|   | 
Details
   web
Records
Author Castanheiro, A.; Joos, P.; Wuyts, K.; De Wael, K.; Samson, R.
Title Leaf-deposited semi-volatile organic compounds (SVOCs) : an exploratory study using GCxGC-TOFMS on leaf washing solutions Type A1 Journal article
Year 2019 Publication (up) Chemosphere Abbreviated Journal Chemosphere
Volume 214 Issue 214 Pages 103-110
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Airborne particulate matter (PM) includes semi-volatile organic compounds (SVOCs), which can be deposited on vegetation matrices such as plant leaves. In alternative to air-point measurements or artificial passive substrates, leaf monitoring offers a cost-effective, time-integrating means of assessing local air quality. In this study, leaf washing solutions from ivy (Hedera hibernica) leaves exposed during one-month at different land use classes were explored via comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS). The composition of leaf-deposited SVOCs, corrected for those of unexposed leaves, was compared against routinely monitored pollutants concentrations (PM10, PM2.5, O3, NO2, SO2) measured at co-located air monitoring stations. The first study on leaf-deposited SVOCs retrieved from washing solutions, herein reported, delivered a total of 911 detected compounds. While no significant land use (rural, urban, industrial, traffic, mixed) effects were observed, increasing exposure time (from one to 28 days) resulted in a higher number and diversity of SVOCs, suggesting cumulative time-integration to be more relevant than local source variations between sites. After one day, leaf-deposited SVOCs were mainly due to alcohols, N-containing compounds, carboxylic acids, esters and lactones, while ketones, diketones and hydrocarbons compounds gained relevance after one week, and phenol compounds after one month. As leaf-deposited SVOCs became overall more oxidized throughout exposure time, SVOCs transformation or degradation at the leaf surface is suggested to be an important phenomenon. This study confirmed the applicability of GCxGC-TOFMS to analyze SVOCs from leaf washing solutions, further research should include validation of the methodology and comparison with atmospheric organic pollutants.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000449891300013 Publication Date 2018-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.208 Times cited Open Access
Notes ; The authors thank the Flemish Environment Agency (VMM) for their collaboration and air quality data; Sam Dekkers and Jonathan Van Waeyenbergh for their help with sample collection. The study was performed using a study set-up funded by the Special Research Fund of the University of Antwerp (KPBOF 2014, no. FFB 140090 'Tree leaf surface properties as dynamic drivers of particulate matter-leaf interaction and phyllosphere microbial communities'). A.C. acknowledges the Research Foundation Flanders (FWO) for her SB PhD fellowship. ; Approved Most recent IF: 4.208
Call Number UA @ admin @ c:irua:153509 Serial 5692
Permanent link to this record
 

 
Author Akbulut, S.; Cevik, U.; Van, A.A.; De Wael, K.; Van Grieken, R.
Title Precision and accuracy of ST-EDXRF performance for As determination comparing with ICP-MS and evaluation of As deviation in the soil media Type A1 Journal article
Year 2014 Publication (up) Chemosphere Abbreviated Journal Chemosphere
Volume 96 Issue Pages 16-22
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The present study was conducted to (i) determine the precision and accuracy of arsenic measurement in soil samples using ST-EDXRF by comparison with the results of ICP-MS analyses and (ii) identify the relationship of As concentration with soil characteristics. For the analysis of samples, inductively coupled plasma mass spectrometry (ICP-MS) and energy dispersive X-ray fluorescence spectrometry (EDXRF) were performed. According to the results found in the soil samples, the addition of HCl to HNO3, used for the digestion gave significant variations in the recovery of As. However, spectral interferences between peaks for As and Pb can affect detection limits and accuracy for XRF analysis. When comparing the XRF and ICP-MS results a correlation was observed with R2 = 0.8414. This means that using a ST-EDXRF spectrometer, it is possible to achieve accurate and precise analysis by the calibration of certified reference materials and choosing an appropriate secondary target. On the other hand, with regard to soil characteristics analyses, the study highlighted that As is mostly anthropogenically enriched in the studied area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328182200002 Publication Date 2013-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.208 Times cited 5 Open Access
Notes ; ; Approved Most recent IF: 4.208; 2014 IF: 3.340
Call Number UA @ admin @ c:irua:109437 Serial 5782
Permanent link to this record
 

 
Author Goemans, M.; Clarysse, P.; Joannès, J.; de Clercq, P.; Lenaerts, S.; Matthys, K.; Boels, K.
Title Catalytic Nox reduction with simultaneous dioxin and furan oxidation Type A1 Journal article
Year 2004 Publication (up) Chemosphere Abbreviated Journal Chemosphere
Volume 54 Issue 9 Pages 1357-1365
Keywords A1 Journal article
Abstract The engineering, construction, performance and running costs of a catalytic flue gas cleaning component in the low dust area of a municipal waste incinerator is discussed. For this purpose, the case study of a Flemish incineration plant is presented, covering the history, the design procedure of the catalyst, relevant process data and the financial aspects. A reliable PCDD/F-destruction by means of oxidation by the catalyst to typical values of 0.001 ng TEQ/Nm3 has been demonstrated. At the same time, NOx− and CO-emissions are reduced by 90% and 20% to about 50 mg/Nm3 and below 10 mg/Nm3, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000188293500011 Publication Date 2003-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 4.208 Times cited Open Access
Notes Approved Most recent IF: 4.208; 2004 IF: 2.359
Call Number UA @ admin @ c:irua:82011 Serial 5931
Permanent link to this record
 

 
Author Goemans, M.; Clarysse, P.; Joannès, J.; de Clercq, P.; Lenaerts, S.; Matthys, K.; Boels, K.
Title Catalytic Nox reduction with simultaneous dioxin and furan oxidation Type A1 Journal article
Year 2003 Publication (up) Chemosphere Abbreviated Journal Chemosphere
Volume 50 Issue 4 Pages 489-497
Keywords A1 Journal article
Abstract The engineering, construction, performance and running costs of a catalytic flue gas cleaning component in the low dust area of a municipal waste incinerator is discussed. For this purpose, the case study of a Flemish incineration plant is presented, covering the history, the design procedure of the catalyst, relevant process data and the financial aspects. A reliable PCDD/F-destruction by means of oxidation by the catalyst to typical values of 0.001 ng TEQ/N m3 has been demonstrated. At the same time, NOx- and CO-emissions are reduced by 90% and 20% to about 50 mg/N m3 and below 10 mg/N m3, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000180078200004 Publication Date 2002-12-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 4.208 Times cited Open Access
Notes Approved Most recent IF: 4.208; 2003 IF: 1.904
Call Number UA @ admin @ c:irua:82010 Serial 5932
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Boon, N.; Vlaeminck, S.E.
Title Pioneering on single-sludge nitrification/denitrification at 50 °C Type A1 Journal article
Year 2020 Publication (up) Chemosphere Abbreviated Journal Chemosphere
Volume 252 Issue Pages 126527-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Thermophilic nitrification has been proven in lab-scale bioreactors at 50 °C. The challenge is now to develop a solution for thermophilic nitrogen removal, integrating nitrification with denitrification and aerobic carbon removal. This pioneering study aimed at a single-sludge nitrification/denitrification process at 50 °C, through exposing nitrification in a step by step approach to anoxia and/or organics. Firstly, recurrent anoxia was tolerated by a nitrifying community during long-term membrane bioreactor (MBR) operation (85 days), with high ammonium oxidation efficiencies (>98%). Secondly, five organic carbon sources did not affect thermophilic ammonium and nitrite oxidation rates in three-day aerobic batch flask incubations. Moving to long-term tests with sequencing batch reactors (SBR) and MBR (>250 days), good nitrification performance was obtained at increasing COD/Ninfluent ratios (0, 0.5, 1, 2 and 3). Thirdly, combining nitrification, recurrent anoxia and presence of organic carbon resulted in a nitrogen removal efficiency of 92–100%, with a COD/Nremoved of 4.8 ± 0.6 and a nitrogen removal rate of 50 ± 14 mg N g−1 VSS d−1. Overall, this is the first proof of principle thermophilic nitrifiers can cope with redox fluctuations (aerobic/anoxic) and the aerobic or anoxic presence of organic carbon, can functionally co-exist with heterotrophs and that single-sludge nitrification/denitrification can be achieved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000534377000121 Publication Date 2020-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.8 Times cited Open Access
Notes ; The authors acknowledge (i) the Agency for Innovation by Science and Technology (IWT Flanders) [grant number SB-141205] for funding Tom G.L. Vandekerckhove, (ii) Wouter Peleman and Zoe Pesonen for practical support during their master thesis, (iii) Jolien De Paepe for assisting in the reactor operation, and (iv) Jo De Vrieze and Tim Lacoere for their help with qPCR and 16S rRNA gene amplicon sequencing. ; Approved Most recent IF: 8.8; 2020 IF: 4.208
Call Number UA @ admin @ c:irua:167324 Serial 6581
Permanent link to this record
 

 
Author Van Winckel, T.; Ngo, N.; Sturm, B.; Al-Omari, A.; Wett, B.; Bott, C.; Vlaeminck, S.E.; De Clippeleir, H.
Title Enhancing bioflocculation in high-rate activated sludge improves effluent quality yet increases sensitivity to surface overflow rate Type A1 Journal article
Year 2022 Publication (up) Chemosphere Abbreviated Journal Chemosphere
Volume 308 Issue 2 Pages 136294-11
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract High-rate activated sludge (HRAS) relies on good bioflocculation and subsequent solid-liquid separation to maximize the capture of organics. However, full-scale applications often suffer from poor and unpredictable effluent suspended solids (ESS). While the biological aspects of bioflocculation are thoroughly investigated, the effects of fines (settling velocity < 0.6 m3/m2/h), shear and surface overflow rate (SOR) are unclear. This work tackled the impact of fines, shear, and SOR on the ESS in absence of settleable influent solids. This was assessed on a full-scale HRAS step-feed (SF) and pilot-scale HRAS contact-stabilization (CS) configuration using batch settling tests, controlled clarifier experiments, and continuous operation of reactors. Fines contributed up to 25% of the ESS in the full-scale SF configuration. ESS decreased up to 30 mg TSS/L when bioflocculation was enhanced with the CS configuration. The feast-famine regime applied in CS promoted the production of high-quality extracellular polymeric substances (EPS). However, this resulted in a narrow and unfavorable settling velocity distribution, with 50% ± 5% of the sludge mass settling between 0.6 and 1.5 m3/m2/h, thus increasing sensitivity towards SOR changes. A low shear environment (20 s−1) before the clarifier for at least one min was enough to ensure the best possible settling velocity distribution, regardless of prior shear conditions. Overall, this paper provides a more complete view on the drivers of ESS in HRAS systems, creating the foundation for the design of effective HRAS clarifiers. Tangible recommendations are given on how to manage fines and establish the optimal settling velocity of the sludge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000863979600006 Publication Date 2022-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.8
Call Number UA @ admin @ c:irua:190187 Serial 7154
Permanent link to this record
 

 
Author Le, T.-S.; Nguyen, P.-D.; Ngo, H.H.; Bui, X.-T.; Dang, B.-T.; Diels, L.; Bui, H.-H.; Nguyen, M.-T.; Le Quang, D.-T.
Title Two-stage anaerobic membrane bioreactor for co-treatment of food waste and kitchen wastewater for biogas production and nutrients recovery Type A1 Journal article
Year 2022 Publication (up) Chemosphere Abbreviated Journal Chemosphere
Volume 309 Issue 1 Pages 136537-136539
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Co-digestion of organic waste and wastewater is receiving increased attention as a plausible waste management approach toward energy recovery. However, traditional anaerobic processes for co-digestion are particularly susceptible to severe organic loading rates (OLRs) under long-term treatment. To enhance technological feasi-bility, this work presented a two-stage Anaerobic Membrane Bioreactor (2 S-AnMBR) composed of a hydrolysis reactor (HR) followed by an anaerobic membrane bioreactor (AnMBR) for long-term co-digestion of food waste and kitchen wastewater. The OLRs were expanded from 4.5, 5.6, and 6.9 kg COD m- 3 d-1 to optimize biogas yield, nitrogen recovery, and membrane fouling at ambient temperatures of 25-32 degrees C. Results showed that specific methane production of UASB was 249 +/- 7 L CH4 kg-1 CODremoved at the OLR of 6.9 kg TCOD m- 3 d-1. Total Chemical Oxygen Demand (TCOD) loss by hydrolysis was 21.6% of the input TCOD load at the hydraulic retention time (HRT) of 2 days. However, low total volatile fatty acid concentrations were found in the AnMBR, indicating that a sufficiently high hydrolysis efficiency could be accomplished with a short HRT. Furthermore, using AnMBR structure consisting of an Upflow Anaerobic Sludge Blanket Reactor (UASB) followed by a side -stream ultrafiltration membrane alleviated cake membrane fouling. The wasted digestate from the AnMBR comprised 42-47% Total Kjeldahl Nitrogen (TKN) and 57-68% total phosphorous loading, making it suitable for use in soil amendments or fertilizers. Finally, the predominance of fine particles (D10 = 0.8 mu m) in the ultra -filtration membrane housing (UFMH) could lead to a faster increase in trans-membrane pressure during the filtration process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000866470600004 Publication Date 2022-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.8 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 8.8
Call Number UA @ admin @ c:irua:191557 Serial 7347
Permanent link to this record
 

 
Author Mao, D.; Lookman, R.; van de Weghe, H.; Weltens, R.; Vanermen, G.; Brucker, N.; Diels, L.
Title Estimation of ecotoxicity of petroleum hydrocarbon mixtures in soil based on HPLC-GCXGC analysis Type A1 Journal article
Year 2009 Publication (up) Chemosphere Abbreviated Journal
Volume 77 Issue 11 Pages 1508-1513
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Detailed HPLCGCXGC/FID (high performance liquid chromatography followed by comprehensive two-dimensional gas chromatography with flame-ionization detection) analysis of oil-contaminated soils was performed to interpret results of selected acute ecotoxicity assays. For the five ecotoxicity assays tested, plant seed germination and Microtox® were selected as most sensitive for evaluating ecotoxicity of the oil in the soil phase and in the leaching water, respectively. The measured toxicity for cress when testing the soil samples did not correspond to TPH concentration in the soil. A detailed chemical composition analysis of the oil contamination using HPLCGCXGC/FID allows to better predict the ecotoxicological risk and leaching potential of petroleum hydrocarbons in soil. Cress biomass production per plant was well correlated to the total aromatic hydrocarbon concentration (R2 = 0.79, n = 6), while cress seed germination was correlated (R2 = 0.82, n = 6) with total concentration of highly water-soluble aromatic hydrocarbons (HSaromatics). The observed ecotoxicity of the leaching water for Microtox-bacteria related well to calculated (based on the HPLCGCXGC/FID results) petroleum hydrocarbon equilibrium concentrations in water.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000272598700008 Publication Date 2009-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:80310 Serial 7935
Permanent link to this record
 

 
Author Peng, L.; Dai, X.; Liu, Y.; Sun, J.; Song, S.; Ni, B.-J.
Title Model-based assessment of estrogen removal by nitrifying activated sludge Type A1 Journal article
Year 2018 Publication (up) Chemosphere Abbreviated Journal
Volume 197 Issue Pages 430-437
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Complete removal of estrogens such as estrone (E1), estradiol (E2), estriol (E3) and ethinylestradiol (EE2) in wastewater treatment is essential since their release and accumulation in natural water bodies are giving rise to environment and health issues. To improve our understanding towards the estrogen bioremediation process, a mathematical model was proposed for describing estrogen removal by nitrifying activated sludge. Four pathways were involved in the developed model: i) biosorption by activated sludge flocs; ii) cometabolic biodegradation linked to ammonia oxidizing bacteria (AOB) growth; iii) non growth biodegradation by AOB; and iv) biodegradation by heterotrophic bacteria (HB). The degradation kinetics was implemented into activated sludge model (ASM) framework with consideration of interactions between substrate update and microorganism growth as well as endogenous respiration. The model was calibrated and validated by fitting model predictions against two sets of batch experimental data under different conditions. The model could satisfactorily capture all the dynamics of nitrogen, organic matters (COD), and estrogens. Modeling results suggest that for El, E2 and EE2, AOB-linked biodegradation is dominant over biodegradation by HB at all investigated COD dosing levels. However, for E3, the increase of COD dosage triggers a shift of dominant pathway from AOB biodegradation to HB biodegradation. Adsorption becomes the main contributor to estrogen removal at high biomass concentrations. (C) 2018 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000426231900049 Publication Date 2018-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:149842 Serial 8259
Permanent link to this record
 

 
Author Van Winckel, T.; Liu, X.; Vlaeminck, S.E.; Takács, I.; Al-Omari, A.; Sturm, B.; Kjellerup, B.V.; Murthy, S.N.; De Clippeleir, H.
Title Overcoming floc formation limitations in high-rate activated sludge systems Type A1 Journal article
Year 2019 Publication (up) Chemosphere Abbreviated Journal
Volume 215 Issue Pages 342-352
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract High-rate activated sludge (HRAS) is an essential cornerstone of the pursuit towards energy positive sewage treatment through maximizing capture of organics. The capture efficiency heavily relies on the degree of solid separation achieved in the clarifiers. Limitations in the floc formation process commonly emerge in HRAS systems, with detrimental consequences for the capture of organics. This study pinpointed and overcame floc formation limitations present in full-scale HRAS reactors. Orthokinetic flocculation tests were performed with varying shear, sludge concentration, and coagulant or flocculant addition. These were analyzed with traditional and novel settling parameters and extracellular polymeric substances (EPS) measurements. HRAS was limited by insufficient collision efficiency and occurred because the solids retention time (SRT) was short and colloid loading was high. The limitation was predominantly caused by impaired flocculation rather than coagulation. In addition, the collision efficiency limitation was driven by EPS composition (low protein over polysaccharide ratio) instead of total EPS amount. Collision efficiency limitation was successfully overcome by bio-augmenting sludge from a biological nutrient removal reactor operating at long SRT which did not show any floc formation limitations. However, this action brought up a floc strength limitation. The latter was not correlated with EPS composition, but rather EPS amount and hindered settling parameters, which determined floc morphology. With this, an analysis toolkit was proposed that will enable design engineers and operators to tackle activated solid separation challenges found in HRAS systems and maximize the recovery potential of the process. (C) 2018 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000450383400038 Publication Date 2018-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:153978 Serial 8350
Permanent link to this record
 

 
Author Haest, P.J.; Springael, D.; Seuntjens, P.; Smolders, E.
Title Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL Type A1 Journal article
Year 2012 Publication (up) Chemosphere Abbreviated Journal
Volume 89 Issue 11 Pages 1369-1375
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a ICE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 20 box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000310112600015 Publication Date 2012-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:102142 Serial 8512
Permanent link to this record
 

 
Author Khan, S.U.; Trashin, S.A.; Korostei, Y.S.; Dubinina, T.V.; Tomilova, L.G.; Verbruggen, S.W.; De Wael, K.
Title Photoelectrochemistry for measuring the photocatalytic activity of soluble photosensitizers Type A1 Journal article
Year 2020 Publication (up) ChemPhotoChem Abbreviated Journal
Volume 4 Issue 4 Pages 300-306
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)
Abstract We introduce a rapid method to test the photocatalytic activity of singlet‐oxygen‐producing photosensitizers using a batch cell, a LED laser and a conventional potentiostat. The strategy is based on coupling of photo‐oxidation of hydroquinone and simultaneous electrochemical reduction of its oxidized form at a carbon electrode in an organic solvent (methanol). This scheme gives an immediate response and avoids complications related to long‐term experiments such as oxidative photo‐degradation of photosensitizers and singlet oxygen traps by reactive oxygen species (ROS). Among the tested compounds, a fluoro‐substituted subphthalocyanine showed the highest photocurrent and singlet oxygen quantum yield (ΦΔ) in comparison to phenoxy‐ and tert‐butyl‐substituted analogues, whereas the lowest photocurrents and yields were observed for aggregated and dimeric phthalocyanine complexes. The method is useful for fast screening of the photosensitizing activity and represents the first example of one‐pot coupling of electrochemical and photocatalytic reactions in organic media.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000520100400001 Publication Date 2020-01-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2367-0932 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 1 Open Access
Notes ; We gratefully acknowledge the financial support by ERA.Net RUS Plus Plasmon Electrolight project (No. 18-53-76006 ERA) and RSF 17-13-01197. ; Approved Most recent IF: 3.7; 2020 IF: NA
Call Number UA @ admin @ c:irua:165912 Serial 5771
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Shayesteh, S.F.
Title A first-principles study of C3N nanostructures : control and engineering of the electronic and magnetic properties of nanosheets, tubes and ribbons Type A1 Journal article
Year 2020 Publication (up) Chemphyschem Abbreviated Journal Chemphyschem
Volume 21 Issue 2 Pages 164-174
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations we systematically investigate the atomic, electronic and magnetic properties of novel two-dimensional materials (2DM) with a stoichiometry C3N which has recently been synthesized. We investigate how the number of layers affect the electronic properties by considering monolayer, bilayer and trilayer structures, with different stacking of the layers. We find that a transition from semiconducting to metallic character occurs which could offer potential applications in future nanoelectronic devices. We also study the affect of width of C3N nanoribbons, as well as the radius and length of C3N nanotubes, on the atomic, electronic and magnetic properties. Our results show that these properties can be modified depending on these dimensions, and depend markedly on the nature of the edge states. Functionalization of the nanostructures by the adsorption of H adatoms is found induce metallic, half-metallic, semiconducting and ferromagnetic behavior, which offers an approach to tailor the properties, as can the application of strain. Our calculations give insight into this new family of C3N nanostructures, which reveal unusual electronic and magnetic properties, and may have great potential in applications such as sensors, electronics and optoelectronic at the nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000503453100001 Publication Date 2019-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.9 Times cited 27 Open Access
Notes ; ; Approved Most recent IF: 2.9; 2020 IF: 3.075
Call Number UA @ admin @ c:irua:165045 Serial 6282
Permanent link to this record
 

 
Author Proost, J.; Blaffart, F.; Turner, S.; Idrissi, H.
Title On the Origin of Damped Electrochemical Oscillations at Silicon Anodes (Revisited) Type A1 Journal article
Year 2014 Publication (up) ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 15 Issue 14 Pages 3116-3124
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electrochemical oscillations accompanying the formation of anodic silica have been shown in the past to be correlated with rather abrupt changes in the mechanical stress state of the silica film, commonly associated with some kind of fracture or porosification of the oxide. To advance the understanding on the origin of such oscillations in fluoride-free electrolytes, we have revisited a seminal experiment reported by Lehmann almost two decades ago. We thereby demonstrate that the oscillations are not stress-induced, and do not originate from a morphological transformation of the oxide in the course of anodisation. Alternatively, the mechanical features accompanying the oscillations can be explained by a partial relaxation of the field-induced electrostrictive stress. Furthermore, our observations suggest that the oscillation mechanism more likely results from a periodic depolarisation of the anodic silica.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000342770500029 Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 5 Open Access
Notes Approved Most recent IF: 3.075; 2014 IF: 3.419
Call Number UA @ lucian @ c:irua:121086 Serial 2444
Permanent link to this record
 

 
Author Armelao, L.; Barreca, D.; Bottaro, G.; Gasparotto, A.; Maccato, C.; Tondello, E.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.; Štangar, U.L.
Title Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach Type A1 Journal article
Year 2009 Publication (up) ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 10 Issue 18 Pages 3249-3259
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The present work is devoted to the preparation of Ag/TiO2 nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the systems chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 °C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000273410600015 Publication Date 2009-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 56 Open Access
Notes Esteem 026019 Approved Most recent IF: 3.075; 2009 IF: 3.453
Call Number UA @ lucian @ c:irua:80561 Serial 2811
Permanent link to this record
 

 
Author Felten, A.; Suarez-Martinez, I.; Ke, X.; Van Tendeloo, G.; Ghijsen, J.; Pireaux, J.-J.; Drube, W.; Bittencourt, C.; Ewels, C.P.
Title The role of oxygen at the interface between titanium and carbon nanotubes Type A1 Journal article
Year 2009 Publication (up) ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 10 Issue 11 Pages 1799-1804
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We study the interface between carbon nanotubes (CNTs) and surface-deposited titanium using electron microscopy and photoemission spectroscopy, supported by density functional calculations. Charge transfer from the Ti atoms to the nanotube and carbide formation is observed at the interface which indicates strong interaction. Nevertheless, the presence of oxygen between the Ti and the CNTs significantly weakens the Ti-CNT interaction. Ti atoms at the surface will preferentially bond to oxygenated sites. Potential sources of oxygen impurities are examined, namely oxygen from any residual atmosphere and pre-existing oxygen impurities on the nanotube surface, which we enhance through oxygen plasma surface pre-treatment. Variation in literature data concerning Ohmic contacts between Ti and carbon nanotubes is explained via sample pre-treatment and differing vacuum levels, and we suggest improved treatment routes for reliable Schottky barrier-free Ti-nanotube contact formation.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000268817800015 Publication Date 2009-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 38 Open Access
Notes Pai Approved Most recent IF: 3.075; 2009 IF: 3.453
Call Number UA @ lucian @ c:irua:77939 Serial 2918
Permanent link to this record
 

 
Author Bittencourt, C.; van Lier, G.; Ke, X.; Suarez-Martinez, I.; Felten, A.; Ghijsen, J.; Van Tendeloo, G.; Ewels, C.O.
Title Spectroscopy and defect identification for fluorinated carbon nanotubes Type A1 Journal article
Year 2009 Publication (up) ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 10 Issue 6 Pages 920-925
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Multi-wall carbon nanotubes (MWCNTs) were exposed to a CF4 radio-frequency (rf) plasma. High-resolution photoelectron spectroscopy shows that the treatment effectively grafts fluorine atoms onto the MWCNTs, altering the valence electronic states. Fluorine surface concentration can be tuned by varying the exposure time. Evaporation of gold onto MWCNTs is used to mark active site formation. High-resolution transmission electron microscopy coupled with density functional theory (DFT) modelling is used to characterise the surface defects formed, indicating that the plasma treatment does not etch the tube surface. We suggest that this combination of theory and microscopy of thermally evaporated gold atoms onto the CNT surface may be a powerful approach to characterise both surface defect density as well as defect type.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000265469200011 Publication Date 2009-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 14 Open Access
Notes Iuap; Fwo Approved Most recent IF: 3.075; 2009 IF: 3.453
Call Number UA @ lucian @ c:irua:77315 Serial 3073
Permanent link to this record
 

 
Author Cornil, D.; Li, H.; Wood, C.; Pourtois, G.; Bredas, J.-L.; Cornil, J.
Title Work-function modification of Au and Ag surfaces upon deposition of self-assembled monolayers : influence of the choice of the theoretical approach and the thiol decomposition scheme Type A1 Journal article
Year 2013 Publication (up) ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 14 Issue 13 Pages 2939-2946
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We have characterized theoretically the work-function modifications of the (111) surfaces of gold and silver upon deposition of self-assembled monolayers based on methanethiol and trifluoromethanethiol. A comparative analysis is made between the experimental results and those obtained from two widely used approaches based on density functional theory. The contributions to the total work-function modifications are estimated on the basis of two decomposition schemes of the thiol molecules that have been proposed in the literature. The contributions are found to differ significantly between the two approaches, as do the corresponding adsorption energies.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000324316000014 Publication Date 2013-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 9 Open Access
Notes Approved Most recent IF: 3.075; 2013 IF: 3.360
Call Number UA @ lucian @ c:irua:112278 Serial 3923
Permanent link to this record
 

 
Author Bekermann, D.; Gasparotto, A.; Barreca, D.; Devi, A.; Fischer, R.A.; Kete, M.; Štangar, U.L.; Lebedev, O.I.; Maccato, C.; Tondello, E.; Van Tendeloo, G.
Title ZnO nanorod arrays by plasma-enhanced CVD for light-activated functional applications Type A1 Journal article
Year 2010 Publication (up) ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 11 Issue 11 Pages 2337-2340
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Switch of the surface properties: Supported ZnO nanorod arrays with tailored roughness and aspect ratios are successfully synthesized by plasma-enhanced chemical vapor deposition. Such nanostructures exhibit significant superhydrophilic and photocatalytic properties tunable as a function of their morphological organization (see picture). This renders them promising building blocks for the fabrication of stimuli-responsive materials.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000281061500008 Publication Date 2010-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 38 Open Access
Notes Esteem 026019 Approved Most recent IF: 3.075; 2010 IF: 3.340
Call Number UA @ lucian @ c:irua:84594 Serial 3935
Permanent link to this record
 

 
Author Iyikanat, F.; Senger, R.T.; Peeters, F.M.; Sahin, H.
Title Quantum-Transport Characteristics of a p-n Junction on Single-Layer TiS3 Type A1 Journal article
Year 2016 Publication (up) ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 17 Issue 17 Pages 3985-3991
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By using density functional theory and non-equilibrium Green's function-based methods, we investigated the electronic and transport properties of a TiS3 monolayer p-n junction. We constructed a lateral p-n junction on a TiS3 monolayer using Li and F adatoms. An applied bias voltage caused significant variability in the electronic and transport properties of the TiS3 p-n junction. In addition, the spin-dependent current-volt-age characteristics of the constructed TiS3 p-n junction were analyzed. Important device characteristics were found, such as negative differential resistance and rectifying diode behaviors for spin-polarized currents in the TiS3 p-n junction. These prominent conduction properties of the TiS3 p-n junction offer remarkable opportunities for the design of nanoelectronic devices based on a recently synthesized single-layered material.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000389534800018 Publication Date 2016-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 12 Open Access
Notes ; This work was supported by the bilateral project between TUBITAK (through Grant No. 113T050) and the Flemish Science Foundation (FWO-Vl). The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). FI, HS, and RTS acknowledge the support from TUBITAK Project No 114F397. H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 3.075
Call Number UA @ lucian @ c:irua:140245 Serial 4458
Permanent link to this record
 

 
Author Smits, M.; Ling, Y.; Lenaerts, S.; Van Doorslaer, S.
Title Photocatalytic removal of soot : unravelling of the reaction mechanism by EPR and in situ FTIR spectroscopy Type A1 Journal article
Year 2012 Publication (up) ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 13 Issue 18 Pages 4251-4257
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Photocatalytic soot oxidation is studied on P25 TiO2 as an important model reaction for self-cleaning processes by means of electron paramagnetic resonance (EPR) and Fourier transform infrared (FTIR) spectroscopy. Contacting of carbon black with P25 leads on the one hand to a reduction of the local dioxygen concentration in the powder. On the other hand, the weakly adsorbed radicals on the carbon particles are likely to act as alternative traps for the photogenerated conduction-band electrons. We find furthermore that the presence of dioxygen and oxygen-related radicals is vital for the photocatalytic soot degradation. The complete oxidation of soot to CO2 is evidenced by in situ FTIR spectroscopy, no intermediate CO is detected during the photocatalytic process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000313692600026 Publication Date 2012-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 9 Open Access
Notes ; This work was supported by the University of Antwerp (PhD grants of M. S. and Y.L.). We would like to thank Birger Hauchecorne for the scientific discussion. ; Approved Most recent IF: 3.075; 2012 IF: 3.349
Call Number UA @ admin @ c:irua:104568 Serial 5980
Permanent link to this record
 

 
Author Ramesha, B.M.; Pawlak, B.; Arenas Esteban, D.; Reekmans, G.; Bals, S.; Marchal, W.; Carleer, R.; Adriaensens, P.; Meynen, V.
Title Partial hydrolysis of diphosphonate ester during the formation of hybrid Tio₂ nanoparticles : role of acid concentration Type A1 Journal article
Year 2023 Publication (up) ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal
Volume Issue Pages e202300437-13
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract In the present work, a method was utilized to control the in‐situ partial hydrolysis of a diphosphonate ester in presence of a titania precursor and in function of acid content and its impact on the hybrid nanoparticles was assessed. The hydrolysis degree of organodiphosphonate ester linkers during the formation of hybrid organic‐inorganic metal oxide nanoparticles, are relatively underexplored . Quantitative solution NMR spectroscopy revealed that during the synthesis of TiO2 nanoparticles, an increase in acid concentration introduces a higher degree of partial hydrolysis of the TEPD linker into diverse acid/ester derivatives of TEPD. Increasing the HCl/Ti ratio from 1 to 3, resulted in an increase in degree of partial hydrolysis of the TEPD linker in solution from 4% to 18.8% under the here applied conditions. As a result of the difference in partial hydrolysis, the linker‐TiO2 bonding was altered. Upon subsequent drying of the colloidal TiO2 solution, different textures, at nanoscale and macroscopic scale, were obtained dependent on the HCl/Ti ratio and thus the degree of hydrolysis of TEPD. Understanding such linker‐TiO2 nanoparticle surface dynamics is crucial for making hybrid organic‐inorganic materials (i.e. (porous) metal phosphonates) employed in applications such as electronic/photonic devices, separation technology and heterogeneous catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071673900001 Publication Date 2023-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235; 1439-7641 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access OpenAccess
Notes This work was supported by the Research Foundation-Flanders (FWO Vlaanderen) Project G.0121.17 N. The work was further supported by Hasselt University and the Research Foundation – Flanders (FWO Vlaanderen) via the Hercules project AUHL/15/2 – GOH3816 N. V. M. acknowledges the Research Foundation Flanders (FWO) for project K801621 N. B. M. R. acknowledges, Prof. Dr. Christophe Detavernier and Dr. Davy Deduystche (COCOON, Ghent University) for PXRD and VT-XRD measurements, Prof. Dr. Christophe Van De Velde (iPRACS, University of Antwerp) and Dr. Radu Ciocarlan (LADCA, University of Antwerp) for helpful discussions on PXRD measurements and Dr. Nick Gys (University of Antwerp and VITO) for ICP-OES measurements. Approved Most recent IF: 2.9; 2023 IF: 3.075
Call Number UA @ admin @ c:irua:198934 Serial 8911
Permanent link to this record
 

 
Author Rehor, I.; Mackova, H.; Filippov, S.K.; Kucka, J.; Proks, V.; Slegerova, J.; Turner, S.; Van Tendeloo, G.; Ledvina, M.; Hruby, M.; Cigler, P.;
Title Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings Type A1 Journal article
Year 2014 Publication (up) ChemPlusChem Abbreviated Journal Chempluschem
Volume 79 Issue 1 Pages 21-24
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The novel synthesis of a polymeric interface grown from the surface of bright fluorescent nanodiamonds is reported. The polymer enables bioorthogonal attachment of various molecules by click chemistry; the particles are resistant to nonspecific protein adsorption and show outstanding colloidal stability in buffers and biological media. The coating fully preserves the unique optical properties of the nitrogen-vacancy centers that are crucial for bioimaging and sensoric applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000337974900002 Publication Date 2013-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2192-6506; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.797 Times cited 34 Open Access
Notes EU 7FP Program (no.262348); European Soft Matter Infrastructure; ESMI; ERC (grant no.246791)-COUNTATOMS; FWO Approved Most recent IF: 2.797; 2014 IF: 2.997
Call Number UA @ lucian @ c:irua:113088 Serial 1235
Permanent link to this record
 

 
Author Aerts, R.; Somers, W.; Bogaerts, A.
Title Carbon dioxide splitting in a dielectric barrier discharge plasma : a combined experimental and computational study Type A1 Journal article
Year 2015 Publication (up) Chemsuschem Abbreviated Journal Chemsuschem
Volume 8 Issue 8 Pages 702-716
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2. We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000349954400019 Publication Date 2015-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 131 Open Access
Notes Approved Most recent IF: 7.226; 2015 IF: 7.657
Call Number c:irua:123930 Serial 279
Permanent link to this record
 

 
Author Philippaerts, A.; Goossens, S.; Vermandel, W.; Tromp, M.; Turner, S.; Geboers, J.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F.
Title Design of Ru-zeolites for hydrogen-free production of conjugated linoleic acid Type A1 Journal article
Year 2011 Publication (up) Chemsuschem Abbreviated Journal Chemsuschem
Volume 4 Issue 6 Pages 757-767
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract While conjugated vegetable oils are currently used as additives in the drying agents of oils and paints, they are also attractive molecules for making bio-plastics. Moreover, conjugated oils will soon be accepted as nutritional additives for functional food products. While current manufacture of conjugated vegetable oils or conjugated linoleic acids (CLAs) uses a homogeneous base as isomerisation catalyst, a heterogeneous alternative is not available today. This contribution presents the direct production of CLAs over Ru supported on different zeolites, varying in topology (ZSM-5, BETA, Y), Si/Al ratio and countercation (H+, Na+, Cs+). Ru/Cs-USY, with a Si/Al ratio of 40, was identified as the most active and selective catalyst for isomerisation of methyl linoleate (cis-9,cis-12 (C18:2)) to CLA at 165 °C. Interestingly, no hydrogen pre-treatment of the catalyst or addition of hydrogen donors is required to achieve industrially relevant isomerisation productivities, namely, 0.7 g of CLA per litre of solvent per minute. Moreover, the biologically most active CLA isomers, namely, cis-9,trans-11, trans-10,cis-12 and trans-9,trans-11, were the main products, especially at low catalyst concentrations. Ex situ physicochemical characterisation with CO chemisorption, extended X-ray absorption fine structure measurements, transmission electron microscopy analysis, and temperature-programmed oxidation reveals the presence of highly dispersed RuO2 species in Ru/Cs-USY(40).
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000292214000009 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 24 Open Access
Notes Fwo Approved Most recent IF: 7.226; 2011 IF: 6.827
Call Number UA @ lucian @ c:irua:90352 Serial 660
Permanent link to this record
 

 
Author Chen, L.-H.; Li, X.-Y.; Tian, G.; Li, Y.; Tan, H.-Y.; Van Tendeloo, G.; Zhu, G.-S.; Qiu, S.-L.; Yang, X.-Y.; Su, B.-L.
Title Multimodal zeolite-beta-based catalysts with a hierarchical, three-level pore structure Type A1 Journal article
Year 2011 Publication (up) Chemsuschem Abbreviated Journal Chemsuschem
Volume 4 Issue 10 Pages 1452-1456
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hole diggers: The hierarchically structured porous solid-acid catalyst described in this report possess a remarkable pore system, encompassing well-defined macrochannels, interconnected mesopores, intracrystalline mesopores, and tunable zeolite micropores. Importantly, the catalyst exhibits very strong acidity and superior catalytic activity for esterification reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000296497400009 Publication Date 2011-08-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 33 Open Access
Notes Iap Approved Most recent IF: 7.226; 2011 IF: 6.827
Call Number UA @ lucian @ c:irua:93675 Serial 2223
Permanent link to this record
 

 
Author Van de Vyver, S.; Geboers, J.; Dusselier, M.; Schepers, H.; Vosch, T.; Zhang, L.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F.
Title Selective bifunctional catalytic conversion of cellulose over reshaped ni particles at the tip of carbon nanofibers Type A1 Journal article
Year 2010 Publication (up) Chemsuschem Abbreviated Journal Chemsuschem
Volume 3 Issue 6 Pages 698-701
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000279753300011 Publication Date 2010-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631;1864-564X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 136 Open Access
Notes Approved Most recent IF: 7.226; 2010 IF: 6.325
Call Number UA @ lucian @ c:irua:95657 Serial 2962
Permanent link to this record
 

 
Author Schutyser, W.; Van den Bosch, S.; Dijkmans, J.; Turner, S.; Meledina, M.; Van Tendeloo, G.; Debecker, D.P.; Sels, B.F.
Title Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks Type A1 Journal article
Year 2015 Publication (up) Chemsuschem Abbreviated Journal Chemsuschem
Volume 8 Issue 8 Pages 1805-1818
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Valorization of lignin is essential for the economics of future lignocellulosic biorefineries. Lignin is converted into novel polymer building blocks through four steps: catalytic hydroprocessing of softwood to form 4-alkylguaiacols, their conversion into 4-alkylcyclohexanols, followed by dehydrogenation to form cyclohexanones, and Baeyer-Villiger oxidation to give caprolactones. The formation of alkylated cyclohexanols is one of the most difficult steps in the series. A liquid-phase process in the presence of nickel on CeO2 or ZrO2 catalysts is demonstrated herein to give the highest cyclohexanol yields. The catalytic reaction with 4-alkylguaiacols follows two parallel pathways with comparable rates: 1) ring hydrogenation with the formation of the corresponding alkylated 2-methoxycyclohexanol, and 2) demethoxylation to form 4-alkylphenol. Although subsequent phenol to cyclohexanol conversion is fast, the rate is limited for the removal of the methoxy group from 2-methoxycyclohexanol. Overall, this last reaction is the rate-limiting step and requires a sufficient temperature (> 250 degrees C) to overcome the energy barrier. Substrate reactivity (with respect to the type of alkyl chain) and details of the catalyst properties (nickel loading and nickel particle size) on the reaction rates are reported in detail for the Ni/CeO2 catalyst. The best Ni/CeO2 catalyst reaches 4-alkylcyclohexanol yields over 80 %, is even able to convert real softwood-derived guaiacol mixtures and can be reused in subsequent experiments. A proof of principle of the projected cascade conversion of lignocellulose feedstock entirely into caprolactone is demonstrated by using Cu/ZrO2 for the dehydrogenation step to produce the resultant cyclohexanones (approximate to 80%) and tin-containing beta zeolite to form 4-alkyl-e-caprolactones in high yields, according to a Baeyer-Villiger-type oxidation with H2O2.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000355220300020 Publication Date 2015-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 71 Open Access
Notes Fwo Approved Most recent IF: 7.226; 2015 IF: 7.657
Call Number c:irua:126406 Serial 2967
Permanent link to this record
 

 
Author Snoeckx, R.; Ozkan, A.; Reniers, F.; Bogaerts, A.
Title The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study Type A1 Journal article
Year 2017 Publication (up) Chemsuschem Abbreviated Journal Chemsuschem
Volume 10 Issue 10 Pages 409-424
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Recycling of carbon dioxide by its conversion into value-added products has gained significant interest owing to the role it can play for use in an anthropogenic carbon cycle. The combined conversion with H2O could even mimic the natural photosynthesis process. An interesting gas conversion technique currently being considered in the field of CO2 conversion is plasma technology. To investigate whether it is also promising for this combined conversion, we performed a series of experiments and developed a chemical kinetics plasma chemistry model for a deeper understanding of the process. The main products formed were the syngas components CO and H2, as well as O2 and H2O2, whereas methanol formation was only observed in the parts-per-billion to parts-per-million range. The syngas ratio, on the other hand, could easily be controlled by varying both the water content and/or energy input. On the basis of the model, which was validated with experimental results, a chemical kinetics analysis was performed, which allowed the construction and investigation of the different pathways leading to the observed experimental results and which helped to clarify these results. This approach allowed us to evaluate this technology on the basis of its underlying chemistry and to propose solutions on how to further improve the formation of value-added products by using plasma technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000394571900012 Publication Date 2016-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 25 Open Access OpenAccess
Notes The authors acknowledge financial support from the Inter-university Attraction Pole (IAP; grant number IAP-VII/12, P7/34) program “PSI-Physical Chemistry of Plasma-Surface Interactions”, financially supported by the Belgian Federal Office for Science Policy (BELSPO), as well as the Fund for Scientific Research Flanders (FWO; grant number G.0066.12N). This work was performed in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. We also would like to thank the financial support given by “Fonds David et Alice Van Buuren”. Finally, we are very grateful to M. Kushner for providing the Global kin code, to T. Dufour for his support during the experiments, and to R. Aerts for his support during the model development. Approved Most recent IF: 7.226
Call Number PLASMANT @ plasmant @ c:irua:139880 Serial 4412
Permanent link to this record
 

 
Author Martens, J.A.; Bogaerts, A.; De Kimpe, N.; Jacobs, P.A.; Marin, G.B.; Rabaey, K.; Saeys, M.; Verhelst, S.
Title The Chemical Route to a Carbon Dioxide Neutral World Type A1 Journal article
Year 2017 Publication (up) Chemsuschem Abbreviated Journal Chemsuschem
Volume 10 Issue 10 Pages 1039-1055
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy

supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2-neutral world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398182800002 Publication Date 2017-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 75 Open Access OpenAccess
Notes This paper is written by members of the Royal Flemish Academy of Belgium for Science and the Arts (KVAB) and external experts. KVAB is acknowledged for supporting the writing and publishing of this viewpoint. Valuable suggestions made by colleagues Jan Kretzschmar, Stan Ulens, and Luc Sterckx are highly appreciated. Special thanks go to Mr. Bert Seghers and Mrs. N. Boelens of KVAB for practical assistance. Mr. Tim Lacoere is acknowledged for graphic design and layout of the figures, and Steven Heylen and Elke Verheyen are acknowledged for data collection and editorial assistance. Approved Most recent IF: 7.226
Call Number PLASMANT @ plasmant @ c:irua:141916 Serial 4532
Permanent link to this record