|   | 
Details
   web
Records
Author Cagno, S.; van der Snickt, G.; Legrand, S.; Caen, J.; Patin, M.; Meulebroeck, W.; Dirkx, Y.; Hillen, M.; Steenackers, G.; Rousaki, A.; Vandenabeele, P.; Janssens, K.
Title Comparison of four mobile, non‐invasive diagnostic techniques for differentiating glass types in historical leaded windows : MA‐XRF , UV–Vis–NIR, Raman spectroscopy and IRT Type A1 Journal article
Year 2020 Publication X-Ray Spectrometry Abbreviated Journal X-Ray Spectrom
Volume Issue Pages xrs.3185-17
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract This paper critically compares the performance of four non-invasive techniques that match the accuracy, flexibility, time-efficiency, and transportability required for in situ characterization of leaded glass windows: macroscopic X-ray fluorescence imaging (MA-XRF), UV-Vis-NIR, Raman spectroscopy, and infrared thermography (IRT). In order to compare the techniques on equal grounds, all techniques were tested independently of each other by separate research groups on the same historical leaded window tentatively dated to the 17th century, without prior knowledge. The aim was to assess the ability of these techniques to document the conservation history of the window by classifying and grouping the colorless glass panes, based on differences in composition. IRT, MA-XRF and UV-Vis-NIR spectroscopy positively distinguished at least two glass groups, with MA-XRF providing the most detailed chemical information. In particular, based on the ratio between the network modifier (K) and network stabilizer (Ca) and on the level of colorants and decolorizers (Fe, Mn, As), the number of plausible glass families could be strongly reduced. In addition, UV-Vis-NIR detected cobalt at ppm level and gave more specific information on the chromophore Fe2+/Fe(3+)ratio. Raman spectroscopy was hampered by fluorescence caused by the metal ions of the decolorizer in most of the panes, but nevertheless identified one group as HLLA.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000561869600001 Publication Date 2020-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.2 Times cited Open Access
Notes ; Belgian Federal Science Policy Office, Grant/Award Number: BR/175/A3/FENESTRA; Fonds Wetenschappelijk Onderzoek, Grant/Award Number: 12X1919N; Baillet-Latour Fund ; Approved Most recent IF: 1.2; 2020 IF: 1.298
Call Number UA @ admin @ c:irua:170972 Serial (up) 6473
Permanent link to this record
 

 
Author Sahun, M.; Privat-Maldonado, A.; Lin, A.; De Roeck, N.; Van de Heyden, L.; Hillen, M.; Michiels, J.; Steenackers, G.; Smits, E.; Ariën, K.K.; Jorens, P.G.; Delputte, P.; Bogaerts, A.
Title Inactivation of SARS-CoV-2 and other enveloped and non-enveloped viruses with non-thermal plasma for hospital disinfection Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume Issue Pages 1-10
Keywords A1 Journal article; Engineering sciences. Technology; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract As recently highlighted by the SARS-CoV-2 pandemic, viruses have become an increasing burden for health, global economy, and environment. The control of transmission by contact with contaminated materials represents a major challenge, particularly in hospital environments. However, the current disinfection methods in hospital settings suffer from numerous drawbacks. As a result, several medical supplies that cannot be properly disinfected are not reused, leading to severe shortages and increasing amounts of waste, thus prompting the search for alternative solutions. In this work, we report that non-thermal plasma (NTP) can effectively inactivate SARS-CoV-2 from non-porous and porous materials commonly found in healthcare facilities. We demonstrated that 5 min treatment with a dielectric barrier discharge NTP can inactivate 100% of SARS-CoV-2 (Wuhan and Omicron strains) from plastic material. Using porcine respiratory coronavirus (surrogate for SARS-CoV-2) and coxsackievirus B3 (highly resistant non-enveloped virus), we tested the NTP virucidal activity on hospital materials and obtained complete inactivation after 5 and 10 min, respectively. We hypothesize that the produced reactive species and local acidification contribute to the overall virucidal effect of NTP. Our results demonstrate the potential of dielectric barrier discharge NTPs for the rapid, efficient, and low-cost disinfection of healthcare materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000964269500001 Publication Date 2023-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number UA @ admin @ c:irua:194897 Serial (up) 7269
Permanent link to this record
 

 
Author Hillen, M.; Sels, S.; Ribbens, B.; Verspeek, S.; Janssens, K.; Van der Snickt, G.; Steenackers, G.
Title Qualitative Comparison of Lock-in Thermography (LIT) and Pulse Phase Thermography (PPT) in Mid-Wave and Long-Wave Infrared for the Inspection of Paintings Type A1 Journal article
Year 2023 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel
Volume 13 Issue 7 Pages 1-13
Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract When studying paintings with active infrared thermography (IRT), minimizing the temperature fluctuations and thermal shock during a measurement becomes important. Under these conditions, it might be beneficial to use lock-in thermography instead of the conventionally used pulse thermography (PT). This study compared the observations made with lock-in thermography (LIT) and pulse phase thermography (PPT) with halogen light excitation. Three distinctly different paintings were examined. The LIT measurements caused smaller temperature fluctuations and, overall, the phase images appeared to have a higher contrast and less noise. However, in the PPT phase images, the upper paint layer was less visible, an aspect which is of particular interest when trying to observe subsurface defects or the structure of the support. The influence of the spectral range of the cameras on the results was also investigated. All measurements were taken with a mid-wave infrared (MWIR) and long wave infrared (LWIR) camera. The results show that there is a significant number of direct reflection artifacts, caused by the use of the halogen light sources when using the MWIR camera. Adding a long-pass filter to the MWIR camera eliminated most of these artifacts. All results are presented in a side-by-side comparison.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000972133900001 Publication Date 2023-03-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7; 2023 IF: 1.679
Call Number UA @ admin @ c:irua:194898 Serial (up) 7333
Permanent link to this record
 

 
Author Hillen, M.; Legrand, S.; Dirkx, Y.; Janssens, K.; van der Snickt, G.; Caen, J.; Steenackers, G.
Title Cluster analysis of IR thermography data for differentiating glass types in historical leaded-glass windows Type A1 Journal article
Year 2020 Publication Applied Sciences-Basel Abbreviated Journal Appl Sci-Basel
Volume 10 Issue 12 Pages 4255-13
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Cultural Heritage Sciences (ARCHES); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Infrared thermography is a fast, non-destructive and contactless testing technique which is increasingly used in heritage science. The aim of this study was to assess the ability of infrared thermography, in combination with a data clustering approach, to differentiate between the different types of historical glass that were included in a colorless leaded-glass windows during previous restoration interventions. Inspection of the thermograms and the application of two data mining techniques on the thermal data, i.e., k-means clustering and hierarchical clustering, allowed identifying different groups of window panes that show a different thermal behavior. Both clustering approaches arrive at similar groupings of the glass with a clear separation of three types. However, the lead cames that hold the glass panes appear to have a substantial impact on the thermal behavior of the surrounding glass, thus preventing classification of the smallest glass panes. For the larger panes, this was not a critical issue as the center of the glass remained unaffected. Subtle visual color differences between panes, implying a variation in coloring metal ions, was not always distinguished by IRT. Nevertheless, data clustering assisted infrared thermography shows potential as an efficient and swift method for documenting the material intervention history of leaded-glass windows during or in preparation of conservation treatments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000549351800001 Publication Date 2020-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access
Notes Approved Most recent IF: 2.7; 2020 IF: 1.679
Call Number UA @ admin @ c:irua:170012 Serial (up) 7674
Permanent link to this record
 

 
Author Deleu, N.; Hillen, M.; Steenackers, G.; Borms, G.; Janssens, K.; Van der Stighelen, K.; Van der Snickt, G.
Title Combined macro X-ray fluorescence (MA-XRF) and pulse phase thermography (PPT) imaging for the technical study of panel paintings Type A1 Journal article
Year 2024 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal
Volume 270 Issue Pages 125533-11
Keywords A1 Journal article; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Museum staff usually relies on a proven combination of X-ray radiography (XRR) and infrared reflectography (IRR) to study paintings in a non-destructive manner. In the last decades, however, the research toolbox of heritage scientists has expanded considerably, with a prime example being macro X-ray fluorescence (MA-XRF), producing element-specific images. The goal of this article is to illustrate the added value of augmenting MA-XRF with pulse phase thermography (PPT), a variant of active infrared thermographic imaging (IRT), which is an innovative diagnostic method that is able to reveal variations between or in materials, based on a different response to minor fluctuations in temperature when irradiated with optical radiation. By examining three 16thand 17th-century panel paintings we assess the extent in which combined MA-XRF and PPT contributes to a better understanding of two commonly encountered interventions to panel paintings: (a) Anstuckungen (enlargement of the panel) or (b) substitutions (replacement of part of the panel). Yielding information from different depths of the painting, these two techniques proved highly complementary with IRR and XRR, expanding the understanding of the build-up, genesis, and material history of the paintings. While MA-XRF documented the interventions to the wooden substrate indirectly by revealing variations in painting materials, paint handling and/ or layer sequence between the original part and the extended or replaced planks, PPT proved beneficial for the study of the wooden support itself, by providing a clear image of the wood structure quasi-free of distortion by the superimposed paint or cradling. XRR, on the other hand, revealed other features from the wood structure, not visible with PPT, and allowed looking through the wooden panels, revealing e.g. the dowels used for joining the planks. Additionally, IRR visualised dissimilarities in the underdrawings. In this way, the results indicate that PPT has the potential to become an acknowledged add-on to the expanding set of imaging methods for paintings, especially when used in combination with MA-XRF, IRR and XRR.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001144098200001 Publication Date 2023-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:203764 Serial (up) 9193
Permanent link to this record