|   | 
Details
   web
Records
Author Vermeulen, M.; Sanyova, J.; Janssens, K.; Nuyts, G.; De Meyer, S.; De Wael, K.
Title The darkening of copper- or lead-based pigments explained by a structural modification of natural orpiment : a spectroscopic and electrochemical study Type A1 Journal article
Year 2017 Publication (down) Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 32 Issue 7 Pages 1331-1341
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A combined Raman and electrochemical study of natural orpiment (As2S3), an arsenic sulfide pigment, was used to assess the quick formation of oxidized species such as arsenic oxide (As2O3) upon exposing the pigment to 405 nm or 532 nm monochromatic light while simultaneously recording the Raman spectra of the exposed sample. During this process, a distortion of the main band at 355 cm−1, associated with the stretching of the AsS3/2 pyramids of natural orpiment, was observed as well as an increased intensity of the 359 cm−1 band, corresponding to covalent AsAs bonds in natural orpiment. The distortion was accompanied by an overall decrease of the global Raman signal for natural orpiment, which could be explained by a loss in the crystal structure. The same phenomena were recorded in reference natural orpiment model paint samples stored for a long time together with verdigris (Cu(OH)2·(CH3COO)2·5H2O) and minium (Pb3O4) paints, the latter two appearing darkened on their sides closest to the orpiment sample as well as in several historical samples containing natural orpiment mixed with various blue pigments. By SEM-EDX and XRPD analysis, respectively on loose material and cast thin-sections of model paint samples, the darkening was identified as dark sulfide species such as chalcocite (Cu2S) and galena (PbS), suggesting the release of volatile sulfide or related species by the natural orpiment paint. XANES analyses of paint samples presenting AsAs bond increase indicated the presence of sulfur species most likely identified as organosulfur compounds formed upon the AsAs bond formation and explained the darkening of the Cu- and Pb-based pigments. To the best of our knowledge, this article reports for the first time the light-induced formation of AsAs bonds in natural orpiment used as an artists' pigment and objectively demonstrates the incompatibility between orpiment and (arsenic) sulfide-sensitive pigments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404998500007 Publication Date 2017-05-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 10 Open Access
Notes ; This research is made possible with the support of the Belgian Science Policy Office (BELSPO, Brussels) through the research program Science for a Sustainable Development – SDD, “Long-term role and fate of metal-sulfides in painted works of art – S2ART” (SD/RI/04A). We gratefully acknowledge Julie Arslanoglu (Conservation and Scientific Research Department at the Metropolitan Museum of Art, New York, USA) for providing us the orpiment, verdigris and minium mock-up samples. We gratefully acknowledge the Paul Scherrer Institut, Villigen, Switzerland and the German Electron Synchrotron (DESY) for provision of synchrotron radiation beamtimes at respectively beamlines of the SLS and Petra III. ; Approved Most recent IF: 3.379
Call Number UA @ admin @ c:irua:144384 Serial 5564
Permanent link to this record
 

 
Author Horemans, B.; Schalm, O.; De Wael, K.; Cardell, C.; Van Grieken, R.
Title Atmospheric composition and micro-climate in the Alhambra monument, Granada (Spain), in the context of preventive conservation Type P1 Proceeding
Year 2012 Publication (down) IOP conference series : materials science and engineering Abbreviated Journal
Volume 37 Issue Pages 012002-12008
Keywords P1 Proceeding; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The world famous Alhambra monument in Granada, Southern Spain, listed as UNESCO world cultural heritage since 1984, represents probably the most beautiful example of Islamic art and architecture from the Middle Ages in Europe. It is visited by ca. 2 million people annually. Granada is situated in a natural basin, surrounded by mountains with altitudes up to 3500 m. Due to this topography and the prevailing low wind speeds, pollution-derived and especially traffic-derived particulate matter often accumulates in the urban air. In order to evaluate the potential conservation risks from the surrounding air, the atmospheric composition in the Alhambra monument was evaluated. Indoor temperature and relative humidity fluctuations were evaluated for their potential degenerative effects. Furthermore, the atmospheric composition in the Alhambra was analyzed in terms of inorganic gases (NO2, SO2, O3, and NH3) and black carbon. It was found that the open architecture protected the indoor environments from developing a potentially harmful microclimate, such as the build-up of humidity resulting from the huge number of daily tourists. On the downside, the strong ventilation made the indoor air hardly different from outdoor air, as characterized by strong diurnal temperature and relative humidity gradients and high traffic-derived pollutant levels.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000307662000002 Publication Date 2012-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1757-8981; 1757-899x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:100112 Serial 5484
Permanent link to this record
 

 
Author Hellar-Kihampa, H.; De Wael, K.; Lugwisha, E.; Van Grieken, R.
Title Water quality assessment in Pangani river basin, Tanzania : natural and anthropogenic influences on concentrations of nutrients and inorganic ions Type A1 Journal article
Year 2013 Publication (down) International journal of river basin management Abbreviated Journal
Volume 11 Issue 1 Pages 55-75
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The ongoing rapid expansions of human activities and population dynamics have potential impact on the environmental quality of the Pangani river basin, one of the largest water resources in Tanzania, including possible loadings of different kinds of micro-contaminants. However, specific extents of the impacts are rather not well investigated. In this work, we assessed the environmental quality of the basin, based on seasonal characterisation of physicochemical water and sediments parameters, dissolved inorganic ions and nutrient loads. The contributions of geochemical processes and land-use practices were evaluated by multivariate correlations and principal component analysis (PCA). Hierarchical cluster analysis was used to classify similar water quality stations and identify the most and least enriched ones. Surface waters were slightly alkaline, characterised by low total dissolved solids (48652 mg/L). Extremely low oxygen concentration (2.0 mg/L) was also a cause of concern at one station. The Na+ and HCO3 − ions provided the dominant cation and anion, respectively. PCA identified weathering of carbonate and Na+ bearing rocks, gypsum dissolution and atmospheric deposition of sea-salt as the major factors controlling the ionic composition, contributing more than 60% of the spatial variance. Concentration profiles of the chemical species showed a generally low level of anthropogenic inputs, except at a few locations where nitrate and nitrite were significantly enriched above the limits of safe exposure, with patterns indicating influences of farming and livestock keeping. A seasonal difference was observed, with lower ion concentrations during the rainy season, likely due to the dilution effect of increased water discharge. The study provides new insights into the environmental quality of the basin, and indicates the need for continuous monitoring and assessment of the chemical species in the area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2013-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1571-5124 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:104621 Serial 5909
Permanent link to this record
 

 
Author Samal, S.K.; Soenen, S.; Puppi, D.; De Wael, K.; Pati, S.; De Smedt, S.; Braeckmans, K.; Dubruel, P.
Title Bio-nanohybrid gelatin/quantum dots for cellular imaging and biosensing applications Type A1 Journal article
Year 2022 Publication (down) International journal of molecular sciences Abbreviated Journal
Volume 23 Issue 19 Pages 11867-12
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The bio-nanohybrid gelatin protein/cadmium sulfide (Gel/CdS) quantum dots (QDs) have been designed via a facile one-pot strategy. The amino acids group of gelatin chelate Cd2+ and grow CdS QDs without any agglomeration. The H-1 NMR spectra indicate that during the above process there are no alterations of the gelatin protein structure conformation and chemical functionalities. The prepared Gel/CdS QDs were characterized and their potential as a system for cellular imaging and the electrochemical sensor for hydrogen peroxide (H2O2) detection applications were investigated. The obtained results demonstrate that the developed Gel/CdS QDs system could offer a simple and convenient operating strategy both for the class of contrast agents for cell labeling and electrochemical sensors purposes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000867759600001 Publication Date 2022-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067; 1661-6596 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:191566 Serial 8836
Permanent link to this record
 

 
Author Muhammad, S.; Wuyts, K.; De Wael, K.; Samson, R.
Title Does leaf micro-morphology influence the recognition of particles on SEM images? Type A3 Journal article
Year 2021 Publication (down) International Journal of Environmental Pollution and Remediation Abbreviated Journal
Volume 9 Issue Pages 22-37
Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Scanning electron microscopy (SEM) remains a popular approach to determine the shape, size, density and elemental composition of particles collected on leaf surfaces, but the effect of leaf micro-morphology on particle counts is not very well known. In this study, leaves of sixteen urban plant species were examined for particle density in June and September 2016 using SEM. The investigated plant species differed in leaf micro-morphology involving trichomes, raised stomata, epicuticular wax crystals and convex epidermal cells forming deep grooves between cells. The particle density on leaves of the investigated plant species was estimated by particle size fraction and leaf side. Particle density was significantly higher on the adaxial (AD) leaf side compared to the abaxial (AB) leaf side and higher for fine-particles than coarse-particles. The effect of trichome density on particle density of the AB and the AD leaf side was indicated to be significant and positive for both coarse and fine-particles in June but not in September. The successive repeated measurements elucidated that features constructing the topography of a leaf surface such as trichomes, stomata, and epidermal cells frequently contributed towards the edge enhancement effect, resulting in exaggerated particle counts. Besides, the mechanical drift contributed to the disparity in particle density measurements. Lastly, the reduction in particle density between successive measurements were imputed on the charging effect. These results enable us to suggest that in addition to characterization of micro-morphological features on a leaf surface, SEM will continue to be a useful approach for determining the particle: shape, size, elemental composition and density of the deposited particles. Nonetheless, the disparity in particle density measurements can occur due to abnormal particle recognition. Based on the results of September, we recommend that within-session successive repeated measurements (~ n ≥ 5) need to be performed to remove measurement uncertainties and obtain reliable quantitative data of particle counts using SEM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:181797 Serial 7822
Permanent link to this record
 

 
Author Hellar-Kihampa, H.; Potgieter-Vermaak, S.; De Wael, K.; Lugwisha, E.; van Espen, P.; Van Grieken, R.
Title Concentration profiles of metal contaminants in fluvial sediments of a rural-urban drainage basin in Tanzania Type A1 Journal article
Year 2014 Publication (down) International journal of environmental analytical chemistry Abbreviated Journal Int J Environ An Ch
Volume 94 Issue 1 Pages 77-98
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract This study investigated concentration profiles of trace, rare earth and platinum group metals in fluvial sediments from the Pangani river basin (43,650 km2), one of the largest river basins in Tanzania, to assess its environmental quality. Sediment samples were collected in two distinct seasons from 12 representative sites of diverse land-use practices and characterised by ICP-MS after optimised microwave digestion. Ecological risks were assessed by evaluation of pollution index and comparison with legislated sediment quality guidelines (SQG). The results revealed contamination by some trace metals (e.g. Pb, V, Cu, Cr, Ni, Cd, As, Co, Mn and Zn) in concentrations ranging from 0.7 to 2940 mg kg−1, and four rare earth elements (Y, Ce, Nd, Yb) in concentrations ranging from 0.9 (Yb) to 500 mg kg−1 dry weight (Ce), which significantly exceeded the estimated background values at some stations. Palladium was the only platinum group element that was detected in quantifiable concentrations (0.33.5 mg kg−1). Concentrations of some trace metals exceeded the SQGs at some localised areas. Principal component analysis and multivariate correlations indicated geochemical characteristics of the area as the major control of metal concentrations and spatial variability. Organic matter and clay contents also played a significant role in metal distributions. Assessment of land-use practices upstream of the sampling locations was used to trace potential anthropogenic sources of metal enrichments, where highest levels were found in areas close to urban centres and agricultural activities. The study provides baseline data for future monitoring programs, and highlights the need for more comprehensive analysis involving a wider spatio-temporal scale and ecotoxicological risk assessment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000329774500007 Publication Date 2013-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-7319 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.208 Times cited 5 Open Access
Notes ; The participants of this research gratefully acknowledge the financial support of the Belgian Development Agency (BTC). The contribution of the Pangani Basin Water Board (PBWB), especially Ms Arafa Maggidi in provision of valuable information and assistance with the sampling campaigns is greatly appreciated. We sincerely acknowledge the assistance of Mr. Elisa Dunstan Kiwelu of Ardhi University, Dar es Salaam, Tanzania in mapping the study area; Mr Peter Machibya of the Department of Geology, University of Dar es Salaam, Tanzania in sediment characterisation; and Dr Valentine Kayawe Mubiana of the Department of Biology, University of Antwerp in ICP-MS analysis. The contributions of six anonymous reviewers, which greatly improved the manuscript for this paper, are highly appreciated. ; Approved Most recent IF: 1.208; 2014 IF: 1.295
Call Number UA @ admin @ c:irua:109234 Serial 5547
Permanent link to this record
 

 
Author Pilehvar, S.; Dardenne, F.; Blust, R.; De Wael, K.
Title Electrochemical sensing of phenicol antibiotics at gold Type A1 Journal article
Year 2012 Publication (down) International journal of electrochemical science Abbreviated Journal Int J Electrochem Sc
Volume 7 Issue 6 Pages 5000-5011
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Phenicols are an effective and a broad spectrum class of antibiotics which has lost favour due to their side effects on human health. A rapid and sensitive electrochemical detection system is developed for the simultaneous detection of chloramphenicol (CAP), thiamphenicol (TAP) and florfenicol (FF). The electrochemical behaviour of CAP in the presence of its derivatives was investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV). At a gold electrode, CAP gives rise to a sensitive cathodic peak at −0.68V (versus SCE) in a tris buffer solution (pH 7.6). This behavior gives us the opportunity to introduce a method for sensing CAP electrochemically in the presence of its derivatives. Calibration graphs were linear in the 2.5-7.4 μmol L-1 concentration range. Deviations from linearity were observed for higher concentrations and this was interpreted to be due to kinetic limitation caused by the saturation of CAP and its reduction products onto the gold electrode surface. A limit of detection of 1 μmol L-1 was found.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1452-3981 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.469 Times cited Open Access
Notes ; ; Approved Most recent IF: 1.469; 2012 IF: NA
Call Number UA @ admin @ c:irua:98344 Serial 5595
Permanent link to this record
 

 
Author De Wael, K.; Verstraete, A.; van Vlierberghe, S.; Dejonghe, W.; Dubruel, P.; Adriaens, A.
Title The electrochemistry of a gelatin modified gold electrode Type A1 Journal article
Year 2011 Publication (down) International journal of electrochemical science Abbreviated Journal Int J Electrochem Sc
Volume 6 Issue 6 Pages 1810-1819
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract This paper discusses the electrochemical behaviour of gelatin coated gold electrodes in physiological pH conditions in a potential window −1.5 till 1.0 V vs SCE by performing cyclic voltammetry. A comparison is made between gelatin A and gelatin B, which have respectively a positive and a negative net charge at physiological pH. The deposition of gelatin onto the gold surface is confirmed by means of attenuated total reflection-infrared (ATR-IR) spectroscopic analyses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1452-3981 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 1.469 Times cited Open Access
Notes ; The authors would like to acknowledge the Flemish Institute for Technological Research (VITO, Belgium) and the Research Foundation-Flanders (FWO, Belgium) for the Ph.D. funding granted to Annelies Verstraete. Karolien De Wael and Sandra Van Vlierberghe are also grateful to the Research Foundation-Flanders (FWO, Belgium) for their postdoctoral fellowship. ; Approved Most recent IF: 1.469; 2011 IF: 3.729
Call Number UA @ admin @ c:irua:89617 Serial 5598
Permanent link to this record
 

 
Author Smets, B.; Boschker, H.T.S.; Wetherington, M.T.; Lelong, G.; Hidalgo-Martinez, S.; Polerecky, L.; Nuyts, G.; De Wael, K.; Meysman, F.J.R.
Title Multi-wavelength Raman microscopy of nickel-based electron transport in cable bacteria Type A1 Journal article
Year 2024 Publication (down) Frontiers in microbiology Abbreviated Journal
Volume 15 Issue Pages 1208033-16
Keywords A1 Journal article
Abstract Cable bacteria embed a network of conductive protein fibers in their cell envelope that efficiently guides electron transport over distances spanning up to several centimeters. This form of long-distance electron transport is unique in biology and is mediated by a metalloprotein with a sulfur-coordinated nickel (Ni) cofactor. However, the molecular structure of this cofactor remains presently unknown. Here, we applied multi-wavelength Raman microscopy to identify cell compounds linked to the unique cable bacterium physiology, combined with stable isotope labeling, and orientation-dependent and ultralow-frequency Raman microscopy to gain insight into the structure and organization of this novel Ni-cofactor. Raman spectra of native cable bacterium filaments reveal vibrational modes originating from cytochromes, polyphosphate granules, proteins, as well as the Ni-cofactor. After selective extraction of the conductive fiber network from the cell envelope, the Raman spectrum becomes simpler, and primarily retains vibrational modes associated with the Ni-cofactor. These Ni-cofactor modes exhibit intense Raman scattering as well as a strong orientation-dependent response. The signal intensity is particularly elevated when the polarization of incident laser light is parallel to the direction of the conductive fibers. This orientation dependence allows to selectively identify the modes that are associated with the Ni-cofactor. We identified 13 such modes, some of which display strong Raman signals across the entire range of applied wavelengths (405–1,064 nm). Assignment of vibrational modes, supported by stable isotope labeling, suggest that the structure of the Ni-cofactor shares a resemblance with that of nickel bis(1,2-dithiolene) complexes. Overall, our results indicate that cable bacteria have evolved a unique cofactor structure that does not resemble any of the known Ni-cofactors in biology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001189511900001 Publication Date 2024-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-302x ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205115 Serial 9214
Permanent link to this record
 

 
Author Dragan, A.-M.; Truta, F.M.; Tertis, M.; Florea, A.; Schram, J.; Cernat, A.; Feier, B.; De Wael, K.; Cristea, C.; Oprean, R.
Title Electrochemical fingerprints of illicit drugs on graphene and multi-walled carbon nanotubes Type A1 Journal article
Year 2021 Publication (down) Frontiers In Chemistry Abbreviated Journal Front Chem
Volume 9 Issue Pages 641147
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Illicit drugs use and abuse remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of emerging pollutants as their consumption increased tremendously in recent years. Nanomaterials have gained much attention over the last decade in the development of sensors for a myriad of applications. The applicability of these nanomaterials, functionalized or not, significantly increases and it is therefore highly suitable for use in the detection of illicit drugs. We have assessed the suitability of various nanoplatforms, such as graphene (GPH), multi-walled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) for the electrochemical detection of illicit drugs. GPH and MWCNTs were chosen as the most suitable platforms and cocaine, 3,4-methylendioxymethamfetamine (MDMA), 3-methylmethcathinone (MMC) and alpha-pyrrolidinovalerophenone (PVP) were tested. Due to the hydrophobicity of the nanomaterials-based platforms which led to low signals, two strategies were followed namely, pretreatment of the electrodes in sulfuric acid by cyclic voltammetry and addition of Tween 20 to the detection buffer. Both strategies led to an increase in the oxidation signal of illicit drugs. Binary mixtures of illicit drugs with common adulterants found in street samples were also investigated. The proposed strategies allowed the sensitive detection of illicit drugs in the presence of most adulterants. The suitability of the proposed sensors for the detection of illicit drugs in spiked wastewaters was finally assessed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000634708900001 Publication Date 2021-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-2646 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.994 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.994
Call Number UA @ admin @ c:irua:177704 Serial 7861
Permanent link to this record
 

 
Author Truta, F.; Florea, A.; Cernat, A.; Tertis, M.; Hosu, O.; De Wael, K.; Cristea, C.
Title Tackling the problem of sensing commonly abused drugs through nanomaterials and (bio)recognition approaches Type A1 Journal article
Year 2020 Publication (down) Frontiers In Chemistry Abbreviated Journal Front Chem
Volume 8 Issue Pages 561638
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract We summarize herein the literature in the last decade, involving the use of nanomaterials and various (bio)recognition elements, such as antibodies, aptamers and molecularly imprinted polymers, for the development of sensitive and selective (bio)sensors for illicit drugs with a focus on electrochemical transduction systems. The use and abuse of illicit drugs remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of “emerging pollutants,” as their consumption has increased tremendously in recent years. Nanomaterials, antibodies, aptamers and molecularly imprinted polymers have gained much attention over the last decade in the development of (bio)sensors for a myriad of applications. The applicability of these (nano)materials, functionalized or not, has significantly increased, and are therefore highly suitable for use in the detection of drugs. Lately, such functionalized nanoscale materials have assisted in the detection of illicit drugs fingerprints, providing large surface area, functional groups and unique properties that facilitate sensitive and selective sensing. The review discusses the types of commonly abused drugs and their toxicological implications, classification of functionalized nanomaterials (graphene, carbon nanotubes), their fabrication, and their application on real samples in different fields of forensic science. Biosensors for drugs of abuse from the last decade's literature are then exemplified. It also offers insights into the prospects and challenges of bringing the functionalized nanobased technology to the end user in the laboratories or in-field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000589960100001 Publication Date 2020-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-2646 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited Open Access
Notes Approved Most recent IF: 5.5; 2020 IF: 3.994
Call Number UA @ admin @ c:irua:174278 Serial 8639
Permanent link to this record
 

 
Author Van Echelpoel, R.; Kranenburg, R.; van Asten, A.; De Wael, K.
Title Electrochemical detection of MDMA and 2C-B in ecstasy tablets using a selectivity enhancement strategy by in-situ derivatization Type A1 Journal article
Year 2022 Publication (down) Forensic chemistry Abbreviated Journal
Volume 27 Issue Pages 100383
Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Forensic drug laboratories are confronted with increasing amounts of drugs and a demand for faster results that are directly available on-site. In addition, the drug market is getting more complex with hundreds of new psychoactive substances (NPS) entering the market in recent years. Rapid and on-scene presumptive drug testing therefore faces a shift from manual colorimetric tests towards approaches that can detect a wider range of components and process results automatically. Electrochemical detection offers these desired characteristics, making it a suitable candidate for on-site drug detection. In this study, a two-step electrochemical sensor is introduced for the detection of MDMA and 2C-B. Firstly, a direct electrochemical analysis was performed to detect MDMA. Validation experiments on over 70 substances revealed that 2C-B was the only frequently encountered drug that gave a false positive result for MDMA in this first analysis. A second step using in-situ derivatization was subsequently introduced. To this end, formaldehyde was used for N-methylation of 2C-B thereby enhancing its electrochemical profile. The enriched electrochemical fingerprint in the second step allowed for clear differentiation between MDMA and 2C-B. The applicability of this approach was demonstrated with 71 ecstasy tablets seized by the Amsterdam Police. The MDMA/2C-B sensor correctly identified all 39 MDMA-containing tablets and 10 out of 11 tablets containing 2C-B. Most notably, correct results were also obtained for dark colored tablets in which both spectroscopic analysis and colorimetric tests failed due to obscured signals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000725708200002 Publication Date 2021-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-1709 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7
Call Number UA @ admin @ c:irua:183340 Serial 7149
Permanent link to this record
 

 
Author Horemans, B.; Van Holsbeke, C.; Vos, W.; Darchuk, L.; Novakovic, V.; Fontan, A.C.; de Backer, J.; van Grieken, R.; de Backer, W.; De Wael, K.
Title Particle deposition in airways of chronic respiratory patients exposed to an urban aerosol Type A1 Journal article
Year 2012 Publication (down) Environmental science and technology Abbreviated Journal Environ Sci Technol
Volume 46 Issue 21 Pages 12162-12169
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract Urban atmospheres in modern cities carry characteristic mixtures of particulate pollution which are potentially aggravating for chronic respiratory patients (CRP). Although air quality surveys can be detailed, the obtained information is not always useful to evaluate human health effects. This paper presents a novel approach to estimate particle deposition rates in airways of CRP, based on real air pollution data. By combining computational fluid dynamics with physical-chemical characteristics of particulate pollution, deposition rates are estimated for particles of different toxicological relevance, that is, minerals, iron oxides, sea salts, ammonium salts, and carbonaceous particles. Also, it enables some qualitative evaluation of the spatial, temporal, and patient specific effects on the particle dose upon exposure to the urban atmosphere. Results show how heavy traffic conditions increases the deposition of anthropogenic particles in the trachea and lungs of respiratory patients (here, +0.28 and +1.5 μg·h1, respectively). In addition, local and synoptic meteorological conditions were found to have a strong effect on the overall dose. However, the pathology and age of the patient was found to be more crucial, with highest deposition rates for toxic particles in adults with a mild anomaly, followed by mild asthmatic children and adults with severe respiratory dysfunctions (7, 5, and 3 μg·h1, respectively).
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000310665000082 Publication Date 2012-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.198 Times cited 5 Open Access
Notes ; We are grateful for the financial support of n.v. Vooruitzicht. Furthermore, co-workers at the environmental analysis research group are acknowledged for their help in the fieldwork. ; Approved Most recent IF: 6.198; 2012 IF: 5.257
Call Number UA @ lucian @ c:irua:101411 Serial 2557
Permanent link to this record
 

 
Author Kardel, F.; Wuyts, K.; De Wael, K.; Samson, R.
Title Biomonitoring of atmospheric particulate pollution via chemical composition and magnetic properties of roadside tree leaves Type A1 Journal article
Year 2018 Publication (down) Environmental Science and Pollution Research Abbreviated Journal Environ Sci Pollut R
Volume 25 Issue 26 Pages 25994-26004
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Particulate matter (PM) is a main atmospheric pollution which threats human health and well-being. In this research, we chemically and magnetically analysed roadside tree leaves, collected from three tree species in two main roads (from two different cities) and a reference area, for 28 elements and the saturation isothermal remanent magnetisation. Comparison of unwashed and washed leaves revealed that deposited particles on the leaf surface contain various elements including Al, Ca, Fe, Mg, Mn, Na, Si, Ti, Ba, Co, Cr, Cu, Ni, Rb, V, Zn and Zr. Moreover, there was no significant difference between washed/unwashed leaves in Cl, K, P, S, As, Cd, Cs, Pb, Sn and Sr concentrations, which indicates tree leaves may not be a suitable biomonitor for these elements. Our results showed that site and tree species are important factors which affect atmospheric elements deposition. Among the three considered tree species, Chamaecyparis lawsoniana showed the highest potential for atmospheric particle accumulation. The PCA results revealed that Al, Fe, Ti, Co, Cr, Cu, Ni, Rb, Si, V, Zn and Zr indicated emissions from road traffic activities and soil dust; Ca, Mg and Na from sea salts and Mn and Sb from industrial activity. The biplot results showed that the site effect was much stronger than the species effect for all elements and saturation isothermal remanent magnetisation (SIRM) values. Moreover, elements from traffic, industrial activity and soil dust are significantly correlated with leaf SIRM indicating that leaf SIRM can be a suitable bioindicator of exposure to traffic-derived particles and soil dust, and not from sea salts. It is concluded that chemical composition and SIRM of urban tree leaves can serve as a good indicator of atmospheric PM pollution in Iran and anywhere else where the studied trees grow.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000443329100034 Publication Date 2018-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.741 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 2.741
Call Number UA @ admin @ c:irua:153669 Serial 5489
Permanent link to this record
 

 
Author Anaf, W.; Horemans, B.; Madeira, T.I.; Carvalho, M.L.; De Wael, K.; Van Grieken, R.
Title Effects of a constructional intervention on airborne and deposited particulate matter in the Portuguese National Tile Museum, Lisbon Type A1 Journal article
Year 2013 Publication (down) Environmental Science and Pollution Research Abbreviated Journal Environ Sci Pollut R
Volume 20 Issue 3 Pages 1849-1857
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In the 1970s, a large ambulatory of the National Tile Museum, Lisbon, was closed with glass panes on both ground and first floor. Although this design was meant to protect the museum collection from ambient air pollutants, small openings between the glass panes remain, creating a semi-enclosed corridor. The effects of the glass panes on the indoor air quality were evaluated in a comparative study by monitoring the airborne particle concentration and the extent of particle deposition at the enclosed corridor as well as inside the museum building. Comparison of the indoor/outdoor ratio of airborne particle concentration demonstrated a high natural ventilation rate in the enclosed corridor as well as inside the museum building. PM10 deposition velocities on vertical surfaces were estimated in the order of 3 × 10−4 m s−1 for both indoor locations. Also, the deposition rates of dark-coloured and black particles in specific were very similar at both indoor locations, causing visual degradation. The effectiveness of the glass panes in protecting the museum collection is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315442500061 Publication Date 2012-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.741 Times cited 15 Open Access
Notes ; ; Approved Most recent IF: 2.741; 2013 IF: 2.757
Call Number UA @ admin @ c:irua:100214 Serial 5583
Permanent link to this record
 

 
Author Castanheiro, A.; Wuyts, K.; Hofman, J.; Nuyts, G.; De Wael, K.; Samson, R.
Title Morphological and elemental characterization of leaf-deposited particulate matter from different source types : a microscopic investigation Type A1 Journal article
Year 2021 Publication (down) Environmental Science And Pollution Research Abbreviated Journal Environ Sci Pollut R
Volume 28 Issue 20 Pages 25716-25732
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Particulate matter (PM) deposition on urban green enables the collection of particulate pollution from a diversity of contexts, and insight into the physico-chemical profiles of PM is key for identifying main polluting sources. This study reports on the morphological and elemental characterization of PM2-10 deposited on ivy leaves from five different environments (forest, rural, roadside, train, industry) in the region of Antwerp, Belgium. Ca. 40,000 leaf-deposited particles were thoroughly investigated by particle-based analysis using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDX) and their physico-chemical characteristics were explored for PM source apportionment purposes. The size distribution of all deposited particles was biased towards small-sized PM, with 32% of the particles smaller than 2.5 mu m (PM2.5) and median diameters of 2.80-3.09 mu m. The source type influenced both the particles' size and morphology (aspect ratio and shape), with roadside particles being overall the smallest in size and the most spherical. While forest and rural elemental profiles were associated with natural PM, the industry particles revealed the highest anthropogenic metal input. PM2-10 profiles for roadside and train sites were rather comparable and only distinguishable when evaluating the fine (2-2.5 mu m) and coarse (2.5-10 mu m) PM fractions separately, which enabled the identification of a larger contribution of combustion-derived particles (small, circular, Fe-enriched) at the roadside compared to the train. Random forest prediction model classified the source type correctly for 61-85% of the leaf-deposited PM. The still modest classification accuracy denotes the influence of regional background PM and demands for additional fingerprinting techniques to facilitate source apportionment. Nonetheless, the obtained results demonstrate the utility of leaf particle-based analysis to fingerprint and pinpoint source-specific PM, particularly when considering both the composition and size of leaf-deposited particles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000609067300006 Publication Date 2021-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.741 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.741
Call Number UA @ admin @ c:irua:176082 Serial 8282
Permanent link to this record
 

 
Author Lybaert, J.; Maes, B.U.W.; Tehrani, K.A.; De Wael, K.
Title The electrochemistry of tetrapropylammonium perruthenate, its role in the oxidation of primary alcohols and its potential for electrochemical recycling Type A1 Journal article
Year 2015 Publication (down) Electrochimica acta Abbreviated Journal Electrochim Acta
Volume 182 Issue Pages 693-698
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY)
Abstract The search for strategies aiming at more sustainable (oxidation) reactions has led to the application of electrochemistry for recycling the spent catalyst. In this work, an electrochemical study of the tetrapropylammonium perruthenate catalyst (TPAP) and its activity towards a primary alcohol, n-butanol, has been carried out as well as a control study with tert-butanol. The redox chemistry of TPAP and the transition between the perruthenate anion and ruthenium tetroxide in a non-aqueous solvent have been, for the first time, investigated in depth. The oxidation reaction of n-butanol in the presence of TPAP has been electrochemically elucidated by performing potentiostatic experiments and registration of the corresponding oxidation current. Furthermore, it was shown that, by applying a specific potential, the reoxidized TPAP is able to oxidize/convert the primary alcohol, paving the way for practical applications using TPAP in electrochemical synthesis. The conversion of n-butanol into n-butanal was proven by the use of GC-MS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000365075800084 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 4.798; 2015 IF: 4.504
Call Number UA @ admin @ c:irua:127676 Serial 5599
Permanent link to this record
 

 
Author Pauwels, D.; Ching, H.Y.V.; Samanipour, M.; Neukermans, S.; Hereijgers, J.; Van Doorslaer, S.; De Wael, K.; Breugelmans, T.
Title Identifying intermediates in the reductive intramolecular cyclisation of allyl 2-bromobenzyl ether by an improved electron paramagnetic resonance spectroelectrochemical electrode design combined with density functional theory calculations Type A1 Journal article
Year 2018 Publication (down) Electrochimica acta Abbreviated Journal Electrochim Acta
Volume 271 Issue 271 Pages 10-18
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The electrochemical activation of C-X bonds requires very negative electrode potentials. Lowering the overpotentials and increasing the catalytic activity requires intensive electrocatalytic research. A profound understanding of the reaction mechanism and the influence of the electrocatalyst allows optimal tuning of the electrocatalyst. This can be achieved by combining electrochemical techniques with electron paramagnetic resonance (EPR) spectroscopy. Although this was introduced in the mid-twentieth century, the application of this combined approach in electrocatalytic research is underexploited. Several reasons can be listed, such as the limited availability of EPR instrumentation and electrochemical devices for such in situ experiments. In this work, a simple and inexpensive construction adapted for in situ EPR electrocatalytic research is proposed. The proof of concept is provided by studying a model reaction, namely the reductive cyclisation of allyl 2-bromobenzyl ether which has interesting industrial applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430369800002 Publication Date 2018-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited 2 Open Access
Notes ; The authors would like to thank Melissa Van Landeghem for her assistance with the experimental work and analysis of the data. Jonas Hereijgers greatly acknowledges the Research Foundation Flanders (FWO) for support through a Post-Doctoral grant (12Q8817N). H.Y. Vincent Ching gratefully acknowledges the University of Antwerp for a Post-Doctoral grant. Sabine Van Doorslaer and Tom Breugelmans acknowledge the FWO for research funding (research grant G093317N). ; Approved Most recent IF: 4.798
Call Number UA @ admin @ c:irua:150463 Serial 5652
Permanent link to this record
 

 
Author Lybaert, J.; Tehrani, K.A.; De Wael, K.
Title Mediated electrolysis of vicinal diols by neocuproine palladium catalysts Type A1 Journal article
Year 2017 Publication (down) Electrochimica acta Abbreviated Journal Electrochim Acta
Volume 247 Issue Pages 685-691
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY)
Abstract Synthetic electrochemistry agrees well with the principles of sustainable chemistry, therefore it is considered as a more environmentally friendly approach than some current synthetic methods Here, we present a new strategy for the chemoselective oxidation of vicinal diols, viz. the integration of neocuproine palladium catalysts and electrosynthesis. Benzoquinones are used as an effective mediator as the reduced species (hydroquinones) can be easily reoxidized at relative low potentials at an electrode surface. NeocuproinePd(OAc)2 efficiently works as a catalyst in an electrolysis reaction for vicinal diols at room temperature. This is a remarkable observation given the fact that aerobic oxidation reactions of alcohols typically need a more complex catalyst, i.e. [neocuproinePdOAc]2[OTf]2. In this article we describe the optimization of the electrolysis conditions for the neocuproinePd(OAc)2 catalyst to selectively oxidize diols. The suggested approach leads to conversion of alcohols with high yields and provides an interesting alternative to perform oxidation reactions under mild conditions by the aid of electrochemistry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000408582300072 Publication Date 2017-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited Open Access
Notes ; ; Approved Most recent IF: 4.798
Call Number UA @ admin @ c:irua:144118 Serial 5706
Permanent link to this record
 

 
Author Gaetani, C.; Gheno, G.; Borroni, M.; De Wael, K.; Moretto, L.M.; Ugo, P.
Title Nanoelectrode ensemble immunosensing for the electrochemical identification of ovalbumin in works of art Type A1 Journal article
Year 2019 Publication (down) Electrochimica acta Abbreviated Journal Electrochim Acta
Volume 312 Issue 312 Pages 72-79
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract This research is aimed to the study and application of an electrochemical immunosensor for the detection of ovalbumin (OVA) from egg white (or albumen) used as a binder in some works of art, such as some historical photographic prints and tempera paintings. The immunosensor takes advantage of the interesting biodetection capabilities offered by nanoelectrode ensembles (NEEs). The NEEs used to this aim are prepared by template deposition of gold nanoelectrodes within the pores of track-etched polycarbonate (PC) membranes. The affinity of polycarbonate for proteins is exploited to capture OVA from the aqueous extract obtained by incubation in phosphate buffer of a small sample fragment (<1 mg). The captured protein is reacted selectively with anti-OVA antibody, labelled with glucose oxidase (GOx). In the case of positive response, the addition of the GOx substrate (i.e. glucose) and a suitable redox mediator (a ferrocenyl derivative) reflects in the up rise of an electrocatalytic oxidation current, which depends on the OVA amount captured on the NEE, this amount correlating with OVA concentration in the extract. After optimization, the sensor is successfully applied to identify OVA in photographic prints dating back to the late 19th century, as well as in ancient tempera paintings from the 15th and 18th centuries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468595500008 Publication Date 2019-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 4.798
Call Number UA @ admin @ c:irua:159573 Serial 5743
Permanent link to this record
 

 
Author Stefan, G.; Hosu, O.; De Wael, K.; Jesus Lobo-Castanon, M.; Cristea, C.
Title Aptamers in biomedicine : selection strategies and recent advances Type A1 Journal article
Year 2021 Publication (down) Electrochimica Acta Abbreviated Journal Electrochim Acta
Volume 376 Issue Pages 137994
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Aptamers have come in the spotlight as bio-mimetic molecular recognition elements in the field of biomedicine due to various applications in diagnostics, drug delivery, therapeutics, and pharmaceutical analysis. Aptamers are composed of nucleic acid strands (DNA or RNA) that can specifically interact in a three-dimensional tailored design with the target molecule. The basic method to generate aptamers is Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Recent technological advances in aptamer selection allow for faster and cheaper production of a new generation of high-affinity aptamers compared to the traditional SELEX, which can last up to several months. Rigorous characterization performed by multiple research groups endorsed several well-defined aptamer sequences. Binding affinity, nature of the biomolecular interactions and structural characterization are of paramount importance for aptamer screening and development of applications. However, remarkable challenges still need to be dealt with before the aptamers can make great contributions to the biomedical field. Poor specificity and sensitivity, questionable clinical use, low drug loading, in vivo stability and toxicity are only some of the identified challenges. This review accounts for the 30th celebration of the SELEX technology underlining the most important aptamers' achievements in the biomedical field within mostly the past five years. Aptamers' advantages over antibodies are discussed. Because of potential clinical translational utility, insights of remarkable developments in aptamer-based methods for diagnosis and monitoring of disease biomarkers and pharmaceuticals are discussed focusing on the recent studies (2015-2020). The current challenges and promising opportunities for aptamers for therapeutic and theragnostic purposes are also presented. (C) 2021 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000634761900003 Publication Date 2021-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.798
Call Number UA @ admin @ c:irua:177677 Serial 7491
Permanent link to this record
 

 
Author Schram, J.; Thiruvottriyur Shanmugam, S.; Sleegers, N.; Florea, A.; Samyn, N.; van Nuijs, A.L.N.; De Wael, K.
Title Local conversion of redox inactive molecules into redox active ones : a formaldehyde based strategy for the electrochemical detection of illicit drugs containing primary and secondary amines Type A1 Journal article
Year 2021 Publication (down) Electrochimica Acta Abbreviated Journal Electrochim Acta
Volume 367 Issue Pages 137515
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre
Abstract Electrochemical techniques have evidenced to be highly suitable for the development of portable, rapid and accurate screening methods for the detection of illicit drugs in seized samples. However, the redox inactivity of primary amines, one of the most common functional groups of illicit drugs, masks voltammetric detection in aqueous environment at carbon electrodes and, therefore, leads to false negative results if only these primary amines are present in the structures. This work explores the feasibility of a derivatisation approach that introduces formaldehyde in the measuring conditions in order to achieve methylation, via an Eschweiler-Clarke mechanism, of illicit drugs containing primary and secondary amines, using amphetamine (AMP) and methamphetamine (MET) as model molecules. As a result the electrochemical fingerprint is enriched and thereby the detectability enhanced. A combination of liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOFMS) and square-wave voltammetric (SWV) measurements is employed to identify reaction products and link them to the observed redox peaks. Although an alkaline environment (pH 12.0) proved to increase the reaction yield, a richer electrochemical fingerprint (EF) is obtained in neutral conditions (pH 7.0). Similarly, the addition of formate improved the reaction conversion but reduced the EF by eliminating a redox peak that is attributed to side products formed in the absence of formate. To illustrate the applicability, the derivatisation strategy is applied to several prominent illicit drugs containing primary and secondary amines to demonstrate its EF enriching capabilities. Finally, real street samples from forensic seizures are analysed. Overall, this strategy unlocks the detectability of the hitherto undetectable AMP and other drugs only containing primary amines, while strongly facilitating the identification of MET and analogues. These findings are not limited to illicit drugs, the insights can ultimately be applied to other target molecules containing similar functional groups. (C) 2020 Published by Elsevier Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000607620700010 Publication Date 2020-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.798
Call Number UA @ admin @ c:irua:176083 Serial 8177
Permanent link to this record
 

 
Author Mendonça, C.D.; Khan, S.U.; Rahemi, V.; Verbruggen, S.W.; Machado, S.A.S.; De Wael, K.
Title Surface plasmon resonance-induced visible light photocatalytic TiO₂ modified with AuNPs for the quantification of hydroquinone Type A1 Journal article
Year 2021 Publication (down) Electrochimica Acta Abbreviated Journal Electrochim Acta
Volume 389 Issue Pages 138734
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)
Abstract The impregnation of size-controlled gold nanoparticles (AuNPs) on an anatase TiO2 structure (AuNPs@TiO2) was studied for the photoelectrochemical detection of hydroquinone (HQ) under visible light illumination integrated into a flow injection analysis (FIA) setup. The crystalline form of TiO2 was preserved during synthesis and the homogeneous distribution of AuNPs over the TiO2 structure was confirmed. Its photoelectrocatalytic activity was improved due to the presence of AuNPs, preventing charge recombination in TiO2 and improving its light absorption ability by the surface plasmon resonance effect (SPR). The FIA system was used in order to significantly reduce the electrode fouling during electroanalysis through periodic washing steps of the electrode surface. During the amperometric detection process, reactive oxygen species (ROS), generated by visible light illumination of AuNPs@TiO2, participate in the oxidation process of HQ. The reduction of the oxidized form of HQ, i.e. benzoquinone (BQ) occurs by applying a negative potential and the measurable amperometric response will be proportional to the initial HQ concentration. The influencing parameters on the response of the amperometric photocurrent such as applied potential, flow rate and pH were investigated. The linear correlation between the amperometric response and the concentration of HQ was recorded (range 0.0125 – 1.0 µM) with a limit of detection (LOD) of 33.8 nM and sensitivity of 0.22 A M−1 cm−2. In this study, we illustrated for the first time that the impregnation of AuNPs in TiO2 allows the sensitive detection of phenolic substances under green laser illumination by using a photoelectrochemical flow system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000687283100018 Publication Date 2021-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.798
Call Number UA @ admin @ c:irua:178908 Serial 8626
Permanent link to this record
 

 
Author Joosten, F.; Parrilla, M.; van Nuijs, A.L.N.; Ozoemena, K.Id; De Wael, K.
Title Electrochemical detection of illicit drugs in oral fluid : potential for forensic drug testing Type A1 Journal article
Year 2022 Publication (down) Electrochimica acta Abbreviated Journal
Volume 2022 Issue 436 Pages 141309-141315
Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Illicit drugs continue to pose a serious threat to society and public health. Drug (ab)use is linked to organised crime and violence. Therefore, to fight the so-called war on drugs, police and law enforcement agencies need to be equipped with accurate and efficient sensors for the detection of illicit drugs and drug use. Even though colour tests (for powders) and lateral flow immunoassays (for biological samples) lack accuracy, they are relied upon for fast and easy on-site detection. Alternatively, in recent years, there has been an increasing interest in electrochemical sensors as a promising technique for the rapid and accurate on-site detection of illicit drugs. While a myriad of literature exists on the use of electrochemical sensors for drug powder analysis, literature on their use for the detection of drug use in biological samples is scarce. To this end, this review presents an overview of strategies for the electrochemical detection of illicit drugs in oral fluid. First, pharmacokinetics of drugs in oral fluid and the legal limit dilemma regarding the analytical cut-offs for roadside drug detection tests are elaborated to present the reader with the background knowledge required to develop such a test. Subsequently, an overview of electrochemical strategies developed for the detection of illicit drugs in oral fluid is given. Importantly, key challenges to address in the development of roadside tests are highlighted to improve the design of the next electrochemical devices and to bring them to the field. Overall, electrochemical sensors for illicit drugs detection in oral fluid show promise to disrupt current strategies for roadside testing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000882442300001 Publication Date 2022-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:191107 Serial 8855
Permanent link to this record
 

 
Author Montiel, F.N.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K.
Title Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs Type A1 Journal article
Year 2022 Publication (down) Electrochimica acta Abbreviated Journal
Volume 436 Issue Pages 141446-11
Keywords A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The illicit drug precursor market for the manufacture of amphetamine-type stimulants (ATS), mainly amphetamine, methamphetamine and methylenedioxymethamphetamine (MDMA), has emerged quickly in the last years. The evidence of a more complex and sophisticated drug market underlines the pressing need for new on-site methods to quickly detect precursors of synthetic drugs, with electrochemical analysis as a promising technique. Herein, the electrochemical fingerprints of ten common ATS precursors-3-oxo-2-phenylbutanenitrile (APAAN), 3-oxo-2-phenylbutanamide (APAA), methyl 3-oxo-2-phenylbutanoate (MAPA), benzyl methyl ketone (BMK), 1-(1,3-benzodioxol-5-yl)propan-2-one (PMK), ephedrine, pseudoephedrine, safrole, sassafras oil and piperonal- are reported for the first time. The electrochemical screening disclosed the redox inactivity of BMK, which is an essential starting material for the production of ATS. Therefore, the local derivatization of BMK at an electrode surface by reductive amination is presented as a feasible solution to enrich its electrochemical fingerprint. To prove that, the resulting mixture was analyzed using a set of chromatographic techniques to understand the reaction mechanism and to identify possible electrochemical active products. Two reaction products (i.e. methamphetamine and 1-phenylpropan-2-ol) were found and characterized using mass spectrometry and electrochemical methods. Subsequently, the optimization of the reaction parameters was carefully addressed to set the portable electrochemical sensing strategy. Ultimately, the analysis concept was validated for the qualitative identification of ATS precursors in seizures from a forensic institute. Overall, the electrochemical approach demonstrates to be a useful and affordable analytical tool for the early identification of ATS precursors to prevent trafficking and drug manufacture in clandestine laboratories.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000914833800003 Publication Date 2022-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:191622 Serial 8858
Permanent link to this record
 

 
Author Almabadi, M.H.; Truta, F.M.; Adamu, G.; Cowen, T.; Tertis, M.; Alanazi, K.D.M.; Stefan, M.-G.; Piletska, E.; Kiss, B.; Cristea, C.; De Wael, K.; Piletsky, S.A.; Cruz, A.G.
Title Integration of smart nanomaterials for highly selective disposable sensors and their forensic applications in amphetamine determination Type A1 Journal article
Year 2023 Publication (down) Electrochimica acta Abbreviated Journal
Volume 446 Issue Pages 142009-142010
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Screening drugs on the street and biological samples pose a challenge to law enforcement agencies due to existing detection methods and instrument limitations. Herein we present a graphene-assisted molecularly imprinted polymer nanoparticle-based sensor for amphetamine. These nanoparticles are electroactive by incorporating ferrocene in their structure. These particles act as specific actuators in electrochemical sensors, and the presence of a ferrocene redox probe embedded in the structure allows the detection of non-electroactive amphetamine. In a control approach, nanoparticles were covalently immobilised onto electrochemical sensors by drop-casting using silanes. Alternatively, nanoparticles were immobilised employing 3D printing and a graphene ink composite. The electrochemical performance of both approaches was evaluated. As a result, 3D printed nanoMIPs/graphene sensors displayed the highest selectivity in spiked human plasma, with sensitivity at 73 nA nM-1, LOD of 68 nM (RSD 2.4%) when compared to the silane drop cast electrodes. The main advantage of the optimised 3D printing technology is that it allows quantitative determination of amphetamine, a nonelectroactive drug, challenging to detect with conventional electrochemical sensors. In addition, the costefficient 3D printing method makes these sensors easy to manufacture, leading to robust, highly selective and sensitive sensors. As proof of concept, sensors were evaluated on the street specimens and clinically relevant samples and successfully validated using UPLC-MS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000953087600001 Publication Date 2023-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.6; 2023 IF: 4.798
Call Number UA @ admin @ c:irua:196145 Serial 8888
Permanent link to this record
 

 
Author Pauwels, D.; Pilehvar, S.; Geboes, B.; Hubin, A.; De Wael, K.; Breugelmans, T.
Title A new multisine-based impedimetric aptasensing platform Type A1 Journal article
Year 2016 Publication (down) Electrochemistry communications Abbreviated Journal Electrochem Commun
Volume 71 Issue Pages 23-27
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)
Abstract In this work an aptamer-based biosensor is combined with a multisine electrochemical impedance spectroscopy sensing methodology into a novel and promising biosensing strategy. Employing a multisine instead of a traditional single sine measuring method allows the detection and quantification of parameters that provide information about the accuracy and reliability of the results, such as noise and distortions. This does not only lead to a shorter measurement time, but it also enables an easy and fast evaluation of the quality of the data and fitting, leading to more accurate results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383445000006 Publication Date 2016-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.396 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 4.396
Call Number UA @ admin @ c:irua:134765 Serial 5746
Permanent link to this record
 

 
Author Mendonça, C.D.; Rahemi, V.; Hereijgers, J.; Breugelmans, T.; Machado, S.A.S.; De Wael, K.
Title Integration of a photoelectrochemical cell in a flow system for quantification of 4-aminophenol with titanium dioxide Type A1 Journal article
Year 2020 Publication (down) Electrochemistry Communications Abbreviated Journal Electrochem Commun
Volume 117 Issue Pages 106767-5
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The photoelectrochemical quantification of phenolic compounds such as hydroquinone (HQ) and 4-aminophenol (4-AP) is accomplished by integrating a photoelectrochemical cell into a flow injection analysis (FIA) setup. It is a well-known fact that during the electroanalysis of phenolic compounds, the electrode surface is susceptible to poisoning. However, electrode fouling can be reduced significantly by using the FIA system with periodic washing of the electrode. Reactive oxygen species (ROS), which are generated on the surface of TiO2 under UV light, can oxidize phenolic compounds such as 4-AP. The oxidized form of 4-AP is reduced back at the electrode surface, generating a measurable signal proportional to its concentration. The factors influencing the perfor-mance of the sensor, such as flow rate, applied potential for back reduction and pH, are investigated in detail. In the concentration range 0.0125-1.0 mu M, a linear correlation between the photocurrent and the concentration of 4-AP was observed with a sensitivity of 0.6 A M-1 cm(-2) and a limit of detection of 18 nM. A straightforward analytical methodology for the on-site, highly sensitive and low-cost quantification of phenolic compounds is presented, based on the use of TiO2 in a photoelectrochemical flow cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000552618700004 Publication Date 2020-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.4 Times cited 1 Open Access
Notes ; The authors thank FAPESP funding for the fellowship to Camila D. Mendonca (Grant #2018/13724-0) and FWO funding (grant 12T4219N and 28761) for the postdoctoral fellowship to Dr. Vanoushe Rahemi and Dr. Jonas Hereijgers. ; Approved Most recent IF: 5.4; 2020 IF: 4.396
Call Number UA @ admin @ c:irua:169924 Serial 6547
Permanent link to this record
 

 
Author Bottari, F.; Moro, G.; Sleegers, N.; Florea, A.; Cowen, T.; Piletsky, S.; van Nuijs, A.L.N.; De Wael, K.
Title Electropolymerized o-phenylenediamine on graphite promoting the electrochemical detection of nafcillin Type A1 Journal article
Year 2019 Publication (down) Electroanalysis Abbreviated Journal Electroanal
Volume 32 Issue 32 Pages 135-141
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre
Abstract By combining molecular modelling and electrochemistry we envision the creation of modified electrodes tailored for a more sensitive and selective detection of a single analyte. In this study we report on a graphite screen printed electrode modified with electropolymerized o-phenylenediamine, selected by rational design, which promotes the detection of nafcillin (NAF), an antibiotic. Parameters such as monomer concentration, pH and number of electropolymerization cycles were optimized to obtain the highest current signal for the target upon amperometric detection. NAF identification was based on the redox process at +1.1 V (vs pseudo Ag), ascribed to the oxidation of the C-7 side chain. With the optimized modification protocol, a two-fold increase in nafcillin signal could be obtained: the calibration plot in 0.1 M Britton-Robinson buffer pH 4 showed a limit of detection of 80 nM with improved sensitivity and reproducibility (RSD<5 %) compared to the detection at non-modified electrodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000482596300001 Publication Date 2019-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1040-0397 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.851 Times cited 1 Open Access
Notes ; FB and GM devised the study and performed the experiments, FB wrote the original draft of the paper and analysed the data, NS and AvN performed the MS experiments, AF helped with the optimization of the protocol and correction of the first draft, TC and SP performed the rational monomer design, KdW supervised the work and corrected the final draft. All authors gave their suggestions and corrections to the final version of the paper. This work was financially supported by the University of Antwerp (BOF) and the Research Foundation Flanders (FWO). ; Approved Most recent IF: 2.851
Call Number UA @ admin @ c:irua:162870 Serial 5601
Permanent link to this record
 

 
Author Rather, J.A.; Debnath, P.; De Wael, K.
Title Fullerene-\beta-cyclodextrin conjugate based electrochemical sensing device for ultrasensitive detection of p-nitrophenol Type A1 Journal article
Year 2013 Publication (down) Electroanalysis Abbreviated Journal Electroanal
Volume 25 Issue 9 Pages 2145-2150
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The article describes the use of a fullerene (C60)-β-cyclodextrin conjugate, synthesized via 1,3-dipolar cycloaddition, for the ultrasensitive electrochemical detection of p-nitrophenol. This conjugate was successfully immobilized on the surface of a glassy carbon electrode and the developed device showed high activity towards p-nitrophenol due to the synergetic effect of C60, the latter becoming highly conductive upon reduction. The determination of p-nitrophenol was performed by using square wave voltammetry over a concentration range from 2.8×10−9 mol L−1 to 4.2×10−7 mol L−1 and the detection limit was calculated to be 1.2×10−9 mol L−1.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000327590600017 Publication Date 2013-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1040-0397 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.851 Times cited 13 Open Access
Notes ; Jahangir Ahmad Rather is highly thankful for mobility grant provided by the Belspo co-funded by Marie Curie Actions. ; Approved Most recent IF: 2.851; 2013 IF: 2.502
Call Number UA @ admin @ c:irua:110033 Serial 5629
Permanent link to this record