|   | 
Details
   web
Records
Author Kurttepeli, M.; Deng, S.; Verbruggen, S.W.; Guzzinati, G.; Cott, D.J.; Lenaerts, S.; Verbeeck, J.; Van Tendeloo, G.; Detavernier, C.; Bals, S.
Title Synthesis and characterization of photoreactive TiO2carbon nanosheet composites Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 36 Pages 21031-21037
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract We report the atomic layer deposition of titanium dioxide on carbon nanosheet templates and investigate the effects of postdeposition annealing in a helium environment using different characterization techniques. The crystallization of the titanium dioxide coating upon annealing is observed using in situ X-ray diffraction. The (micro)structural characterization of the films is carried out by scanning electron microscopy and advanced transmission electron microscopy techniques. Our study shows that the annealing of the atomic layer deposition processed and carbon nanosheets templated titanium dioxide layers in helium environment resulting in the formation of a porous, nanocrystalline and photocatalytically active titanium dioxide-carbon nanosheet composite film. Such composites are suitable for photocatalysis and dye-sensitized solar cells applications.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Washington, D.C. Editor
Language Wos 000341619500034 Publication Date 2014-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 9 Open Access OpenAccess
Notes This research was funded by the Flemish research foundation FWO-Vlaanderen, by the European Research Council (Starting Grant No. 239865) and by the Special Research Fund BOF of Ghent University (GOA-01G01513). G.G, M.K., J.V., S.B., and G.V.T. acknowledge funding from the European Research Council under the seventh Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX and No. 335078 COLOURATOMS. ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:119085 Serial 3416
Permanent link to this record
 

 
Author Zalfani, M.; van der Schueren, B.; Hu, Z.-Y.; Rooke, J.C.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Su, B.-L.
Title Novel 3DOM BiVO4/TiO2nanocomposites for highly enhanced photocatalytic activity Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 21244-21256
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Novel 3DOM BiVO4/TiO2 nanocomposites with intimate contact were for the first time synthesized by a hydrothermal method in order to elucidate their visible-light-driven photocatalytic performances. BiVO4 nanoparticles and 3DOM TiO2 inverse opal were fabricated respectively. These materials were characterized by XRD, XPS, SEM, TEM, N2 adsorption–desorption and UV-vis diffuse (UV-vis) and photoluminescence spectroscopies. As references for comparison, a physical mixture of BiVO4 nanoparticles and 3DOM TiO2 inverse opal powder (0.08 : 1), and a BiVO4/P25 TiO2 (0.08 : 1) nanocomposite made also by the hydrothermal method were prepared. The photocatalytic performance of all the prepared materials was evaluated by the degradation of rhodamine B (RhB) as a model pollutant molecule under visible light irradiation. The highly ordered 3D macroporous inverse opal structure can provide more active surface areas and increased mass transfer because of its highly accessible 3D porosity. The results show that 3DOM BiVO4/TiO2 nanocomposites possess a highly prolonged lifetime and increased separation of visible light generated charges and extraordinarily high photocatalytic activity. Owing to the intimate contact between BiVO4 and large surface area 3DOM TiO2, the photogenerated high energy charges can be easily transferred from BiVO4 to the 3DOM TiO2 support. BiVO4 nanoparticles in the 3DOM TiO2 inverse opal structure act thus as a sensitizer to absorb visible light and to transfer efficiently high energy electrons to TiO2 to ensure long lifetime of the photogenerated charges and keep them well separated, owing to the direct band gap of BiVO4 of 2.4 eV, favourably positioned band edges, very low recombination rate of electron–hole pairs and stability when coupled with photocatalysts, explaining the extraordinarily high photocatalytic performance of 3DOM BiVO4/TiO2 nanocomposites. It is found that larger the amount of BiVO4 in the nanocomposite, longer the duration of photogenerated charge separation and higher the photocatalytic activity. This work can shed light on the development of novel visible light responsive nanomaterials for efficient solar energy utilisation by the intimate combination of an inorganic light sensitizing nanoparticle with an inverse opal structure with high diffusion efficiency and high accessible surface area.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000363163200049 Publication Date 2015-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 88 Open Access
Notes This work was realized with the financial support of the Belgian FNRS (Fonds National de la Recherche Scientifique). This research used resources of the Electron Microscopy Service located at the University of Namur. This Service is a member of the “Plateforme Technologique Morphologie – Imagerie”. The XPS analyses were made in the LISE, Department of Physics of the University of Namur thanks to Dr P. Louette. This work was also supported by Changjiang Scholars and the Innovative Research Team (IRT1169) of the Ministry of Education of the People's Republic of China. B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Clare Hall Life Membership at the Clare Hall and the financial support of the Department of Chemistry, University of Cambridge. G. Van Tendeloo and Z. Y. Hu acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483).; esteem2_jra4 Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number c:irua:129476 c:irua:129476 Serial 3951
Permanent link to this record
 

 
Author Wolf, D.; Rodriguez, L.A.; Béché, A.; Javon, E.; Serrano, L.; Magen, C.; Gatel, C.; Lubk, A.; Lichte, H.; Bals, S.; Van Tendeloo, G.; Fernández-Pacheco, A.; De Teresa, J.M.; Snoeck, E.
Title 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 6771-6778
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap, and carries great potential to impact areas such as data storage, sensing and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nanometers by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic non-planar nanodevices.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000362920700037 Publication Date 2015-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 50 Open Access OpenAccess
Notes This work was supported by the European Union under the Seventh Framework Program under a contract for an Inte-grated Infrastructure Initiative Reference 312483-ESTEEM2. S.B. and A.B. gratefully acknowledge funding by ERC Starting grants number 335078 COLOURATOMS and number 278510 VORTEX. AF-P acknowledges an EPSRC Early Career fellowship and support from the Winton Foundation. E.S., C.G. and L.A. R. acknowledge the French ANR program for support though the project EMMA.; esteem2jra4; ECASJO;; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:129180 c:irua:129180 c:irua:129180 Serial 3950
Permanent link to this record
 

 
Author Deng, S.; Kurttepeli, M.; Deheryan, S.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Van Tendeloo, G.; Detavernier, C.
Title Synthesis of a 3D network of Pt nanowires by atomic layer deposition on a carbonaceous template Type A1 Journal article
Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue 12 Pages 6939-6944
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The formation of a 3D network composed of free standing and interconnected Pt nanowires is achieved by a two-step method, consisting of conformal deposition of Pt by atomic layer deposition (ALD) on a forest of carbon nanotubes and subsequent removal of the carbonaceous template. Detailed characterization of this novel 3D nanostructure was carried out by transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS). The characterization showed that this pure 3D nanostructure of platinum is self-supported and offers an enhancement of the electrochemically active surface area by a factor of 50.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Cambridge Editor
Language Wos 000337143900086 Publication Date 2014-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 14 Open Access OpenAccess
Notes The authors wish to thank the Research Foundation – Flanders (FWO) for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERCgrant agreement N°239865-COCOON, N°246791-COUNTATOMS and N°335078–COLOURATOM). The authors would also want to thank the support from UGENT-GOA-01G01513, IWT-SBO SOSLion and the Belgian government through Interuniversity Attraction Poles (IAPPAI).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:118393 Serial 3454
Permanent link to this record
 

 
Author Zeng, Y.-J.; Gauquelin, N.; Li, D.-Y.; Ruan, S.-C.; He, H.-P.; Egoavil, R.; Ye, Z.-Z.; Verbeeck, J.; Hadermann, J.; Van Bael, M.J.; Van Haesendonck, C.
Title Co-Rich ZnCoO Nanoparticles Embedded in Wurtzite Zn1-xCoxO Thin Films: Possible Origin of Superconductivity Type A1 Journal article
Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 7 Issue 7 Pages 22166-22171
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Co-rich ZnCoO nanoparticles embedded in wurtzite Zn0.7Co0.3O thin films are grown by pulsed laser deposition on a Si substrate. Local superconductivity with an onset Tc at 5.9 K is demonstrated in the hybrid system. The unexpected superconductivity probably results from Co(3+) in the Co-rich ZnCoO nanoparticles or from the interface between the Co-rich nanoparticles and the Zn0.7Co0.3O matrix.
Address Solid State Physics and Magnetism Section, KU Leuven , Celestijnenlaan 200 D, BE-3001 Leuven, Belgium
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language English Wos 000363001500007 Publication Date 2015-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 13 Open Access
Notes This work has been supported by the Research Foundation − Flanders (FWO, Belgium) as well as by the Flemish Concerted Research Action program (BOF KU Leuven, GOA/14/007). N. G. and J. V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Flemish Hercules Foundation. The work at Shenzhen University was supported by National Natural Science Foundation of China under Grant No. 61275144 and Natural Science Foundation of SZU. Y.-J. Z. acknowledges funding under grant No. SKL2015-12 from the State Key Laboratory of Silicon Materials; ECASJO_; Approved Most recent IF: 7.504; 2015 IF: 6.723
Call Number c:irua:129195 c:irua:129195UA @ admin @ c:irua:129195 Serial 3949
Permanent link to this record
 

 
Author Verbeeck, J.; Lebedev, O.I.; Van Tendeloo, G.; Mercey, B.
Title SrTiO3(100)/(LaMnO3)m(SrMnO3)n layered heterostructures: a combined EELS and TEM study Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 66 Issue 18 Pages 184426
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Epitaxially grown heterostructures consisting of alternating layers of LaMnO(3) (LMO, 9 or 15 unit cells) and SrMnO(3) (SMO, 4 or 6 unit cells) on a SrTiO(3)(100) (STO(100)) substrate have been studied by a combination of high resolution transmission electron microscopy (HRTEM), electron diffraction, quantitative electron energy loss spectroscopy (EELS) with model fitting, energy filtered TEM (EFTEM) and imaging spectroscopy on an atomic scale. The combination of these techniques is necessary for the structural, chemical, and electronic characterization of these heterostructures. A model is proposed containing chemically and structurally sharp interfaces. The SrMnO(3) layers are stabilized in a Pm3m structure between two LMO layers. Tensile stress causes oxygen deficiency in the SMO layers increasing the number of 3d electrons on the Mn sites to resemble the Mn(3+) sites in LMO. The energy loss near edge structure (ELNES) of O and Mn is compared for both LMO and SMO layers and shows that the Mn-O bonds have a partially covalent character. The absence of a strong valency effect in the Mn ELNES is due to the oxygen vacancies in SMO.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Lancaster, Pa Editor
Language Wos 000179633100062 Publication Date 2002-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:54741 Serial 3563
Permanent link to this record
 

 
Author Engelmann, Y.; Bogaerts, A.; Neyts, E.C.
Title Thermodynamics at the nanoscale : phase diagrams of nickel-carbon nanoclusters and equilibrium constants for face transitions Type A1 Journal article
Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue Pages 11981-11987
Keywords A1 Journal article; PLASMANT
Abstract Using reactive molecular dynamics simulations, the melting behavior of nickelcarbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickelcarbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Cambridge Editor
Language Wos 000343000800049 Publication Date 2014-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 20 Open Access
Notes Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:119408 Serial 3636
Permanent link to this record
 

 
Author Leusink, D.P.; Coneri, F.; Hoek, M.; Turner, S.; Idrissi, H.; Van Tendeloo, G.; Hilgenkamp, H.
Title Thin films of the spin ice compound Ho2Ti2O7 Type A1 Journal article
Year 2014 Publication APL materials Abbreviated Journal Apl Mater
Volume 2 Issue 3 Pages 032101-32107
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The pyrochlore compounds Ho2Ti2O7 and Dy2Ti2O7 show an exotic form of magnetism called the spin ice state, resulting from the interplay between geometrical frustration and ferromagnetic coupling. A fascinating feature of this state is the appearance of magnetic monopoles as emergent excitations above the degenerate ground state. Over the past years, strong effort has been devoted to the investigation of these monopoles and other properties of the spin ice state in bulk crystals. Here, we report the fabrication of Ho2Ti2O7 thin films using pulsed laser deposition on yttria-stabilized ZrO2 substrates. We investigated the structural properties of these films by X-ray diffraction, scanning transmission electron microscopy, and atomic force microscopy, and the magnetic properties by vibrating sample magnetometry at 2 K. The films not only show a high crystalline quality, but also exhibit the hallmarks of a spin ice: a pronounced magnetic anisotropy and an intermediate plateau in the magnetization along the [111] crystal direction.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000334220300002 Publication Date 2014-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 18 Open Access
Notes The authors acknowledge support from the Dutch FOM and NWO foundations and from the European Union under the Framework 7 program under a contract from an Integrated Infrastructure Initiative (Reference 312483 ESTEEM2). G.V.T. acknowledges the ERC Grant N246791- COUNTATOMS. S.T. gratefully acknowledges financial support from the Fund for Scientific Research Flanders (FWO). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21. The microscope used in this study was partially financed by the Hercules Foundation of the Flemish Government. The authors acknowledge fruitful interactions with A. Brinkman, M. G. Blamire, M. Egilmez, F. J. G. Roesthuis, J. N. Beukers, C. G. Molenaar, M. Veldhorst, and X. Renshaw Wang; esteem2_ta Approved Most recent IF: 4.335; 2014 IF: NA
Call Number UA @ lucian @ c:irua:115555 Serial 3641
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; Liz-Marzan, L.M.; Van Tendeloo, G.
Title Three-dimensional characterization of noble-metal nanoparticles and their assemblies by electron tomography Type A1 Journal article
Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 53 Issue 40 Pages 10600-10610
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract New developments in the field of nanomaterials drive the need for quantitative characterization techniques that yield information down to the atomic scale. In this Review, we focus on the three-dimensional investigations of metal nanoparticles and their assemblies by electron tomography. This technique has become a versatile tool to understand the connection between the properties and structure or composition of nanomaterials. The different steps of an electron tomography experiment are discussed and we show how quantitative three-dimensional information can be obtained even at the atomic scale.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Weinheim Editor
Language Wos 000342761500006 Publication Date 2014-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 58 Open Access OpenAccess
Notes 267867 Plasmaquo; 246791 Countatoms; 335078 Colouratom; 262348 Esmi; Fwo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261
Call Number UA @ lucian @ c:irua:121093 Serial 3646
Permanent link to this record
 

 
Author Verlinden, G.; Janssens, G.; Gijbels, R.; van Espen, P.; Geuens, I.
Title Three-dimensional chemical characterization of complex silver halide microcrystals by scanning ion microprobe mass analysis Type A1 Journal article
Year 1997 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 69 Issue Pages 3773-3779
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Chemometrics (Mitac 3)
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication Washington, D.C. Editor
Language Wos A1997XV71200019 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 6 Open Access
Notes Approved Most recent IF: 6.32; 1997 IF: 4.743
Call Number UA @ lucian @ c:irua:16959 Serial 3647
Permanent link to this record
 

 
Author Goris, B.; de Backer, A.; Van Aert, S.; Gómez-Graña, S.; Liz-Marzán, L.M.; Van Tendeloo, G.; Bals, S.
Title Three-dimensional elemental mapping at the atomic scale in bimetallic nanocrystals Type A1 Journal article
Year 2013 Publication Nano letters Abbreviated Journal Nano Lett
Volume 13 Issue 9 Pages 4236-4241
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A thorough understanding of the three-dimensional (3D) atomic structure and composition of coreshell nanostructures is indispensable to obtain a deeper insight on their physical behavior. Such 3D information can be reconstructed from two-dimensional (2D) projection images using electron tomography. Recently, different electron tomography techniques have enabled the 3D characterization of a variety of nanostructures down to the atomic level. However, these methods have all focused on the investigation of nanomaterials containing only one type of chemical element. Here, we combine statistical parameter estimation theory with compressive sensing based tomography to determine the positions and atom type of each atom in heteronanostructures. The approach is applied here to investigate the interface in coreshell Au@Ag nanorods but it is of great interest in the investigation of a broad range of nanostructures.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Washington Editor
Language Wos 000330158900043 Publication Date 2013-08-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 90 Open Access
Notes FWO; 246791 COUNTATOMS; 267867 PLASMAQUO; 262348 ESMI; 312483 ESTEEM2; Hercules 3; esteem2_jra4 Approved Most recent IF: 12.712; 2013 IF: 12.940
Call Number UA @ lucian @ c:irua:110036 Serial 3650
Permanent link to this record
 

 
Author Goris, B.; Turner, S.; Bals, S.; Van Tendeloo, G.
Title Three-dimensional valency mapping in ceria nanocrystals Type A1 Journal article
Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue 10 Pages 10878-10884
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Using electron tomography combined with electron energy loss spectroscopy (EELS), we are able to map the valency of the Ce ions in CeO2-x nanocrystals in three dimensions. Our results show a clear facet-dependent reduction shell at the surface of ceria nanoparticles; {111} surface facets show a low surface reduction, whereas at {001} surface facets, the cerium ions are more likely to be reduced over a larger surface shell. Our generic tomographic technique allows a full 3D data cube to be reconstructed, containing an EELS spectrum in each voxel. This possibility enables a three-dimensional investigation of a plethora of material-specific physical properties such as valency, chemical composition, oxygen coordination, or bond lengths, triggering the synthesis of nanomaterials with improved properties.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000343952600126 Publication Date 2014-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 85 Open Access OpenAccess
Notes 335078 Colouratom; 246791 Countatoms; Fwo; 312483 Esteem2; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:121219 Serial 3656
Permanent link to this record
 

 
Author Gong, X.; Marmy, P.; Volodin, A.; Amin-Ahmadi, B.; Qin, L.; Schryvers, D.; Gavrilov, S.; Stergar, E.; Verlinden, B.; Wevers, M.; Seefeldt, M.
Title Multiscale investigation of quasi-brittle fracture characteristics in a 9Cr–1Mo ferritic–martensitic steel embrittled by liquid lead–bismuth under low cycle fatigue Type A1 Journal article
Year 2016 Publication Corrosion science Abbreviated Journal
Volume 102 Issue 102 Pages 137-152
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Liquid metal embrittlement (LME) induced quasi-brittle fracture characteristics of a 9Cr–1Mo ferritic–martensitic steel (T91) after fatigue cracking in lead–bismuth eutectic (LBE) have been investigated at various length scales. The results show that the LME fracture morphology is primarily characterized by quasi-brittle translath flat regions partially covered by nanodimples, shallow secondary cracks propagating along the martensitic lath boundaries as well as tear ridges covered by micro dimples. These diverse LME fracture features likely indicate a LME mechanism involving multiple physical processes, such as weakening induced interatomic decohesion at the crack tip and plastic shearing induced nano/micro voiding in the plastic zone.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000367275700014 Publication Date 2015-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010938X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 16 Open Access
Notes The work is financially supported by the MYRRHA project,SCK•CEN, Belgium and partly funded by the European AtomicEnergy Community’s (Euratom) Seventh Framework ProgrammeFP7/2007-2013 under grant agreement No. 604862 (MatISSEproject) and in the framework of the EERA (European EnergyResearch Alliance) Joint Programme on Nuclear Materials. Dr. TomVan der Donck (KU Leuven) is acknowledged for the EBSD mea-surements. The authors are grateful to Dr. Van Renterghem Wouter(SCK•CEN) for fruitful discussion of the TEM results. Xing Gongsincerely acknowledges valuable suggestions from Dr. S.P. Lynch(Defence Science and Technology Organisation and Monash Uni-versity, Melbourne, Australia). Approved Most recent IF: NA
Call Number c:irua:129997 Serial 4013
Permanent link to this record
 

 
Author van der Stam, W.; Bladt, E.; Rabouw, F.T.; Bals, S.; de Mello Donega, C.
Title Near-Infrared Emitting CuInSe/CuInS Dot Core/Rod Shell Heteronanorods by Sequential Cation Exchange Type A1 Journal article
Year 2015 Publication ACS nano Abbreviated Journal Acs Nano
Volume 9 Issue 9 Pages 11430-11438
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The direct synthesis of heteronanocrystals (HNCs) combining different ternary semiconductors is challenging and has not yet been successful. Here, we report a sequential topotactic cation exchange (CE) pathway that yields CuInSe2/CuInS2 dot core/rod shell nanorods with near-infrared luminescence. In our approach, the Cu+ extraction rate is coupled to the In3+ incorporation rate by the use of a stoichiometric trioctylphosphine-InCl3 complex, which fulfills the roles of both In-source and Cu-extracting agent. In this way, Cu+ ions can be extracted by trioctylphosphine ligands only when the In-P bond is broken. This results in readily available In3+ ions at the same surface site from which the Cu+ is extracted, making the process a direct place exchange reaction and shifting the overall energy balance in favor of the CE. Consequently, controlled cation exchange can occur even in large and anisotropic heterostructured nanocrystals with preservation of the size, shape, and heterostructuring of the template NCs into the product NCs. The cation exchange is self-limited, stopping when the ternary core/shell CuInSe2/CuInS2 composition is reached. The method is very versatile, successfully yielding a variety of luminescent CuInX2 (X = S, Se, and Te) quantum dots, nanorods, and HNCs, by using Cd-chalcogenide NCs and HNCs as templates. The approach reported here thus opens up routes toward materials with unprecedented properties, which would otherwise remain inaccessible.
Address Debye Institute for Nanomaterials Science, Utrecht University , P.O. Box 80000, 3508 TA Utrecht, The Netherlands
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language English Wos 000365464800094 Publication Date 2015-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 88 Open Access OpenAccess
Notes The authors thank Gang Wang for XRD measurements and Eline Hutter for providing CdSe/CdS NRs. W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. This work was supported by the European Research Council (ERC Starting Grant #335078 Colouratom). E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881
Call Number c:irua:129184 Serial 3948
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Peeters, F.M.
Title Tomasch effect in nanoscale superconductors Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 024508
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Tomasch effect (TE) is due to quasiparticle interference (QPI) as induced by a nonuniform superconducting order parameter, which results in oscillations in the density of states (DOS) at energies above the superconducting gap. Quantum confinement in nanoscale superconductors leads to an inhomogenerous distribution of the Cooperpair condensate, which, as we found, triggers the manifestation of a new TE. We investigate the electronic structure of nanoscale superconductors by solving the Bogoliubov-de Gennes (BdG) equations self-consistently and describe the TE determined by two types of processes, involving two-or three-subband QPIs. Both types of QPIs result in additional BCS-like Bogoliubov-quasiparticles and BCS-like energy gaps leading to oscillations in the DOS and modulated wave patterns in the local density of states. These effects are strongly related to the symmetries of the system. A reduced 4 x 4 inter-subband BdG Hamiltonian is established in order to describe analytically the TE of two-subband QPIs. Our study is relevant to nanoscale superconductors, either nanowires or thin films, Bose-Einsten condensates, and confined systems such as two-dimensional electron gas interface superconductivity.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Lancaster, Pa Editor
Language Wos 000348473700003 Publication Date 2015-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:123864 Serial 3670
Permanent link to this record
 

 
Author Heyer, S.; Janssen, W.; Turner, S.; Lu, Y.-G.; Yeap, W.S.; Verbeeck, J.; Haenen, K.; Krueger, A.
Title Toward deep blue nano hope diamonds : heavily boron-doped diamond nanoparticles Type A1 Journal article
Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue 6 Pages 5757-5764
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 1060 nm with a boron content of approximately 2.3 × 1021 cm3. Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000338089200039 Publication Date 2014-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 71 Open Access
Notes the Research Foundation Flanders (FWO-Vlaanderen) (G.0555.10N;G.0568.10N; G.0456.12; G0044.13N and a postdoctoral scholarship for S.T.); EU FP7 through Marie Curie ITN “MATCON” (PITNGA-127 2009-238201)the Collaborative Project “DINAMO” (No. 245122) Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2.; esteem2_jra3 Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:117599 Serial 3683
Permanent link to this record
 

 
Author Goris, B.; Freitag, B.; Zanaga, D.; Bladt, E.; Altantzis, T.; Ringnalda, J.; Bals, S.
Title Towards quantitative EDX results in 3 dimensions Type A1 Journal article
Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 20 Issue S:3 Pages 766-767
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access OpenAccess
Notes 335078 Colouratom; Fwo; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 1.891; 2014 IF: 1.877
Call Number UA @ lucian @ c:irua:125381 Serial 3687
Permanent link to this record
 

 
Author Lubk, A.; Guzzinati, G.; Börrnert, F.; Verbeeck, J.
Title Transport of intensity phase retrieval of arbitrary wave fields including vortices Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 17 Pages 173902-173905
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The phase problem can be considered as one of the cornerstones of quantum mechanics intimately connected to the detection process and the uncertainty relation. The latter impose fundamental limits on the manifold phase reconstruction schemes invented to date, in particular, at small magnitudes of the quantum wave. Here, we show that a rigorous solution of the transport of intensity reconstruction (TIE) scheme in terms of a linear elliptic partial differential equation for the phase provides reconstructions even in the presence of wave zeros if particular boundary conditions are given. We furthermore discuss how partial coherence hampers phase reconstruction and show that a modified version of the TIE reconstructs the curl-free current density at arbitrary (in)coherence. Our results open the way for TIE-based phase retrieval of arbitrary wave fields, eventually containing zeros such as phase vortices.
Address
Corporate Author Thesis
Publisher (down) Place of Publication New York, N.Y. Editor
Language Wos 000326148400006 Publication Date 2013-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 40 Open Access
Notes Esteem2; Vortex; esteem2ta ECASJO; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:111093 Serial 3726
Permanent link to this record
 

 
Author Deo, P.S.; Schweigert, V.A.; Peeters, F.M.; Geim, A.K.
Title Type of phase transitions in a mesoscopic superconducting disc Type A1 Journal article
Year 1997 Publication Physica: E Abbreviated Journal Physica E
Volume 1 Issue Pages 297-300
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000074364500064 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record;
Impact Factor 2.221 Times cited Open Access
Notes Approved Most recent IF: 2.221; 1997 IF: NA
Call Number UA @ lucian @ c:irua:19299 Serial 3791
Permanent link to this record
 

 
Author Batenburg, K.J.; Bals, S.; Van Aert, S.; Roelandts, T.; Sijbers, J.
Title Ultra-high resolution electron tomography for materials science : a roadmap Type A1 Journal article
Year 2011 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 17 Issue S:2 Pages 934-935
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2011-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891; 2011 IF: 3.007
Call Number UA @ lucian @ c:irua:96554 Serial 3792
Permanent link to this record
 

 
Author Milošević, M.V.; Perali, A.
Title Emergent phenomena in multicomponent superconductivity: an introduction to the focus issue Type A1 Journal article
Year 2015 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 060201
Keywords A1 Journal article; CMT
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000354110200001 Publication Date 2015-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links
Impact Factor 2.878 Times cited 41 Open Access
Notes ; ; Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number UA @ lucian @ Serial 3945
Permanent link to this record
 

 
Author Adam, N.; Leroux, F.; Knapen, D.; Bals, S.; Blust, R.
Title The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios Type A1 Journal article
Year 2015 Publication Water research Abbreviated Journal Water Res
Volume 68 Issue 68 Pages 249-261
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Veterinary physiology and biochemistry
Abstract In this study, the uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna was tested. Daphnids were exposed during 10 days to sublethal concentrations of ZnO and CuO nanoparticles and corresponding metal salts (ZnCl2 and CuCl2.2H2O), after which they were transferred to unexposed medium for another 10 days. At different times during the exposure and none-exposure, the total and internal zinc or copper concentration of the daphnids was determined and the nanoparticles were localized in the organism using electron microscopy. The exposure concentrations were characterized by measuring the dissolved, nanoparticle and aggregated fraction in the medium. The results showed that the ZnO nanoparticles quickly dissolved after addition to the medium. Contrarily, only a small fraction (corresponding to the dissolved metal salt) of the CuO nanoparticles dissolved, while most of these nanoparticles formed large aggregates. Despite an initial increase in zinc and copper concentration during the first 48 hour to 5 day exposure, the body concentration reached a plateau level that was comparable for the ZnO nanoparticles and ZnCl2, but much higher for the CuO nanoparticles (with visible aggregates accumulating in the gut) than CuCl2.2H2O. During the remaining exposure and subsequent none-exposure phase, the zinc and copper concentration decreased fast to concentrations comparable with the unexposed daphnids. The results indicate that D. magna can regulate its internal zinc and copper concentration after exposure to ZnO and CuO nanoparticles, similar as after exposure to metal salts. The combined dissolution, accumulation and toxicity results confirm that the toxicity of ZnO and CuO nanoparticles is caused by the dissolved fraction. Keywords nano; zinc; copper; dissolution; aggregation; electron microscopy
Address
Corporate Author Thesis
Publisher (down) Place of Publication Oxford Editor
Language Wos 000347756900022 Publication Date 2014-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.942 Times cited 51 Open Access OpenAccess
Notes ; The authors would like to thank Valentine Mubiana and Steven Joosen (Sphere, UA) for performing the ICP-MS and ICP-OES measurements and Prof. Dr. Gustaaf Van Tendeloo for making the collaboration between the EMAT and Sphere group possible. This study is part of the ENNSATOX-project, which was funded by the EU (NMP4-SL-2009-229244). The authors report no conflicts of interest. ; Approved Most recent IF: 6.942; 2015 IF: 5.528
Call Number c:irua:119366 c:irua:119366 Serial 3822
Permanent link to this record
 

 
Author Juchtmans, R.; Béché, A.; Abakumov, A.; Batuk, M.; Verbeeck, J.
Title Using electron vortex beams to determine chirality of crystals in transmission electron microscopy Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 094112
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We investigate electron vortex beams elastically scattered on chiral crystals. After deriving a general expression for the scattering amplitude of a vortex electron, we study its diffraction on point scatterers arranged on a helix. We derive a relation between the handedness of the helix and the topological charge of the electron vortex on one hand and the symmetry of the higher-order Laue zones in the diffraction pattern on the other for kinematically and dynamically scattered electrons. We then extend this to atoms arranged on a helix as found in crystals which belong to chiral space groups and propose a method to determine the handedness of such crystals by looking at the symmetry of the diffraction pattern. In contrast to alternative methods, our technique does not require multiple scattering, which makes it possible to also investigate extremely thin samples in which multiple scattering is suppressed. In order to verify the model, elastic scattering simulations are performed, and an experimental demonstration on Mn2Sb2O7 is given in which we find the sample to belong to the right-handed variant of its enantiomorphic pair. This demonstrates the usefulness of electron vortex beams to reveal the chirality of crystals in a transmission electron microscope and provides the required theoretical basis for further developments in this field.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000352017000002 Publication Date 2015-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 54 Open Access
Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra1; esteem2jra2 ECASJO_; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:125512 c:irua:125512 Serial 3825
Permanent link to this record
 

 
Author Lamas, J.S.; Leroy, W.P.; Lu, Y.-G.; Verbeeck, J.; Van Tendeloo, G.; Depla, D.
Title Using the macroscopic scale to predict the nano-scale behavior of YSZ thin films Type A1 Journal article
Year 2014 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech
Volume 238 Issue Pages 45-50
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this work, Yttria-stabilized zirconia (YSZ) thin films were deposited using dual reactive magnetron sputtering. By varying the deposition conditions, the film morphology and texture of the thin films are tuned and biaxial alignment is obtained. Studying the crystallographic and microstructural properties of the YSZ thin films, a tilted columnar growth was identified. This tilt is shown to be dependent on the compositional gradient of the sample. The variation of composition within a single YSZ column measured via STEM-EDX is demonstrated to be equal to the macroscopic variation on a full YSZ sample when deposited under the same deposition parameters. A simple stress model was developed to predict the tilt of the growing columns. The results indicate that this model not only determines the column bending of the growing film but also confirms that a macroscopic approach is sufficient to determine the compositional gradient in a single column of the YSZ thin films. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Lausanne Editor
Language Wos 000331028200005 Publication Date 2013-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.589 Times cited 8 Open Access
Notes 246791 Countatoms; 278510 Vortex;Nmp3-La-2010-246102 Ifox; 312483 Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.589; 2014 IF: 1.998
Call Number UA @ lucian @ c:irua:115765 Serial 3827
Permanent link to this record
 

 
Author Shanenko, A.A.; Aguiar, J.A.; Vagov, A.; Croitoru, M.D.; Milošević, M.V.
Title Atomically flat superconducting nanofilms: multiband properties and mean-field theory Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 054001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Perot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000353015700005 Publication Date 2015-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 23 Open Access
Notes This work was supported by the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). AAS acknowledges fruitful discussions with A Perali and D Neilson during his stay in the University of Camerino and is thankful for partial support of his visit by the University of Camerino under the project FAR 'Control and enhancement of superconductivity by engineering materials at the nanoscale'. MDC acknowledges the support from the Back to Belgium Grant of the federal Science Policy (BELSPO). Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:132501 Serial 3944
Permanent link to this record
 

 
Author Ludu, A.; Milošević, M.V.; Peeters, F.M.
Title Vortex states in axially symmetric superconductors in applied magnetic field Type A1 Journal article
Year 2012 Publication Sn – 0378-4754 Abbreviated Journal Math Comput Simulat
Volume 82 Issue 7 Pages 1258-1270
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We solve analytically the linearized Ginzburg-Landau (GL) equation in the presence of an uniform magnetic field with cylindrical boundary conditions. The solution of the non-linear GL equation is provided as an expansion in the basis of linearized solutions. We present examples of the resulting vortex structure for a solid and perforated superconducting cylinder. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Amsterdam Editor
Language Wos 000303097000009 Publication Date 2012-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4754; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.218 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 1.218; 2012 IF: 0.836
Call Number UA @ lucian @ c:irua:98300 Serial 3887
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Vortex states in nanoscale superconducting squares : the influence of quantum confinement Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 14 Pages 144501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bogoliubov-de Gennes theory is used to investigate the effect of the size of a superconducting square on the vortex states in the quantum confinement regime. When the superconducting coherence length is comparable to the Fermi wavelength, the shape resonances of the superconducting order parameter have strong influence on the vortex configuration. Several unconventional vortex states, including asymmetric ones, giant-multivortex combinations, and states comprising giant antivortices, were found as ground states and their stability was found to be very sensitive on the value of k(F)xi(0), the size of the sample W, and the magnetic flux Phi. By increasing the temperature and/or enlarging the size of the sample, quantum confinement is suppressed and the conventional mesoscopic vortex states as predicted by the Ginzburg-Laudau (GL) theory are recovered. However, contrary to the GL results we found that the states containing symmetry-induced vortex-antivortex pairs are stable over the whole temperature range. It turns out that the inhomogeneous order parameter induced by quantum confinement favors vortex-antivortex molecules, as well as giant vortices with a rich structure in the vortex core-unattainable in the GL domain.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000325498300004 Publication Date 2013-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111145 Serial 3891
Permanent link to this record
 

 
Author Masenelli-Varlot, K.; Malchere, A.; Ferreira, J.; Heidari Mezerji, H.; Bals, S.; Messaoudi, C.; Garrido, S.M.
Title Wet-STEM tomography : principles, potentialities and limitations Type A1 Journal article
Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 20 Issue 2 Pages 366-375
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The characterization of biological and inorganic materials by determining their three-dimensional structure in conditions closer to their native state is a major challenge of technological research. Environmental scanning electron microscopy (ESEM) provides access to the observation of hydrated samples in water environments. Here, we present a specific device for ESEM in the scanning transmission electron microscopy mode, allowing the acquisition of tilt-series suitable for tomographic reconstructions. The resolution which can be obtained with this device is first determined. Then, we demonstrate the feasibility of tomography on wet materials. The example studied here is hydrophilic mesoporous silica (MCM-41). Finally, the minimum thickness of water which can be detected is calculated from Monte Carlo simulations and compared with the resolution expected in the tomograms.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Cambridge, Mass. Editor
Language Wos 000337304700005 Publication Date 2014-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 9 Open Access OpenAccess
Notes IAP-PAI; European Research Council under the 7th Framework Program (FP7); ERC grant no. 335078-COLOURATOMS.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 1.891; 2014 IF: 1.877
Call Number UA @ lucian @ c:irua:118411 Serial 3915
Permanent link to this record
 

 
Author Callewaert, V.; Saniz, R.; Barbiellini, B.; Bansil, A.; Partoens, B.
Title Application of the weighted-density approximation to the accurate description of electron-positron correlation effects in materials Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 8 Pages 085135
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We discuss positron-annihilation lifetimes for a set of illustrative bulk materials within the framework of the weighted-density approximation (WDA). The WDA can correctly describe electron-positron correlations in strongly inhomogeneous systems, such as surfaces, where the applicability of (semi-)local approximations is limited. We analyze the WDA in detail and show that the electrons which cannot screen external charges efficiently, such as the core electrons, cannot be treated accurately via the pair correlation of the homogeneous electron gas. We discuss how this problem can be addressed by reducing the screening in the homogeneous electron gas by adding terms depending on the gradient of the electron density. Further improvements are obtained when core electrons are treated within the LDA and the valence electron using the WDA. Finally, we discuss a semiempirical WDA-based approach in which a sum rule is imposed to reproduce the experimental lifetimes.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000408342600003 Publication Date 2017-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes Fonds Wetenschappelijk Onderzoek, G. 0224.14N ; U.S. Department of Energy, DE-FG02-07ER46352 DE-AC02-05CH11231 DE-SC0012575 ; Approved Most recent IF: 3.836
Call Number CMT @ cmt @c:irua:145703 Serial 4703
Permanent link to this record
 

 
Author Maccato, C.; Simon, Q.; Carraro, G.; Barreca, D.; Gasparotto, A.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.
Title Zinc and copper oxides functionalized with metal nanoparticles : an insight into their nano-organization Type A1 Journal article
Year 2012 Publication Journal of advanced microscopy research Abbreviated Journal
Volume 7 Issue 2 Pages 84-90
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ag/ZnO and Au/CuxO (x = 1, 2) nanocomposites supported on Si(100) and polycrystalline Al2O3 were synthesised by hybrid approaches, combining chemical vapor deposition (either thermal or plasma-assisted) of host oxide matrices and subsequent radio frequency-sputtering of guest metal particles. The influence of the adopted synthetic parameters on the nanocomposite morphological and compositional features was investigated by field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Results confirm the synthesis of ZnO and CuxO nanoarchitectures, characterized by a tailored morphology and an intimate metal/oxide contact. A careful control of the processing conditions enabled a fine tuning of the mutual constituent distribution, opening thus attractive perspectives for the engineering of advanced nanomaterials.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos Publication Date 2012-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-7573;2156-7581; ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Esteem Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:105298 Serial 3932
Permanent link to this record