposed devices exploit the self-focusing effect of the hole wave function which allows for guiding the hole along a given path in the form of a stable solitonlike wave packet. Thanks to the presence of the Dresselhaus spin-orbit coupling, the motion of the hole along a certain direction is equivalent to the application of an effective magnetic field which induces in turn a coherent rotation of the heavy-hole spin. The hole motion and consequently the quantum logic operation is initialized only by weak static voltages applied to the electrodes which cover the nanodevice. The proposed gates allow for an all electric and ultrafast (tens of picoseconds) heavy-hole spin manipulation and give the possibility to implement a scalable architecture of heavy-hole spin qubits for quantum computation applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319252200003 Publication Date 2013-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes ; This work was supported by the Polish National Science Center (Grant No. DEC-2011/03/N/ST3/02963), as well as by the “Krakow Interdisciplinary PhD-Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme, co-financed by the European Regional Development Fund. This research was supported in part by PL-Grid Infrastructure. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109002 Serial (down) 88  
Permanent link to this record
 

 
Author Park, K.; De Beule, C.; Partoens, B. url  doi
openurl 
  Title The ageing effect in topological insulators : evolution of the surface electronic structure of Bi2Se3 upon K adsorption Type A1 Journal article
  Year 2013 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 15 Issue Pages 113031-16  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Topological insulators (TIs) have attracted a lot of interest in recent years due to their topologically protected surface states, as well as exotic proximity-induced phenomena and device applications for TI heterostructures. Since the first experimental studies of TIs, angle-resolved photoemission spectra (ARPES) showed that the electronic structure of the topological surface states significantly changes as a function of time after cleavage. The origin and underlying mechanism of this ageing effect are still under debate, despite its importance. Here we investigate the evolution of the surface Dirac cone for Bi2Se3 films upon asymmetric potassium (K) adsorption, using density-functional theory and a tight-binding model. We find that the K adatoms induce short-ranged downward band bending within 2-3 nm from the surface, due to charge transfer from the adatoms to the TI. These findings are in contrast to earlier proposals in the literature, that propose a long-ranged downward band bending up to 15 nm from the surface. Furthermore, as the charge transfer increases, we find that a new Dirac cone, localized slightly deeper into the TI than the original one, appears at the K-adsorbed surface, originating from strong Rashba-split conduction-band states. Our results suggest possible reinterpretations of experiments because the new Dirac cone might have been observed in ARPES measurements instead of the original one that appears immediately after cleavage. Our findings are consistent with ARPES data and provide insight into building TI-heterostructure devices by varying the band-bending potential or film thickness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000326876100006 Publication Date 2013-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 45 Open Access  
  Notes ; KP was supported by National Science Foundation grant numbers DMR-0804665 and DMR-1206354 and SDSC Trestles under DMR060009N. CDB was supported by the Research Foundation Flanders (FWO). ; Approved Most recent IF: 3.786; 2013 IF: 3.671  
  Call Number UA @ lucian @ c:irua:112707 Serial (down) 84  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. pdf  url
doi  openurl
  Title Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue Pages 125416,1-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent realization of graphene sensors to detect individual gas molecules, we investigate the adsorption of H2O, NH3, CO, NO2, and NO on a graphene substrate using first-principles calculations. The optimal adsorption position and orientation of these molecules on the graphene surface is determined and the adsorption energies are calculated. Molecular doping, i.e., charge transfer between the molecules and the graphene surface, is discussed in light of the density of states and the molecular orbitals of the adsorbates. The efficiency of doping of the different molecules is determined and the influence of their magnetic moment is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000254543000133 Publication Date 2008-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1392 Open Access  
  Notes This work was supported by the Flemish Science Foundation FWO-Vl, by the NOI-BOF of the University of Antwerp, and by the Belgian Science Policy IAP. Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:69634 Serial (down) 67  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Adsorption of small molecules on graphene Type A1 Journal article
  Year 2009 Publication Microelectronics journal Abbreviated Journal Microelectron J  
  Volume 40 Issue 4/5 Pages 860-862  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the adsorption process of small molecules on graphene through first-principles calculations and show the presence of two main charge transfer mechanisms. Which mechanism is the dominant one depends on the magnetic properties of the adsorbing molecules. We explain these mechanisms through the density of states of the system and the molecular orbitals of the adsorbates, and demonstrate the possible difficulties in calculating the charge transfer from first principles between a graphene sheet and a molecule. Our results are in good agreement with experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Luton Editor  
  Language Wos 000265870200058 Publication Date 2008-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.163 Times cited 116 Open Access  
  Notes Approved Most recent IF: 1.163; 2009 IF: 0.778  
  Call Number UA @ lucian @ c:irua:77030 Serial (down) 65  
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C. url  doi
openurl 
  Title Adsorption and desorption in confined geometries : a discrete hopping model Type A1 Journal article
  Year 2014 Publication The European physical journal. Special topics Abbreviated Journal Eur Phys J-Spec Top  
  Volume 223 Issue 14 Pages 3243-3256  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the adsorption and desorption kinetics of interacting particles moving on a one-dimensional lattice. Confinement is introduced by limiting the number of particles on a lattice site. Adsorption and desorption are found to proceed at different rates, and are strongly influenced by the concentration-dependent transport diffusion. Analytical solutions for the transport and self-diffusion are given for systems of length 1 and 2 and for a zero-range process. In the last situation the self- and transport diffusion can be calculated analytically for any length.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000346416400015 Publication Date 2014-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1951-6355;1951-6401; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.862 Times cited 4 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government – department EWI. ; Approved Most recent IF: 1.862; 2014 IF: 1.399  
  Call Number UA @ lucian @ c:irua:122779 Serial (down) 61  
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene : stability and electronic and phonon properties Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085444-85448  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ab initio calculations within the density-functional theory formalism are performed to investigate the chemical functionalization of a graphene-like monolayer of siliconsilicenewith B, N, Al, or P atoms. The structural, electronic, magnetic, and vibrational properties are reported. The most preferable adsorption sites are found to be valley, bridge, valley and hill sites for B, N, Al, and P adatoms, respectively. All the relaxed systems with adsorbed/substituted atoms exhibit metallic behavior with strongly bonded B, N, Al, and P atoms accompanied by an appreciable electron transfer from silicene to the B, N, and P adatom/substituent. The Al atoms exhibit opposite charge transfer, with n-type doping of silicene and weaker bonding. The adatoms/substituents induce characteristic branches in the phonon spectrum of silicene, which can be probed by Raman measurements. Using molecular dynamics, we found that the systems under study are stable up to at least T=500 K. Our results demonstrate that silicene has a very reactive and functionalizable surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315482900007 Publication Date 2013-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 169 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107071 Serial (down) 60  
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B. doi  openurl
  Title Accurate pseudopotential description of the GW bandstructure of ZnO Type A1 Journal article
  Year 2011 Publication Computer physics communications Abbreviated Journal Comput Phys Commun  
  Volume 182 Issue 9 Pages 2029-2031  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present the GW band structure of ZnO in its wurtzite (WZ), zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. We have used a Zn20+ pseudopotential which is essential for the adequate treatment of the exchange interaction in the self-energy. The accuracy of the pseudopotential used is also discussed. The effect of the pd hybridization on the GW corrections to the band gap is correlated by comparing the ZB and RS phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000292675100062 Publication Date 2011-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.936 Times cited 18 Open Access  
  Notes ; ; Approved Most recent IF: 3.936; 2011 IF: 3.268  
  Call Number UA @ lucian @ c:irua:90761 Serial (down) 51  
Permanent link to this record
 

 
Author Saniz, R.; Vercauteren, S.; Lamoen, D.; Partoens, B.; Barbiellini, B. pdf  doi
openurl 
  Title Accurate description of the van der Waals interaction of an electron-positron pair with the surface of a topological insulator Type P1 Proceeding
  Year 2014 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 505 Issue Pages 012002  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Positrons can be trapped in localized states at the surface of a material, and thus quite selectively interact with core or valence surface electrons. Hence, advanced surface positron spectroscopy techniques can present the ideal tools to study a topological insulator, where surface states play a fundamental role. We analyze the problem of a positron at a TI surface, assuming that it is a weakly physisorbed positronium (Ps) atom. To determine if the surface of interest in a material can sustain such a physisorption, an accurate description of the underlying van der Waals (vdW) interaction is essential. We have developed a first-principles parameterfree method, based on the density functional theory, to extract key parameters determining the vdW interaction potential between a Ps atom and the surface of a given material. The method has been successfully applied to quartz and preliminary results on Bi2Te2Se indicate the existence of a positron surface state. We discuss the robustness of our predictions versus the most relevant approximations involved in our approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000338216500002 Publication Date 2014-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes ; We thank A. Weiss for very useful conversations. We acknowledge financial support from FWO-Vlaanderen (projectG.0150.13). This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA), adivision of the Flemish Supercomputer Center (VSC), funded by the Hercules foundation and the Flemish Government (EWI Department). B. B. is supported by DOE grants Nos. DE-FG02-07ER46352 and DE-AC02-05CH11231 for theory support at ALS, Berkeley, and a NERSC computer time allocation. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:118264 Serial (down) 46  
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Ab initio study of shallow acceptors in bixbyite V2O3 Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 117 Issue 117 Pages 015703  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present the results of our study on p-type dopability of bixbyite V2O3 using the Heyd, Scuseria, and Ernzerhof hybrid functional (HSE06) within the density functional theory (DFT) formalism. We study vanadium and oxygen vacancies as intrinsic defects and substitutional Mg, Sc, and Y as extrinsic defects. We find that Mg substituting V acts as a shallow acceptor, and that oxygen vacancies are electrically neutral. Hence, we predict Mg-doped V2O3 to be a p-type conductor. Our results also show that vanadium vacancies are relatively shallow, with a binding energy of 0.14 eV, so that they might also lead to p-type conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000347958600067 Publication Date 2015-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 3 Open Access  
  Notes FWO G015013; Hercules Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:122728 Serial (down) 35  
Permanent link to this record
 

 
Author Čukarić, N.A.; Tadić, M.Z.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title 30-band k\cdot p model of electron and hole states in silicon quantum wells Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 20 Pages 205306  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We modeled the electron and hole states in Si/SiO2 quantum wells within a basis of standing waves using the 30-band k . p theory. The hard-wall confinement potential is assumed, and the influence of the peculiar band structure of bulk silicon on the quantum-well sub-bands is explored. Numerous spurious solutions in the conduction-band and valence-band energy spectra are found and are identified to be of two types: (1) spurious states which have large contributions of the bulk solutions with large wave vectors (the high-k spurious solutions) and (2) states which originate mainly from the spurious valley outside the Brillouin zone (the extravalley spurious solutions). An algorithm to remove all those nonphysical solutions from the electron and hole energy spectra is proposed. Furthermore, slow and oscillatory convergence of the hole energy levels with the number of basis functions is found and is explained by the peculiar band mixing and the confinement in the considered quantum well. We discovered that assuming the hard-wall potential leads to numerical instability of the hole states computation. Nonetheless, allowing the envelope functions to exponentially decay in a barrier of finite height is found to improve the accuracy of the computed hole states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000327161500007 Publication Date 2013-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Belgian Science Policy (IAP), the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:112704 Serial (down) 18  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: