|   | 
Details
   web
Records
Author Pereira, J.M.; Peeters, F.M.; Vasilopoulos, P.; Costa Filho, R.N.; Farias, G.A.
Title Landau levels in graphene bilayer quantum dots Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 19 Pages 195403,1-195403,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate localized electron and hole states in parabolic quantum dots of biased graphene bilayers in the presence of a perpendicular magnetic field. These quantum dots can be created by means of nanostructured gates or by position-dependent doping, which can create a gap in the otherwise gapless dispersion of a graphene bilayer. Numerical results show the energy levels of confined electrons and holes as a function of the dot parameters and the magnetic field. Remarkable crossings of energy levels are found.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000266501300102 Publication Date 2009-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77401 Serial 1774
Permanent link to this record
 

 
Author Zhao, H.-W.; Zha, G.-Q.; Zhou, S.-P.; Peeters, F.M.
Title Long-range Coulomb repulsion effect on a charged vortex in high-temperature superconductors with competing d-wave and antiferromagnetic orders Type A1 Journal article
Year 2008 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 6 Pages 064505,1-064505,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Vortex charges in high-temperature superconductor (HTS) are studied by solving the Bogoliubovde Gennes equations based on a model Hamiltonian with antiferromagnetic (AF) and d-wave orders in the presence of the long-range Coulomb repulsion. For a sufficient strength of the AF order, the negative vortex charge is found. A sign change between negative and positive may occur by tuning the long-range Coulomb repulsion strength or the doping parameter. Recent NMR experiments are hopefully understood. We show that the charged vortex can induce a spin-orbit coupling that is important for superconductors with a short coherence length and a large value of the energy gap over the Fermi-level ratio. Fractional flux quanta are possible for HTS.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000259264900084 Publication Date 2008-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76553 Serial 1837
Permanent link to this record
 

 
Author Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P.; Peeters, F.M.
Title Magnetic flux periodicity in mesoscopic d-wave symmetric and asymmetric superconducting loops Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 14 Pages 144501,1-144501,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The magnetic flux dependence of energy and supercurrent in mesoscopic d-wave symmetric and asymmetric superconducting loops is investigated by numerically solving the Bogoliubov-de Gennes equations self-consistently. For square loops, we find an hc/e-flux periodicity in energy and supercurrent and demonstrate that the flux periodicity is sensitive to the hole size and the superconducting pairing strength as well as temperature. The hc/2e-periodic behavior can be restored almost entirely when we displace the central hole sufficiently out of the center of the sample. In rectangular loops, the discrete current-carrying low-energy spectrum can exist for an odd winding number of the order parameter.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000271351500085 Publication Date 2009-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:79994 Serial 1879
Permanent link to this record
 

 
Author Doria, M.M.; Brandt, E.H.; Peeters, F.M.
Title Magnetization of a superconducting film in a perpendicular magnetic field Type A1 Journal article
Year 2008 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 5 Pages 0544047,1-054407,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract With large thin superconducting films in a perpendicular magnetic field, the usual definition and calculation of the magnetization M via currents or as the difference of two fields fail, since the spatially averaged magnetic field in the film coincides with the uniform applied field and the demagnetization factor is unity. The definition of M as field-derivative of the free energy, however, still works in this limit. We generalize the virial theorem, previously derived for infinite bulk superconductors, to infinitely extended films of arbitrary thickness. An expression for M is obtained that indeed reproduces the M computed from the field derivative of the free energy.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000259368200063 Publication Date 2008-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76525 Serial 1895
Permanent link to this record
 

 
Author Connolly, M.R.; Milošević, M.V.; Bending, S.J.; Tamegai, T.
Title Magneto-optical imaging of flux penetration into arrays of Bi2Sr2CaCu2O8 microdisks Type A1 Journal article
Year 2008 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 13 Pages 132501,1-132501,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We have used differential magneto-optical (MO) imaging to investigate the mixed state of superconducting Bi2Sr2CaCu2O8+ (BSCCO) microdisks fabricated on a single-crystal sample. MO difference images of the stray field distribution over a range of out-of-plane fields allow us to distinguish between flux that is penetrating the disks and that entering the underlying BSCCO platelet. We find that flux preferentially flows along linear defects into the interstitial platelet regions up to a characteristic field Hp, above which flux enters the disks. We identify this as the field of first penetration of pancake vortices over the Bean-Livingston barrier around the disks, where Hp(T) at intermediate temperatures is well described by an exponentially decaying function with a characteristic temperature T0=19 K. At a given temperature, a minority of the disks exhibit a lower penetration field and we correlate the location of these disks with the linear defects in the BSCCO crystal.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000260574200018 Publication Date 2008-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:75658 Serial 1901
Permanent link to this record
 

 
Author Nguten, N.T.T.; Peeters, F.M.
Title Many-body effects in the cyclotron resonance of a magnetic dot Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 11 Pages 115335,1-115335,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Intraband cyclotron resonance (CR) transitions of a two-electron quantum dot containing a single magnetic ion is investigated for different Coulomb interaction strengths and different positions of the magnetic ion. In contrast to the usual parabolic quantum dots where CR is independent of the number of electrons, we found here that due to the presence of the magnetic ion Kohn's theorem no longer holds and CR is different for systems with different number of electrons and different effective electron-electron Coulomb interaction strength. Many-body effects result in shifts in the transition energies and change the number of CR lines. The position of the magnetic ion inside the quantum dot affects the structure of the CR spectrum by changing the position and the number of crossings and anticrossings in the transition energies and oscillator strengths.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000270383200110 Publication Date 2009-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:79228 Serial 1941
Permanent link to this record
 

 
Author Elmurodov, A.K.; Peeters, F.M.; Vodolazov, D.Y.; Michotte, S.; Adam, S.; de Menten de Horne, F.; Piraux, L.; Lucot, D.; Mailly, D.
Title Phase-slip phenomena in NbN superconducting nanowires with leads Type A1 Journal article
Year 2008 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 21 Pages 214519,1-214519,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Transport properties of a superconducting NbN nanowire are studied experimentally and theoretically. Different attached leads (superconducting contacts) allowed us to measure current-voltage (I-V) characteristics of different segments of the wire independently. The experimental results show that with increasing the length of the segment the number of jumps in the I-V curve increases indicating an increasing number of phase-slip phenomena. The system shows a clear hysteresis in the direction of the current sweep, the size of which depends on the length of the superconducting segment. The interpretation of the experimental results is supported by theoretical simulations that are based on the time-dependent Ginzburg-Landau theory, the heat equation has been included in the Ginzbur-Landau theory.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000262244400100 Publication Date 2009-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76004 Serial 2589
Permanent link to this record
 

 
Author Földi, P.; Benedict, M.G.; Kalman, O.; Peeters, F.M.
Title Quantum rings with time-dependent spin-orbit coupling: Spintronic Rabi oscillations and conductance properties Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 16 Pages 165303,1-165303,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The strength of the (Rashba-type) spin-orbit coupling in mesoscopic semiconductor rings can be tuned with external gate voltages. Here we consider the case of a periodically changing spin-orbit interaction strength in time as induced by sinusoidal voltages. In a closed one dimensional quantum ring with weak spin-orbit coupling, Rabi oscillations are shown to appear. We find that the time evolution of initially localized wave packets exhibits a series of collapse and revival phenomena. Partial revivalsthat are typical in nonlinear systemsare shown to correspond to superpositions of states localized at different spatial positions along the ring. These spintronic Schrödinger-cat states appear periodically, and similarly to their counterparts in other physical systems, they are found to be sensitive to disturbances caused by the environment. The time-dependent spin transport problem, when leads are attached to the ring, is also solved. We show that the sideband currents induced by the oscillating spin-orbit interaction strength can become the dominant output channel, even in the presence of moderate thermal fluctuations and random scattering events.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000271352100078 Publication Date 2009-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 26 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:80002 Serial 2784
Permanent link to this record
 

 
Author Masir, M.R.; Matulis, A.; Peeters, F.M.
Title Quasibound states of Schrödinger and Dirac electrons in a magnetic quantum dot Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 15 Pages 155451,1-155451,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The properties of a two-dimensional electron are investigated in the presence of a circular step magnetic-field profile. Both electrons with parabolic dispersion as well as Dirac electrons with linear dispersion are studied. We found that in such a magnetic quantum dot no electrons can be confined. Nevertheless close to the Landau levels quasibound states can exist with a rather long lifetime.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000265944200140 Publication Date 2009-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 55 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77026 Serial 2800
Permanent link to this record
 

 
Author Resta, V.; Afonso, C.N.; Piscopiello, E.; Van Tendeloo, G.
Title Role of substrate on nucleation and morphology of gold nanoparticles produced by pulsed laser deposition Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 23 Pages 235409,1-235409,6
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work compares the morphology of gold nanoparticles (NPs) produced at room temperature on single-crystalline (MgO nanocubes and plates) and amorphous (carbon/glass plates) substrates by pulsed laser deposition (PLD). The results show that similar deposition and nucleation rates (>5×1013 cm−2 s−1) are achieved irrespective of the nature of the substrate. Instead, the shape of NPs is substrate dependent, i.e., quasispheres and faceted NPs in amorphous and single-crystalline substrates, respectively. The shape of the latter is octahedral for small NPs and truncated octahedral for large ones, with the degree of truncation being well explained using the Wulff-Kaichew theorem. Furthermore, epitaxial growth at room temperature is demonstrated for single-crystalline substrate. The large fraction of ions having energies higher than 200 eV and the large flux of species arriving to the substrate (1016 at. cm−2 s−1) involved in the PLD process are, respectively, found to be responsible for the high nucleation rates and epitaxial growth at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000267699500116 Publication Date 2009-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77692 Serial 2922
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Peeters, F.M.
Title Second generation of vortex-antivortex states in mesoscopic superconductors: stabilization by artificial pinning Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 17 Pages 174508,1-174508,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Antagonistic symmetries of superconducting polygons and their induced multivortex states in a homogeneous magnetic field may lead to the appearance of antivortices in the vicinity of the superconducting/normal-state boundary (where mesoscopic confinement is particularly strong). Resulting vortex-antivortex (V-Av) molecules match the sample symmetry but are extremely sensitive to defects and fluctuations and remain undetected experimentally. Here we show that V-Av states can reappear deep in the superconducting state due to an array of perforations in a polygonal setting, surrounding a central hole. Such states are no longer caused by the symmetry of the sample but rather by pinning itself, which prevents the vortex-antivortex annihilation. As a result, even micron size, clearly spaced V-Av molecules can be stabilized in large mesoscopic samples.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000266501100098 Publication Date 2009-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 17 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77399 Serial 2956
Permanent link to this record
 

 
Author Szafran, B.; Nowak, M.P.; Bednarek, S.; Chwiej, T.; Peeters, F.M.
Title Selective suppression of Dresselhaus or Rashba spin-orbit coupling effects by the Zeeman interaction in quantum dots Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 23 Pages 235303,1-235303,13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study single- and two-electron parabolic quantum dots in the presence of linear Dresselhaus and Rashba spin-orbit interactions. Contributions of both types of spin-orbit coupling are investigated in the context of the spin polarization of the system at high magnetic fields. We demonstrate that for negative Landé factors the effect of the Dresselhaus coupling is suppressed at high magnetic field, which for structures without inversion asymmetry leads to a completely spin-polarized system and a strict antisymmetry of the wave functions with respect to the interchange of spatial-electron coordinates. For negative Landé factor the Rashba coupling is preserved at high field and consequently the spin polarization of the systems as well as the spatial antisymmetry of the two-electron wave function remain approximate.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000267699500073 Publication Date 2009-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77691 Serial 2969
Permanent link to this record
 

 
Author Hao, Y.L.; Djotyan, A.P.; Avetisyan, A.A.; Peeters, F.M.
Title Shallow donor states near a semiconductor-insulator-metal interface Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 3 Pages 035329,1-035329,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The lowest energy electronic states of a donor located near a semiconductor-insulator-metal interface are investigated within the effective mass approach. The effect of the finite thickness of the insulator between the semiconductor and the metallic gate on the energy levels is studied. The lowest energy states are obtained through a variational approach, which takes into account the influence of all image charges that arise due to the presence of the metallic and the dielectric interfaces. We compare our results with a numerical exact calculation using the finite element technique.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000268617800101 Publication Date 2009-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 22 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77950 Serial 2989
Permanent link to this record
 

 
Author Xing, Y.T.; Micklitz, H.; Rappoport, T.G.; Milošević, M.V.; Solorzano-Naranjo, I.G.; Baggio-Saitovitch, E.
Title Spontaneous vortex phases in superconductor-ferromagnet Pb-Co nanocomposite films Type A1 Journal article
Year 2008 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 22 Pages 224524,1-224524,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report measurements which indicate the appearance of spontaneous vortices in lead superconducting films with embedded magnetic nanoparticles and a temperature-induced phase transition between different vortex phases. Unlike common vortices in superconductors, the vortex phase appears in the absence of applied magnetic field. The vortices nucleate exclusively due to the stray field of the magnetic nanoparticles, which serve the dual role of providing the internal field and simultaneously acting as pinning centers. Transport measurements reveal dynamical phase transitions that depend on temperature (T) and applied field (H) and support the obtained H-T phase diagram.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000262245200092 Publication Date 2008-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76005 Serial 3109
Permanent link to this record
 

 
Author Földi, P.; Kálmán, O.; Peeters, F.M.
Title Stability of spintronic devices based on quantum ring networks Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 12 Pages 125324,1-125324,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Transport properties in mesoscopic networks are investigated, where the strength of the (Rashba-type) spin-orbit coupling is tuned with external gate voltages. We analyze in detail to what extent the ideal behavior and functionality of some promising network-based devices are modified by random (spin-dependent) scattering events and by thermal fluctuations. It is found that although the functionality of these devices is obviously based on the quantum coherence of the transmitted electrons, there is a certain stability: moderate level of errors can be tolerated. For mesoscopic networks made of typical semiconductor materials, we found that when the energy distribution of the input carriers is narrow enough, the devices can operate close to their ideal limits even at relatively high temperature. As an example, we present results for two different networks: one that realizes a Stern-Gerlach device and another that simulates a spin quantum walker. Finally we propose a simple network that can act as a narrow band energy filter even in the presence of random scatterers.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000270383300091 Publication Date 2009-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:79230 Serial 3131
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Superconducting nanofilms: Andreev-type states induced by quantum confinement Type A1 Journal article
Year 2008 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 5 Pages 054505,1-054505,8
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract Quantum confinement of the transverse electron motion is the major effect governing the superconducting properties of high-quality metallic nanofilms, leading to a nonuniform transverse distribution of the superconducting condensate. In this case the order parameter can exhibit significant local enhancements due to these quantum-size effects and, consequently, quasiparticles have lower energies when they avoid the local enhancements of the pair condensate. Such excitations can be considered as new Andreev-type quasiparticles but now induced by quantum confinement. By numerically solving the Bogoliubovde Gennes equations and using Anderson's approximate solution to these equations, we: (a) formulate a criterion for such new Andreev-type states (NATS) and (b) study their effect on the superconducting characteristics in metallic nanofilms. We also argue that nanofilms made of low-carrier-density materials, e.g., of superconducting semiconductors, can be a more optimal choice for the observations of NATS and other quantum-size superconducting effects.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000259368200109 Publication Date 2008-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76526 Serial 3356
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M.
Title Superconducting nanowires: interplay of discrete transverse modes with supercurrent Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 2 Pages 024513,1-024513,11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract From a numerical solution of the Bogoliubov-de Gennes equations, we investigate an interplay of the transverse discrete modes with a longitudinal supercurrent in a metallic cylindrical superconducting nanowire. The superconductor-to-normal transition induced by a longitudinal superflow of electrons is found to occur as a cascade of jumps in the order parameter (supercurrent and superfluid density) as a function of the superfluid velocity for diameters d<1015 nm (for Al parameters) and sufficiently low temperatures T<0.30.4Tc, with Tc the critical temperature. When approaching Tc, the jumps are smoothed into steplike but continuous drops. A similar picture occurs for d>1520 nm. Only when the diameter exceeds 5070 nm the quantum-size cascades are fully washed out, and we arrive at the mesoscopic regime. Below this regime the critical current density jc exhibits the quantum-size oscillations with pronounced resonant enhancements: the smaller the diameter, the more significant is the enhancement. Thickness fluctuations of real samples will smooth out such oscillations into an overall growth of jc with decreasing nanowire diameter.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000268617500092 Publication Date 2009-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77949 Serial 3358
Permanent link to this record
 

 
Author Kosimov, D.P.; Dzhurakhalov, A.A.; Peeters, F.M.
Title Theoretical study of the stable states of small carbon clusters Cn (n=210) Type A1 Journal article
Year 2008 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 23 Pages 235433,1-235433,8
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Both even- and odd-numbered neutral carbon clusters Cn (n=210) are systematically studied using the energy minimization method and the modified Brenner potential for the carbon-carbon interactions. Many stable configurations were found, and several new isomers are predicted. For the lowest energy stable configurations we obtained their binding energies and bond lengths. We found that for n5 the linear isomer is the most stable one while for n>5 the monocyclic isomer becomes the most stable. The latter was found to be regular for all studied clusters. The dependence of the binding energy for linear and cyclic clusters versus the cluster size n (n=210) is found to be in good agreement with several previous calculations, in particular with ab initio calculations as well as with experimental data for n=25.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000262245400119 Publication Date 2008-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 35 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76006 Serial 3613
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B.
Title Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 22 Pages 224301,1-224301,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Starting from an empirical force constant model of valence interactions and calculating by Ewalds method the ion-ion force constants, we derive the dynamical matrix for a monolayer crystal of hexagonal boron nitride (h-BN). The phonon dispersion relations are calculated. The interplay between valence and Coulomb forces is discussed. It is shown by analytical methods that the longitudinal and the transverse optical (LO and TO) phonon branches for in-plane motion are degenerate at the Γ point of the Brillouin zone. Away from Γ, the LO branch exhibits pronounced overbending. It is found that the nonanalytic Coulomb contribution to the dynamical matrix causes a linear increase of the LO branch with increasing wave vector starting at Γ. This effect is general for two-dimensional (2D) ionic crystals. Performing a long-wavelength expansion of the dynamical matrix, we use Borns perturbation method to calculate the elastic constants (tension coefficients). Since the crystal is noncentrosymmetric, internal displacements due to relative shifts between the two sublattices (B and N) contribute to the elastic constants. These internal displacements are responsible for piezoelectric and dielectric phenomena. The piezoelectric stress constant and the dielectric susceptibility of 2D h-BN are calculated.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000273228500045 Publication Date 2009-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 96 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:80576 Serial 3616
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B.
Title Theory of the evolution of phonon spectra and elastic constants from graphene to graphite Type A1 Journal article
Year 2008 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 8 Pages 085424,1-085424,17
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a unified theory of the phonon dispersions and elastic properties of graphene, graphite, and graphene multilayer systems. Starting from a fifth-nearest-neighbor force-constant model derived from full in-plane phonon dispersions of graphite [Mohr et al., Phys. Rev. B 76, 035439 (2007)], we use Born's long-wave method to calculate the tension and bending coefficients of graphene. Extending the model by interplanar interactions, we study the phonon dispersions and the elastic constants of graphite, and the phonon spectra of graphene multilayers. We find that the inner displacement terms due to sublattice shifts between inequivalent C atoms are quantitatively important in determining the elastomechanical properties of graphene and of graphite. The overall agreement between theory and experiment is very satisfactory. We investigate the evolution from graphene to graphite by studying the increase in the rigid plane optical mode as a function of the number of layers N. At N=10 the graphite value B2g1127 cm−1 is attained within a few percent.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000259406900106 Publication Date 2008-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 72 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76527 Serial 3622
Permanent link to this record
 

 
Author Werner, R.; Raisch, C.; Leca, V.; Ion, V.; Bals, S.; Van Tendeloo, G.; Chasse, T.; Kleiner, R.; Koelle, D.
Title Transport, magnetic, and structural properties of La0.7Ce0.3MnO3 thin films: evidence for hole-doping Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 5 Pages 054416,1-054416,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Cerium-doped manganite thin films were grown epitaxially by pulsed laser deposition at 720 °C and oxygen pressure pO2=125 Pa and were subjected to different annealing steps. According to x-ray diffraction (XRD) data, the formation of CeO2 as a secondary phase could be avoided for pO28 Pa. However, transmission electron microscopy shows the presence of CeO2 nanoclusters even in those films which appear to be single phase in XRD. With O2 annealing, the metal-to-insulator transition temperature increases, while the saturation magnetization decreases and stays well below the theoretical value for electron-doped La0.7Ce0.3MnO3 with mixed Mn3+/Mn2+ valences. The same trend is observed with decreasing film thickness from 100 to 20 nm, indicating a higher oxygen content for thinner films. Hall measurements on a film which shows a metal-to-insulator transition clearly reveal holes as dominating charge carriers. Combining data from x-ray photoemission spectroscopy, for determination of the oxygen content, and x-ray absorption spectroscopy (XAS), for determination of the hole concentration and cation valences, we find that with increasing oxygen content the hole concentration increases and Mn valences are shifted from 2+ to 4+. The dominating Mn valences in the films are Mn3+ and Mn4+, and only a small amount of Mn2+ ions can be observed by XAS. Mn2+ and Ce4+ XAS signals obtained in surface-sensitive total electron yield mode are strongly reduced in the bulk-sensitive fluorescence mode, which indicates hole-doping in the bulk for those films which do show a metal-to-insulator transition.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000263815400057 Publication Date 2009-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 25 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:76221 Serial 3725
Permanent link to this record
 

 
Author Karapetrov, G.; Milošević, M.V.; Iavarone, M.; Fedor, J.; Belkin, A.; Novosad, V.; Peeters, F.M.
Title Transverse instabilities of multiple vortex chains in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayers Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 18 Pages 180506,1-180506,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using scanning tunneling microscopy and Ginzburg-Landau simulations, we explore vortex configurations in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayer. The permalloy film with stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinning-antipinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-one-dimensional arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. The longitudinal instabilities of the resulting vortex structures lead to vortices levitating in the antipinning channels.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000272310900031 Publication Date 2009-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:80314 Serial 3729
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Tunable kinematics of phase-slip lines in a superconducting stripe with magnetic dots Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 21 Pages 214509,1-214509,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using numerical simulations, we study the dynamic properties of a superconducting stripe with a perpendicular magnetized ferromagnet on top in the presence of an applied dc current. In the resistive state conventional phase-slip lines are transformed into kinematic vortex-antivortex pairs with special dynamic behavior. In addition, the location of phase slippage in the sample is predetermined by the position of the magnetic dot. Both these effects directly influence the dynamics of the superconducting condensate and lead to periodic oscillations of the voltage across the sample with a frequency tunable both by the applied current and by the magnetization of the magnet. We found that the frequency of the voltage oscillations increases with increasing number of magnetic dots.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000273228200084 Publication Date 2009-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 33 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:80575 Serial 3743
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M.
Title Tunneling, conductance, and wavevector filtering through magnetic barriers in bilayer graphene Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 3 Pages 035409,1-035409,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We evaluate the transmission and conductance through magnetic barrier structures in bilayer graphene. In particular we consider a magnetic step, single and double barriers, -function barriers, as well as barrier structures that have average magnetic field equal to zero. The transmission depends strongly on the direction of the incident electron or hole wavevector and gives the possibility to construct a direction-dependent wavevector filter. The results contrast sharply with previous results on single-layer graphene. In general, the angular range of perfect transmission becomes drastically wider and the gaps narrower. This perfect transmission range decreases with the number of barriers, the barrier width, and the magnetic field. Depending on the structure, a variety of transmission resonances occur that are reflected in the conductance through the structure.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000262978200107 Publication Date 2009-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 80 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:75983 Serial 3762
Permanent link to this record
 

 
Author Pourghaderi, M.A.; Magnus, W.; Sorée, B.; Meuris, M.; de Meyer, K.; Heyns, M.
Title Tunneling-lifetime model for metal-oxide-semiconductor structures Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 8 Pages 085315,1-085315,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this paper we investigate the basic physics of charge carriers (electrons) leaking out of the inversion layer of a metal-oxide-semiconductor capacitor with a biased gate. In particular, we treat the gate leakage current as resulting from two combined processes: (1) the time-dependent decay of electron wave packets representing the inversion-layer charge and (2) the local generation of new electrons replacing those that have leaked away. As a result, the gate current simply emerges as the ratio of the total charge in the inversion layer to the tunneling lifetime. The latter is extracted from the quantum dynamics of the decaying wave packets, while the generation rate is incorporated as a phenomenological source term in the continuity equation. Not only do the gate currents calculated with this model agree very well with experiment, the model also provides an onset to solve the paradox of the current-free bound states representing the resonances of the Schrödinger equation that governs the fully coupled metal-oxide-semiconductor system.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000269639300076 Publication Date 2009-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:78294 Serial 3763
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Water on graphene: hydrophobicity and dipole moment using density functional theory Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 23 Pages 235440,1-235440,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We apply density-functional theory to study the adsorption of water clusters on the surface of a graphene sheet and find i) graphene is highly hydrophobic and ii) adsorbed water has very little effect on the electronic structure of graphene. A single water cluster on graphene has a very small average dipole moment which is in contrast with an ice layer that exhibits a strong dipole moment.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000267699500147 Publication Date 2009-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 292 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77693 Serial 3904
Permanent link to this record
 

 
Author Chaves, A.; Farias, G.A.; Peeters, F.M.; Szafran, B.
Title Wave packet dynamics in semiconductor quantum rings of finite width Type A1 Journal article
Year 2009 Publication (up) Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 12 Pages 125331,1-125331,14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The time evolution of a wave packet injected into a semiconductor quantum ring is investigated in order to obtain the transmission and reflection probabilities. Within the effective-mass approximation, the time-dependent Schrödinger equation is solved for a system with nonzero width of the ring and leads and finite potential-barrier heights, where we include smooth lead-ring connections. In the absence of a magnetic field, an analysis of the projection of the wave function over the different subband states shows that when the injected wave packet is within a single subband, the junction can scatter this wave packet into different subbands but remarkably at the second junction the wave packet is scattered back into the subband state of the incoming wave packet. If a magnetic field is applied perpendicularly to the ring plane, transmission and reflection probabilities exhibit Aharonov-Bohm (AB) oscillations and the outgoing electrons may end up in different subband states from those of the incoming electrons. Localized impurities, placed in the ring arms, influence the AB oscillation period and amplitude. For a single impurity or potential barrier of sufficiently strong strength, the period of the AB oscillations is halved while for two impurities localized in diametrically opposite points of the ring, the original AB period is recovered. A theoretical investigation of the confined states and time evolution of wave packets in T wires is also made, where a comparison between this system and the lead-ring junction is drawn.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000270383300098 Publication Date 2009-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 40 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:79231 Serial 3906
Permanent link to this record
 

 
Author Annegarn, H.J.; Madiba, C.C.P.; Sellschop, J.P.F.; Genz, H.; Hoffmann, D.H.H.; Low, W.; Richter, A.; Van Grieken, R.E.
Title Analysis of X-ray spectra excited by X rays, electrons, and protons in monazite Type A1 Journal article
Year 1977 Publication (up) Physical review : C : nuclear physics Abbreviated Journal
Volume 16 Issue 1 Pages 379-383
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Mineral monazite from Malaysia has been investigated by energy dispersive x-ray analysis employing three different methods: x-ray, relativistic electron and proton induced excitation. An upper limit of 15 ppm has been placed on the possible concentration of the superheavy element with Z=126.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1977DR12200044 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813; 1089-490x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116554 Serial 7453
Permanent link to this record
 

 
Author Apolinario, S.W.S.; Peeters, F.M.
Title Binary dusty plasma Coulomb balls Type A1 Journal article
Year 2011 Publication (up) Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 83 Issue 4 Pages 041136,1-041136,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigated the mixing and segregation of a system consisting of two different species of particles, having different charges, interacting through a pure Coulomb potential, and confined in a three-dimensional parabolic trap. The structure of the cluster and its normal mode spectrum are analyzed as a function of the relative charge and the relative number of different types of particles. We found that (a) the system can be in a mixed or segregated state depending on the relative charge ratio parameter and (b) the segregation process is mediated by a first or second order structural phase transition which strongly influences the magic cluster properties of the system.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000290154900004 Publication Date 2011-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 10 Open Access
Notes ; This work was supported by FACEPE (Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.366; 2011 IF: 2.255
Call Number UA @ lucian @ c:irua:89716 Serial 236
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; Peeters, F.M.
Title Bubble, stripe, and ring phases in a two-dimensional cluster with competing interactions Type A1 Journal article
Year 2005 Publication (up) Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 71 Issue Pages 066204,1-11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000230275000049 Publication Date 2005-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 30 Open Access
Notes Approved Most recent IF: 2.366; 2005 IF: 2.418
Call Number UA @ lucian @ c:irua:62446 Serial 258
Permanent link to this record