toggle visibility
Search within Results:
Display Options:
Number of records found: 1475

Select All    Deselect All
 | 
Citations
 | 
   print
CO2and CH4conversion in “real&rdquo, gas mixtures in a gliding arc plasmatron: how do N2and O2affect the performance?”.Slaets J, Aghaei M, Ceulemans S, Van Alphen S, Bogaerts A, Green Chemistry 22, 1366 (2020). http://doi.org/10.1039/C9GC03743H
toggle visibility
Plasma-driven catalysis: green ammonia synthesis with intermittent electricity”. Rouwenhorst KHR, Engelmann Y, van ‘t Veer K, Postma RS, Bogaerts A, Lefferts L, Green Chemistry 22, 6258 (2020). http://doi.org/10.1039/D0GC02058C
toggle visibility
Avoiding solid carbon deposition in plasma-based dry reforming of methane”. Biondo O, van Deursen CFAM, Hughes A, van de Steeg A, Bongers W, van de Sanden MCM, van Rooij G, Bogaerts A, Green Chemistry 25, 10485 (2023). http://doi.org/10.1039/D3GC03595F
toggle visibility
NOxproduction in a rotating gliding arc plasma: potential avenue for sustainable nitrogen fixation”. Jardali F, Van Alphen S, Creel J, Ahmadi Eshtehardi H, Axelsson M, Ingels R, Snyders R, Bogaerts A, Green Chemistry 23, 1748 (2021). http://doi.org/10.1039/D0GC03521A
toggle visibility
Sustainable NOxproduction from air in pulsed plasma: elucidating the chemistry behind the low energy consumption”. Vervloessem E, Gorbanev Y, Nikiforov A, De Geyter N, Bogaerts A, Green Chemistry 24, 916 (2022). http://doi.org/10.1039/D1GC02762J
toggle visibility
An integrated techno-sustainability assessment (TSA) framework for emerging technologies”. Van Schoubroeck S, Thomassen G, Van Passel S, Malina R, Springael J, Lizin S, Venditti RA, Yao Y, Van Dael M, Green Chemistry 23, 1700 (2021). http://doi.org/10.1039/D1GC00036E
toggle visibility
Disproportionation of nitrogen induced by DC plasma-driven electrolysis in a nitrogen atmosphere”. Pattyn C, Maira N, Buddhadasa M, Vervloessem E, Iseni S, Roy NC, Remy A, Delplancke M-P, De Geyter N, Reniers F, Green Chemistry 24, 7100 (2022). http://doi.org/10.1039/D2GC01013E
toggle visibility
A biobased, bioactive, low CO₂, impact coating for soil improvers”. Wei&beta, R, Gritsch S, Brader G, Nikolic B, Spiller M, Santolin J, Weber HK, Schwaiger N, Pluchon S, Dietel K, Guebitz G, Nyanhongo G, Green Chemistry 23, 6501 (2021). http://doi.org/10.1039/D1GC02221K
toggle visibility
The role of ions in plasma catalytic carbon nanotube growth : a review”. Neyts EC, Frontiers of Chemical Science and Engineering 9, 154 (2015). http://doi.org/10.1007/s11705-015-1515-5
toggle visibility
Atomistic simulations of plasma catalytic processes”. Neyts EC, Frontiers of Chemical Science and Engineering 12, 145 (2018). http://doi.org/10.1007/S11705-017-1674-7
toggle visibility
Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling”. Bogaerts A, Yusupov M, Razzokov J, Van der Paal J, Frontiers of Chemical Science and Engineering (2019). http://doi.org/10.1007/s11705-018-1786-8
toggle visibility
Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source”. Brault P, Chamorro-Coral W, Chuon S, Caillard A, Bauchire J-M, Baranton S, Coutanceau C, Neyts E, Frontiers of Chemical Science and Engineering 13, 324 (2019). http://doi.org/10.1007/S11705-019-1792-5
toggle visibility
Special Issue on future directions in plasma nanoscience”. Neyts EC, Frontiers of Chemical Science and Engineering 13, 199 (2019). http://doi.org/10.1007/S11705-019-1843-Y
toggle visibility
Probing oxygen activation on plasmonic photocatalysts”. Dingenen F, Borah R, Ninakanti R, Verbruggen SW, Frontiers in Chemistry 10, 988542 (2022). http://doi.org/10.3389/FCHEM.2022.988542
toggle visibility
Cyclodextrin-appended superparamagnetic iron oxide nanoparticles as cholesterol-mopping agents”. Puglisi A, Bassini S, Reimhult E, Frontiers In Chemistry 9, 795598 (2021). http://doi.org/10.3389/FCHEM.2021.795598
toggle visibility
Electrochemical fingerprints of illicit drugs on graphene and multi-walled carbon nanotubes”. Dragan A-M, Truta FM, Tertis M, Florea A, Schram J, Cernat A, Feier B, De Wael K, Cristea C, Oprean R, Frontiers In Chemistry 9, 641147 (2021). http://doi.org/10.3389/FCHEM.2021.641147
toggle visibility
Tackling the problem of sensing commonly abused drugs through nanomaterials and (bio)recognition approaches”. Truta F, Florea A, Cernat A, Tertis M, Hosu O, De Wael K, Cristea C, Frontiers In Chemistry 8, 561638 (2020). http://doi.org/10.3389/FCHEM.2020.561638
toggle visibility
Analysis of geothermal waters by spark source mass spectrometry”. Vandelannoote R, Blommaert W, Gijbels R, van Grieken R, Fresenius' Zeitschrift für analytische Chemie 309, 291 (1981). http://doi.org/10.1007/BF00488604
toggle visibility
2,2′-Diaminodiethylamine cellulose powder for trace metal preconcentrations from water”. Reggers C, Van Grieken R, Fresenius' Zeitschrift für analytische Chemie 317, 520 (1984). http://doi.org/10.1007/BF00511918
toggle visibility
Energy-dispersive X-ray spectrometry : present state and trends”. Van Grieken R, Markowicz A, Török S, Fresenius' Zeitschrift für analytische Chemie 324, 825 (1986). http://doi.org/10.1007/BF00473177
toggle visibility
Matrix effects and analysis of biological material by spark source mass spectrometry”. Vos L, Van Grieken R, Fresenius' Zeitschrift für analytische Chemie 321, 32 (1985). http://doi.org/10.1007/BF00464483
toggle visibility
Micro-determination of zirconium-hafnium ratios in zircons by proton induced X-ray emission”. Van Grieken RE, Johansson TB, Winchester JW, Odom L, Fresenius' Zeitschrift für analytische Chemie 275, 343 (1975). http://doi.org/10.1007/BF00437765
toggle visibility
Total analysis of plant material and biological tissue by spark source mass spectrometry”. Verbueken A, Michiels E, Van Grieken R, Fresenius' Zeitschrift für analytische Chemie 309, 300 (1981). http://doi.org/10.1007/BF00488606
toggle visibility
Trace metal analysis of sediments and particulate matter in sea water by energy-dispersive X-ray fluorescence”. Vanderstappen M, Van Grieken R, Fresenius' Zeitschrift für analytische Chemie 282, 25 (1976). http://doi.org/10.1007/BF00443774
toggle visibility
Design and development of a new program for data processing of mass spectra acquired by means of a high-resolution double-focusing glow-discharge mass spectrometer”. Robben J, Dufour D, Gijbels R, Fresenius' journal of analytical chemistry 370, 663 (2001). http://doi.org/10.1007/s002160100881
toggle visibility
Mathematical description of a direct current glow discharge in argon”. Bogaerts A, Gijbels R, Fresenius' journal of analytical chemistry 355, 853 (1996)
toggle visibility
Modeling of the sputtering process of cubic silver halide microcrystals and its relevance in depth profiling by secondary ion-mass spectrometry (SIMS)”. Lenaerts J, Verlinden G, Ignatova VA, van Vaeck L, Gijbels R, Geuens I, Fresenius' journal of analytical chemistry 370, 654 (2001). http://doi.org/10.1007/s002160100880
toggle visibility
New developments and applications in GDMS”. Bogaerts A, Gijbels R, Fresenius' journal of analytical chemistry 364, 367 (1999). http://doi.org/10.1007/s002160051352
toggle visibility
Recent trends in solids mass spectrometry: GDMS and other methods”. Gijbels R, Bogaerts A, Fresenius' journal of analytical chemistry 359, 326 (1997). http://doi.org/10.1007/s002160050581
toggle visibility
Three-dimensional modeling of a direct current glow discharge in argon: is it better than one-dimensional modeling?”.Bogaerts A, Gijbels R, Fresenius' journal of analytical chemistry 359, 331 (1997). http://doi.org/10.1007/s002160050582
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print

Save Citations:
Export Records: