Number of records found: 733
 | 
Citations
 | 
   web
Characterization of nano-crystalline diamond films grown under continuous DC bias during plasma enhanced chemical vapor deposition”. Mortet V, Zhang L, Echert M, Soltani A, d' Haen J, Douheret O, Moreau M, Osswald S, Neyts E, Troadec D, Wagner P, Bogaerts A, Van Tendeloo G, Haenen K, Materials Research Society symposium proceedings (2009). http://doi.org/10.1557/PROC-1203-J05-03
toggle visibility
Cluster issue on plasma modelling”. van Dijk J, Kroesen GMW, Bogaerts A London (2009).
toggle visibility
Collisional-radiative model for the sputtered copper atoms and ions in a direct current argon glow discharge”. Bogaerts A, Gijbels R, Carman RJ, Spectrochimica acta: part B : atomic spectroscopy 53, 1679 (1998). http://doi.org/10.1016/S0584-8547(98)00201-8
toggle visibility
Colloquium Spectroscopicum Internationale 34, Antwerp (Belgium), 4-9 September 2005: preface”. Bogaerts A, Janssens K, van Grieken R, Spectrochimica acta: part B : atomic spectroscopy 61, 373 (2006). http://doi.org/10.1016/j.sab.2006.04.011
toggle visibility
Combined molecular dynamics: continuum study of phase transitions in bulk metals under ultrashort pulsed laser irradiation”. Wendelen W, Dzhurakhalov AA, Peeters FM, Bogaerts A, The journal of physical chemistry: C : nanomaterials and interfaces 114, 5652 (2010). http://doi.org/10.1021/jp907385n
toggle visibility
Combining molecular dynamics with Monte Carlo simulations : implementations and applications”. Neyts EC, Bogaerts A, Theoretical chemistry accounts : theory, computation, and modeling 132, 1320 (2013). http://doi.org/10.1007/s00214-012-1320-x
toggle visibility
Comparison between a radio-frequency and direct current glow discharge in argon by a hybrid Monte Carlo-fluid model for electrons, argon ions and fast argon atoms”. Bogaerts A, Gijbels R, Goedheer W, Spectrochimica acta: part B : atomic spectroscopy 54, 1335 (1999). http://doi.org/10.1016/S0584-8547(99)00080-4
toggle visibility
Comparison of argon and neon as discharge gases in a direct current glow discharge: a mathematical simulation”. Bogaerts A, Gijbels R, Spectrochimica acta: part B : atomic spectroscopy 52, 553 (1997)
toggle visibility
Comparison of calculated and measured optical emission intensities in a direct current argon-copper glow discharge”. Bogaerts A, Donko Z, Kutasi K, Bano G, Pinhao N, Pinheiro M, Spectrochimica acta: part B : atomic spectroscopy 55, 1465 (2000). http://doi.org/10.1016/S0584-8547(00)00253-6
toggle visibility
Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas”. Zhang Y-R, Xu X, Zhao S-X, Bogaerts A, Wang Y-N, Physics of plasmas 17, 113512 (2010). http://doi.org/10.1063/1.3519515
toggle visibility
Comparison of modeling calculations with experimental results for direct current glow discharge optical emission spectrometry”. Bogaerts A, Wilken L, Hoffmann V, Gijbels R, Wetzig K, Spectrochimica acta: part B : atomic spectroscopy 56, 551 (2001). http://doi.org/10.1016/S0584-8547(01)00220-8
toggle visibility
Comparison of modeling calculations with experimental results for rf glow discharge optical emission spectrometry”. Bogaerts A, Wilken L, Hoffmann V, Gijbels R, Wetzig K, Spectrochimica acta: part B : atomic spectroscopy 57, 109 (2002). http://doi.org/10.1016/S0584-8547(01)00357-3
toggle visibility
Comprehensive description of a Grimm-type glow discharge source used for optical emission spectrometry: a mathematical simulation”. Bogaerts A, Gijbels R, Spectrochimica acta: part B : atomic spectroscopy 53, 437 (1998). http://doi.org/10.1016/S0584-8547(97)00148-1
toggle visibility
Comprehensive three-dimensional modeling network for a dc glow discharge plasma”. Bogaerts A, Gijbels R, Plasma physics reports 24, 573 (1998)
toggle visibility
Computer modeling of plasmas and plasma-surface interactions”. Bogaerts A, Bultinck E, Eckert M, Georgieva V, Mao M, Neyts E, Schwaederlé, L, Plasma processes and polymers 6, 295 (2009). http://doi.org/10.1002/ppap.200800207
toggle visibility
Computer modelling of magnetron discharges”. Bogaerts A, Bultinck E, Kolev I, Schwaederlé, L, van Aeken K, Buyle G, Depla D, Journal of physics: D: applied physics 42, 194018 (2009). http://doi.org/10.1088/0022-3727/42/19/194018
toggle visibility
Computer modelling of the plasma chemistry and plasma-based growth mechanisms for nanostructured materials”. Bogaerts A, Eckert M, Mao M, Neyts E, Journal of physics: D: applied physics 44, 174030 (2011). http://doi.org/10.1088/0022-3727/44/17/174030
toggle visibility
Computer simulation of an analytical direct current glow discharge in argon: influence of the cell dimensions on the plasma quantities”. Bogaerts A, Gijbels R, Journal of analytical atomic spectrometry 12, 751 (1997)
toggle visibility
Computer simulations for processing plasmas”. Bogaerts A, de Bleecker K, Georgieva V, Kolev I, Madani M, Neyts E, Plasma processes and polymers 3, 110 (2006). http://doi.org/10.1002/ppap.200500065
toggle visibility
Computer simulations of a dielectric barrier discharge used for analytical spectrometry”. Martens T, Bogaerts A, Brok W, van Dijk J, Analytical and bioanalytical chemistry 388, 1583 (2007). http://doi.org/10.1007/s00216-007-1269-0
toggle visibility
Computer simulations of argon-hydrogen Grimm-type glow discharges”. Bogaerts A, Journal of analytical atomic spectrometry 23, 1476 (2008). http://doi.org/10.1039/b810599e
toggle visibility
Computer simulations of crater profiles in glow discharge optical emission spectrometry: comparison with experiments and investigation of the underlying mechanisms”. Bogaerts A, Verscharen W, Steers E, Spectrochimica acta: part B : atomic spectroscopy 59, 1403 (2004). http://doi.org/10.1016/j.sab.2004.06.005
toggle visibility
Computer simulations of laser ablation sample introduction for plasma-source elemental microanalysis”. Bleiner D, Bogaerts A, Journal of analytical atomic spectrometry 21, 1161 (2006). http://doi.org/10.1039/b607627k
toggle visibility
Computer simulations of plasmabiomolecule and plasmatissue interactions for a better insight in plasma medicine”. Neyts EC, Yusupov M, Verlackt CC, Bogaerts A, Journal of physics: D: applied physics 47, 293001 (2014). http://doi.org/10.1088/0022-3727/47/29/293001
toggle visibility
Computer simulations of sample chambers for laser ablation-inductively coupled plasma spectrometry”. Bleiner D, Bogaerts A, Spectrochimica acta: part B : atomic spectroscopy 62, 155 (2007). http://doi.org/10.1016/j.sab.2007.02.010
toggle visibility
Cryogenic etching of silicon with SF6 inductively coupled plasmas: a combined modelling and experimental study”. Tinck S, Tillocher T, Dussart R, Bogaerts A, Journal of physics: D: applied physics 48, 155204 (2015). http://doi.org/10.1088/0022-3727/48/15/155204
toggle visibility
Defect healing and enhanced nucleation of carbon nanotubes by low-energy ion bombardment”. Neyts EC, Ostrikov K, Han ZJ, Kumar S, van Duin ACT, Bogaerts A, Physical review letters 110, 065501 (2013). http://doi.org/10.1103/PhysRevLett.110.065501
toggle visibility
Densification of thin a-C: H films grown from low-kinetic energy hydrocarbon radicals under the influence of H and C particle fluxes: a molecular dynamics study”. Neyts E, Bogaerts A, van de Sanden MCM, Journal of physics: D: applied physics 39, 1948 (2006). http://doi.org/10.1088/0022-3727/39/9/034
toggle visibility
A density-functional theory simulation of the formation of Ni-doped fullerenes by ion implantation”. Neyts E, Maeyens A, Pourtois G, Bogaerts A, Carbon 49, 1013 (2011). http://doi.org/10.1016/j.carbon.2010.11.009
toggle visibility
Description of the argon-excited levels in a radio-frequency and direct current glow discharge”. Bogaerts A, Gijbels R, Spectrochimica acta: part B : atomic spectroscopy 55, 263 (2000). http://doi.org/10.1016/S0584-8547(00)00143-9
toggle visibility