Number of records found: 8874
 | 
Citations
 | 
   web
Catalyst preparation with plasmas : how does it work?”.Wang Z, Zhang Y, Neyts EC, Cao X, Zhang X, Jang BW-L, Liu C-jun, ACS catalysis 8, 2093 (2018). http://doi.org/10.1021/ACSCATAL.7B03723
toggle visibility
Fe-containing magnesium aluminate support for stability and carbon control during methane reforming”. Theofanidis SA, Galvita VV, Poelman H, Dharanipragada NVRA, Longo A, Meledina M, Van Tendeloo G, Detavernier C, Marin GB, ACS catalysis 8, 5983 (2018). http://doi.org/10.1021/ACSCATAL.8B01039
toggle visibility
Role of coating-metallic support interaction in the properties of electrosynthesized Rh-based structured catalysts”. Benito P, de Nolf W, Nuyts G, Janssens K, et al, ACS catalysis 4, 3779 (2014). http://doi.org/10.1021/CS501079K
toggle visibility
Pr/ZrO2 prepared by atomic trapping : an efficient catalyst for the conversion of glycerol to lactic acid with concomitant transfer hydrogenation of cyclohexene”. Tang Z, Liu P, Cao H, Bals S, Heeres HJ, Pescarmona PP, ACS catalysis 9, 9953 (2019). http://doi.org/10.1021/ACSCATAL.9B02139
toggle visibility
Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzers”. Saveleva VA, Wang L, Kasian O, Batuk M, Hadermann J, Gallet J-j, Bournel F, Alonso-Vante N, Ozouf G, Beauger C, Mayrhofer KJJ, Cherevko S, Gago AS, Friedrich KA, Zafeiratos S, Savinova ER, Acs Catalysis 10, 2508 (2020). http://doi.org/10.1021/acscatal.9b04449
toggle visibility
Plasma-Catalytic Ammonia Synthesis beyond the Equilibrium Limit”. Mehta P, Barboun PM, Engelmann Y, Go DB, Bogaerts A, Schneider WF, Hicks JC, Acs Catalysis 10, 6726 (2020). http://doi.org/10.1021/acscatal.0c00684
toggle visibility
Ligand-Mode Directed Selectivity in Cu–Ag Core–Shell Based Gas Diffusion Electrodes for CO2Electroreduction”. Irtem E, Arenas Esteban D, Duarte M, Choukroun D, Lee S, Ibáñez M, Bals S, Breugelmans T, Acs Catalysis , 13468 (2020). http://doi.org/10.1021/acscatal.0c03210
toggle visibility
S,O-functionalized metal-organic frameworks as heterogeneous single-site catalysts for the oxidative alkenylation of arenes via C- H activation”. Van Velthoven N, Henrion M, Dallenes J, Krajnc A, Bugaev AL, Liu P, Bals S, Soldatov A, Mali G, De Vos DE, Acs Catalysis 10, 5077 (2020). http://doi.org/10.1021/ACSCATAL.0C00801
toggle visibility
Plasma-Catalytic Ammonia Reforming of Methane over Cu-Based Catalysts for the Production of HCN and H2at Reduced Temperature”. Yi Y, Wang X, Jafarzadeh A, Wang L, Liu P, He B, Yan J, Zhang R, Zhang H, Liu X, Guo H, Neyts EC, Bogaerts A, Acs Catalysis 11, 1765 (2021). http://doi.org/10.1021/acscatal.0c04940
toggle visibility
Gold and silver-catalyzed reductive amination of aromatic carboxylic acids to benzylic amines”. Coeck R, Meeprasert J, Li G, Altantzis T, Bals S, Pidko EA, De Vos DE, Acs Catalysis 11, 7672 (2021). http://doi.org/10.1021/ACSCATAL.1C01693
toggle visibility
Identification of a Robust and Durable FeN4CxCatalyst for ORR in PEM Fuel Cells and the Role of the Fifth Ligand”. Nematollahi P, Barbiellini B, Bansil A, Lamoen D, Qingying J, Mukerjee S, Neyts EC, ACS catalysis , 7541 (2022). http://doi.org/10.1021/acscatal.2c01294
toggle visibility
Plasma-catalytic methanol synthesis from CO₂, hydrogenation over a supported Cu cluster catalyst : insights into the reaction mechanism”. Cui Z, Meng S, Yi Y, Jafarzadeh A, Li S, Neyts EC, Hao Y, Li L, Zhang X, Wang X, Bogaerts A, Acs Catalysis 12, 1326 (2022). http://doi.org/10.1021/ACSCATAL.1C04678
toggle visibility
Near-unity electrochemical CO₂, to CO conversion over Sn-doped copper oxide nanoparticles”. Yang S, Liu Z, An H, Arnouts S, de Ruiter J, Rollier F, Bals S, Altantzis T, Figueiredo MC, Filot IAW, Hensen EJM, Weckhuysen BM, van der Stam W, ACS catalysis 12, 15146 (2022). http://doi.org/10.1021/ACSCATAL.2C04279
toggle visibility
Atomic-level understanding for the enhanced generation of hydrogen peroxide by the introduction of an aryl amino group in polymeric carbon nitrides”. Zhang T, Schilling W, Khan SU, Ching HYV, Lu C, Chen J, Jaworski A, Barcaro G, Monti S, De Wael K, Slabon A, Das S, Acs Catalysis 11, 14087 (2021). http://doi.org/10.1021/ACSCATAL.1C03733
toggle visibility
Achieving High Moisture Tolerance in Pseudohalide Perovskite Nanocrystals for Light-Emitting Diode Application”. Bhatia H, Keshavarz M, Martin C, Van Gaal L, Zhang Y, de Coen B, Schrenker NJ, Valli D, Ottesen M, Bremholm M, Van de Vondel J, Bals S, Hofkens J, Debroye E, ACS Applied Optical Materials 1, 1184 (2023). http://doi.org/10.1021/acsaom.3c00096
toggle visibility
Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2Photocatalytic Systems”. Asapu R, Claes N, Ciocarlan R-G, Minjauw M, Detavernier C, Cool P, Bals S, Verbruggen SW, ACS applied nano materials 2, 4067 (2019). http://doi.org/10.1021/acsanm.9b00485
toggle visibility
Phase transformation of superparamagnetic iron oxide nanoparticles via thermal annealing : implications for hyperthermia applications”. Crippa F, Rodriguez-Lorenzo L, Hua X, Goris B, Bals S, Garitaonandia JS, Balog S, Burnand D, Hirt AM, Haeni L, Lattuada M, Rothen-Rutishauser B, Petri-Fink A, ACS applied nano materials 2, 4462 (2019). http://doi.org/10.1021/ACSANM.9B00823
toggle visibility
Developing lattice matched ZnMgSe shells on InZnP quantum dots for phosphor applications”. Mulder JT, Kirkwood N, De Trizio L, Li C, Bals S, Manna L, Houtepen AJ, ACS applied nano materials 3, 3859 (2020). http://doi.org/10.1021/ACSANM.0C00583
toggle visibility
Self-assembled ligand-capped plasmonic Au nanoparticle films in the Kretschmann configuration for sensing of volatile organic compounds”. Borah R, Smets J, Ninakanti R, Tietze ML, Ameloot R, Chigrin DN, Bals S, Lenaerts S, Verbruggen SW, ACS applied nano materials 5, acsanm.2c02524 (2022). http://doi.org/10.1021/ACSANM.2C02524
toggle visibility
Use of nanoscale carbon layers on Ag-based gas diffusion electrodes to promote CO production”. Pacquets L, Van den Hoek J, Arenas Esteban D, Ciocarlan R-G, Cool P, Baert K, Hauffman T, Daems N, Bals S, Breugelmans T, ACS applied nano materials 5, 7723 (2022). http://doi.org/10.1021/ACSANM.2C00473
toggle visibility
Photoluminescence of germanium-vacancy centers in nanocrystalline diamond films : implications for quantum sensing applications”. Joy RM, Pobedinskas P, Bourgeois E, Chakraborty T, Goerlitz J, Herrmann D, Noel C, Heupel J, Jannis D, Gauquelin N, D'Haen J, Verbeeck J, Popov C, Houssiau L, Becher C, Nesladek M, Haenen K, ACS applied nano materials 7, 3873 (2024). http://doi.org/10.1021/ACSANM.3C05491
toggle visibility
Electronic band structures and native point defects of ultrafine ZnO nanocrystals”. Zeng Y-J, Schouteden K, Amini MN, Ruan S-C, Lu Y-F, Ye Z-Z, Partoens B, Lamoen D, Van Haesendonck C, ACS applied materials and interfaces 7, 10617 (2015). http://doi.org/10.1021/acsami.5b02545
toggle visibility
KCN chemical etch for interface engineering in Cu2ZnSnSe4 solar cells”. Buffière M, Brammertz G, Sahayaraj S, Batuk M, Khelifi S, Mangin D, El Mel AA, Arzel L, Hadermann J, Meuris M, Poortmans J;, ACS applied materials and interfaces 7, 14690 (2015). http://doi.org/10.1021/acsami.5b02122
toggle visibility
Relaxor ferroelectricity and magnetoelectric coupling in ZnOCo nanocomposite thin films : beyond multiferroic composites”. Li DY, Zeng YJ, Batuk D, Pereira LMC, Ye ZZ, Fleischmann C, Menghini M, Nikitenko S, Hadermann J, Temst K, Vantomme A, Van Bael MJ, Locquet JP, Van Haesendonck C;, ACS applied materials and interfaces 6, 4737 (2014). http://doi.org/10.1021/am4053877
toggle visibility
Co-Rich ZnCoO Nanoparticles Embedded in Wurtzite Zn1-xCoxO Thin Films: Possible Origin of Superconductivity”. Zeng Y-J, Gauquelin N, Li D-Y, Ruan S-C, He H-P, Egoavil R, Ye Z-Z, Verbeeck J, Hadermann J, Van Bael MJ, Van Haesendonck C, ACS applied materials and interfaces 7, 22166 (2015). http://doi.org/10.1021/acsami.5b06363
toggle visibility
Vapor phase processing of \alpha-Fe2O3 photoelectrodes for water splitting : an insight into the structure/property interplay”. Warwick MEA, Kaunisto K, Barreca D, Carraro G, Gasparotto A, Maccato C, Bontempi E, Sada C, Ruoko TP, Turner S, Van Tendeloo G;, ACS applied materials and interfaces 7, 8667 (2015). http://doi.org/10.1021/acsami.5b00919
toggle visibility
Homogeneous Protein Analysis by Magnetic Core-Shell Nanorod Probes”. Schrittwieser S, Pelaz B, Parak WJ, Lentijo-Mozo S, Soulantica K, Dieckhoff J, Ludwig F, Altantzis T, Bals S, Schotter J, ACS applied materials and interfaces 8, 8893 (2016). http://doi.org/10.1021/acsami.5b11925
toggle visibility
Enhancement of the stability of fluorine atoms on defective graphene and at graphene/fluorographene interface”. Ao Z, Jiang Q, Li S, Liu H, Peeters FM, Li S, Wang G, ACS applied materials and interfaces 7, 19659 (2015). http://doi.org/10.1021/acsami.5b04319
toggle visibility
Structure-property relations of methylamine vapor treated hybrid perovskite CH3NH3PbI3 films and solar cells”. Conings B, Bretschneider SA, Babayigit A, Gauquelin N, Cardinaletti I, Manca JV, Verbeeck J, Snaith HJ, Boyen H-G, ACS applied materials and interfaces 9, 8092 (2017). http://doi.org/10.1021/acsami.6b15175
toggle visibility
Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area”. Ustarroz J, Geboes B, Vanrompay H, Sentosun K, Bals S, Breugelmans T, Hubin A, ACS applied materials and interfaces 9, 16168 (2017). http://doi.org/10.1021/acsami.7b01619
toggle visibility