|   | 
Details
   web
Records
Author Koch, K.; Wuyts, K.; Denys, S.; Samson, R.
Title The influence of plant species, leaf morphology, height and season on PM capture efficiency in living wall systems Type A1 Journal article
Year 2023 Publication (up) The science of the total environment Abbreviated Journal
Volume 905 Issue Pages 167808-167811
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Green infrastructure (GI) is already known to be a suitable way to enhance air quality in urban environments. Living wall systems (LWS) can be implemented in locations where other forms of GI, such as trees or hedges, are not suitable. However, much debate remains about the variables that influence their particulate matter (PM) accumulation efficiency. This study attempts to clarify which plant species are relatively the most efficient in capturing PM and which traits are decisive when it comes to the implementation of a LWS. We investigated 11 plant species commonly used on living walls, located close to train tracks and roads. PM accumulation on leaves was quantified by magnetic analysis (Saturation Isothermal Remanent Magnetization (SIRM)). Several leaf morphological variables that could potentially influence PM capture were assessed, as well as the Wall Leaf Area Index. A wide range in SIRM values (2.74–417 μA) was found between all species. Differences in SIRM could be attributed to one of the morphological parameters, namely SLA (specific leaf area). This suggest that by just assessing SLA, one can estimate the PM capture efficiency of a plant species, which is extremely interesting for urban greeners. Regarding temporal variation, some species accumulated PM over the growing season, while others actually decreased in PM levels. This decrease can be attributed to rapid leaf expansion and variations in meteorology. Correct assessment of leaf age is important here; we suggest individual labeling of leaves for further studies. Highest SIRM values were found close to ground level. This suggests that, when traffic is the main pollution source, it is most effective when LWS are applied at ground level. We conclude that LWS can act as local sinks for PM, provided that species are selected correctly and systems are applied according to the state of the art.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record
Impact Factor 9.8 Times cited Open Access
Notes Approved Most recent IF: 9.8; 2023 IF: 4.9
Call Number UA @ admin @ c:irua:201033 Serial 9049
Permanent link to this record
 

 
Author Li, L.; Lin, Q.; Nijs, I.; De Boeck, H.; Beemster, G.T.S.; Asard, H.; Verbruggen, E.
Title More persistent weather causes a pronounced soil microbial legacy but does not impact subsequent plant communities Type A1 Journal article
Year 2023 Publication (up) The science of the total environment Abbreviated Journal
Volume 903 Issue Pages 166570-166578
Keywords A1 Journal article; Integrated Molecular Plant Physiology Research (IMPRES); Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract A soil history of exposure to extreme weather may impact future plant growth and microbial community assembly. Currently, little is known about whether and how previous precipitation regime (PR)-induced changes in soil microbial communities influence plant and soil microbial community responses to a subsequent PR. We exposed grassland mesocosms to either an ambient PR (1 day wet-dry alternation) or a persistent PR (30 days consecutive wet-dry alternation) for one year. This conditioned soil was then inoculated as a 10 % fraction into 90 % sterilized “native” soil, after which new plant communities were established and subjected to either the ambient or persistent PR for 60 days. We assessed whether past persistent weather-induced changes in soil microbial community composition affect soil microbial and plant community responses to subsequent weather persistence. The historical regimes caused enduring effects on fungal communities and only temporary effects on bacterial communities, but did not trigger soil microbial legacy effects on plant productivity when exposed to either current PR. This study provides experimental evidence for soil legacy of climate persistence on grassland ecosystems in response to subsequent climate persistence, helping to understand and predict the influences of future climate change on soil biota.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001116596100001 Publication Date 2023-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited Open Access
Notes Approved Most recent IF: 9.8; 2023 IF: 4.9
Call Number UA @ admin @ c:irua:200463 Serial 9213
Permanent link to this record
 

 
Author Verbruggen, L.; Verheggen, L.; Vanhoutte, G.; Loly, C.; Lybaert, W.; Borbath, I.; Vergauwe, P.; Hendrickx, K.; Debeuckelaere, C.; de Haar-Holleman, A.; Van Laethem, J.-L.; Peeters, M.
Title A real-world analysis on the efficacy and tolerability of liposomal irinotecan plus 5-fluorouracil and folinic acid in metastatic pancreatic ductal adenocarcinoma in Belgium Type A1 Journal article
Year 2023 Publication (up) Therapeutic advances in medical oncology Abbreviated Journal
Volume 15 Issue Pages 1-13
Keywords A1 Journal article; Center for Oncological Research (CORE)
Abstract Background: Currently, nanoliposomal irinotecan (nal-IRI) + 5-fluorouracil/folinic acid (5-FU/ LV) is the only approved second-line treatment for patients suffering from metastatic pancreatic ductal adenocarcinoma (mPDAC). However, also other chemotherapeutic regimens are used in this setting and due to the lack of clear real-world data on the efficacy of the different regimens, there is no consensus on the optimal treatment sequence for mPDAC patients. Objectives: To provide information on the safe and efficacious use of nal-IRI + 5-FU/LV in clinical practice in Belgium, which is needed for healthcare professionals to estimate the risk-benefit ratio of the intervention. Methods: Medical data of adult patients with mPDAC who were treated with nal-IRI + 5-FU/ LV in one of the participating Belgian hospitals were retrospectively collected. Kaplan-Meier analysis was performed to obtain survival curves to estimate the median overall survival (OS) and progression-free survival (PFS). All other results were presented descriptively. Results: A total of 56 patients [median age at diagnosis: 69 years (range 43 years), 57.1% male] were included. Patients received a median of 5 (range 49 cycles) nal-IRI + 5-FU/LV cycles, extended over 10 weeks (range 130.8 weeks). The median start dose for nal-IRI was 70 mg/ m(2) (range 49.24 mg/m(2)) and chemotherapy dose reduction and delay occurred in, respectively, 42.8% and 37.5% of the patients. The median OS was 6.8 months (95% CI: 5.6-8.4 months) with a 6-month survival rate of 57.4% and a 1-year survival rate of 27.8% in the overall study population. The median OS for patients treated with nal-IRI as second-line therapy or as laterline treatment was, respectively, 6.8 months (95% CI: 5.9-7.0 months) and 5.6 months (95% CI: 4.2-no upper limit). In the overall study population, a median PFS of 3.1 months (95% CI: 2.4-4.6 months) and a disease control rate of 48.3%, comprising 30.4% stable disease, 16.1% partial and 1.8% complete response, was observed. The median PFS for patients treated with nal-IRI as second-line therapy was 3.9 months (95% CI: 2.8-4.8 months) while this was 2.4 months (95% CI: 1.9-9.1 months) for those that received nal-IRI in a later-line treatment. In terms of safety, gastrointestinal problems occurred most (64.3% of the patients) and from all reported treatment emergent adverse events, 39.2% were grade 3 or 4. Conclusion: Nal-IRI + 5-FU/LV is a valuable, effective, and safe sequential treatment option following gemcitabine-based therapy in patients with mPDAC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001051446400001 Publication Date 2023-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-8340; 1758-8359 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.9 Times cited Open Access
Notes Approved Most recent IF: 4.9; 2023 IF: 6.294
Call Number UA @ admin @ c:irua:199296 Serial 9183
Permanent link to this record
 

 
Author Lian, M.; Shi, P.; Zhang, L.; Yao, W.; Gielis, J.; Niklas, K.J.
Title A generalized performance equation and its application in measuring the Gini index of leaf size inequality Type A1 Journal article
Year 2023 Publication (up) Trees: structure and function Abbreviated Journal
Volume 37 Issue Pages 1555-1565
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The goal of this study is to provide a rigorous tool to quantify the inequality of the leaf size distribution of an individual plant, thereby serving as a reference trait for quantifying plant adaptations to local environmental conditions. The tool to be presented and tested employs three components: (1) a performance equation (PE), which can produce flexible asymmetrical and symmetrical bell-shaped curves, (2) the Lorenz curve (i.e., the cumulative proportion of leaf size vs. the cumulative proportion of number of leaves), which is the basis for calculating, and (3) the Gini index, which measures the inequality of leaf size distribution. We sampled 12 individual plants of a dwarf bamboo and measured the area and dry mass of each leaf of each plant. We then developed a generalized performance equation (GPE) of which the PE is a special case and fitted the Lorenz curve to leaf size distribution using the GPE and PE. The GPE performed better than the PE in fitting the Lorenz curve. We compared the Gini index of leaf area distribution with that of leaf dry mass distribution and found that there was a significant difference between the two indices that might emerge from the scaling relationship between leaf dry mass and area. Nevertheless, there was a strong correlation between the two Gini indices (r2 = 0.9846). This study provides a promising tool based on the GPE for quantifying the inequality of leaf size distributions across individual plants and can be used to quantify plant adaptations to local environmental conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001069570200001 Publication Date 2023-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0931-1890; 1432-2285 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.3 Times cited Open Access Not_Open_Access: Available from 26.02.2024
Notes Approved Most recent IF: 2.3; 2023 IF: 1.842
Call Number UA @ admin @ c:irua:199562 Serial 8874
Permanent link to this record
 

 
Author Alloul, A.; Blansaer, N.; Cabecas Segura, P.; Wattiez, R.; Vlaeminck, S.E.; Leroy, B.
Title Dehazing redox homeostasis to foster purple bacteria biotechnology Type A1 Journal article
Year 2023 Publication (up) Trends in biotechnology : regular edition Abbreviated Journal
Volume 41 Issue 1 Pages 106-119
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Purple non-sulfur bacteria (PNSB) show great potential for environmental and industrial biotechnology, producing microbial protein, biohydrogen, polyhydroxyalkanoates (PHAs), pigments, etc. When grown photoheterotrophically, the carbon source is typically more reduced than the PNSB biomass, which leads to a redox imbalance. To mitigate the excess of electrons, PNSB can exhibit several ‘electron sinking’ strategies, such as CO2 fixation, N2 fixation, and H2 and PHA production. The lack of a comprehensive (over)view of these redox strategies is hindering the implementation of PNSB for biotechnology applications. This review aims to present the state of the art of redox homeostasis in phototrophically grown PNSB, presenting known and theoretically expected strategies, and discussing them from stoichiometric, thermodynamic, metabolic, and economic points of view.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000923198400001 Publication Date 2022-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1879-3096;0167-7799 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 17.3; 2023 IF: 11.126
Call Number UA @ admin @ c:irua:192944 Serial 7294
Permanent link to this record
 

 
Author Hofer, C.; Pennycook, T.J.
Title Reliable phase quantification in focused probe electron ptychography of thin materials Type A1 Journal Article
Year 2023 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 254 Issue Pages 113829
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Electron ptychography provides highly sensitive, dose efficient phase images which can be corrected for aberrations after the data has been acquired. This is crucial when very precise quantification is required, such as with sensitivity to charge transfer due to bonding. Drift can now be essentially eliminated as a major impediment to focused probe ptychography, which benefits from the availability of easily interpretable simultaneous Z-contrast imaging. However challenges have remained when quantifying the ptychographic phases of atomic sites. The phase response of a single atom has a negative halo which can cause atoms to reduce in phase when brought closer together. When unaccounted for, as in integrating methods of quantification, this effect can completely obscure the effects of charge transfer. Here we provide a new method of quantification that overcomes this challenge, at least for 2D materials, and is robust to experimental parameters such as noise, sample tilt.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071608700001 Publication Date 2023-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited Open Access
Notes FWO, G013122N ; Horizon 2020 Framework Programme; Horizon 2020; European Research Council, 802123-HDEM ; European Research Council; Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:200272 Serial 8987
Permanent link to this record
 

 
Author De Backer, A.; Bals, S.; Van Aert, S.
Title A decade of atom-counting in STEM: From the first results toward reliable 3D atomic models from a single projection Type A1 Journal article
Year 2023 Publication (up) Ultramicroscopy Abbreviated Journal
Volume Issue Pages 113702
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Quantitative structure determination is needed in order to study and understand nanomaterials at the atomic scale. Materials characterisation resulting in precise structural information is a crucial point to understand the structure–property relation of materials. Counting the number of atoms and retrieving the 3D atomic structure of nanoparticles plays an important role here. In this paper, an overview will be given of the atom-counting methodology and its applications over the past decade. The procedure to count the number of atoms will be discussed in detail and it will be shown how the performance of the method can be further improved. Furthermore, advances toward mixed element nanostructures, 3D atomic modelling based on the atom-counting results, and quantifying the nanoparticle dynamics will be highlighted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000953765800001 Publication Date 2023-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited 3 Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert, Grant 815128 REALNANO to S. Bals, and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0267.18N, G.0502.18N, G.0346.21N, and EOS 30489208) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF) . The authors also thank the colleagues who have contributed to this work over the years, including T. Altantzis, E. Arslan Irmak, K.J. Batenburg, E. Bladt, A. De wael, R. Erni, C. Faes, B. Goris, L. Jones, L.M. Liz-Marzán, I. Lobato, G.T. Martinez, P.D. Nellist, M.D. Rosell, A. Rosenauer, K.H.W. van den Bos, A. Varambhia, and Z. Zhang.; esteem3reported; esteem3JRA Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:195896 Serial 7236
Permanent link to this record
 

 
Author Zhang, Z.; Lobato, I.; De Backer, A.; Van Aert, S.; Nellist, P.
Title Fast generation of calculated ADF-EDX scattering cross-sections under channelling conditions Type A1 Journal article
Year 2023 Publication (up) Ultramicroscopy Abbreviated Journal
Volume 246 Issue Pages 113671
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Advanced materials often consist of multiple elements which are arranged in a complicated structure. Quantitative scanning transmission electron microscopy is useful to determine the composition and thickness of nanostructures at the atomic scale. However, significant difficulties remain to quantify mixed columns by comparing the resulting atomic resolution images and spectroscopy data with multislice simulations where dynamic scattering needs to be taken into account. The combination of the computationally intensive nature of these simulations and the enormous amount of possible mixed column configurations for a given composition indeed severely hamper the quantification process. To overcome these challenges, we here report the development of an incoherent non-linear method for the fast prediction of ADF-EDX scattering cross-sections of mixed columns under channelling conditions. We first explain the origin of the ADF and EDX incoherence from scattering physics suggesting a linear dependence between those two signals in the case of a high-angle ADF detector. Taking EDX as a perfect incoherent reference mode, we quantitatively examine the ADF longitudinal incoherence under different microscope conditions using multislice simulations. Based on incoherent imaging, the atomic lensing model previously developed for ADF is now expanded to EDX, which yields ADF-EDX scattering cross-section predictions in good agreement with multislice simulations for mixed columns in a core–shell nanoparticle and a high entropy alloy. The fast and accurate prediction of ADF-EDX scattering cross-sections opens up new opportunities to explore the wide range of ordering possibilities of heterogeneous materials with multiple elements.
Address
Corporate Author Zezhong Zhang Thesis
Publisher Place of Publication Editor
Language Wos 000995063900001 Publication Date 2022-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited Open Access OpenAccess
Notes European Research Council 770887 PICOMETRICS; Fonds Wetenschappelijk Onderzoek No.G.0502.18N; Horizon 2020, 770887 ; Horizon 2020 Framework Programme; European Research Council, 823717 ESTEEM3 ; esteem3reported; esteem3JRa Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:195890 Serial 7251
Permanent link to this record
 

 
Author Lobato, I.; De Backer, A.; Van Aert, S.
Title Real-time simulations of ADF STEM probe position-integrated scattering cross-sections for single element fcc crystals in zone axis orientation using a densely connected neural network Type A1 Journal article
Year 2023 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 251 Issue Pages 113769
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Quantification of annular dark field (ADF) scanning transmission electron microscopy (STEM) images in terms

of composition or thickness often relies on probe-position integrated scattering cross sections (PPISCS). In

order to compare experimental PPISCS with theoretically predicted ones, expensive simulations are needed for

a given specimen, zone axis orientation, and a variety of microscope settings. The computation time of such

simulations can be in the order of hours using a single GPU card. ADF STEM simulations can be efficiently

parallelized using multiple GPUs, as the calculation of each pixel is independent of other pixels. However, most

research groups do not have the necessary hardware, and, in the best-case scenario, the simulation time will

only be reduced proportionally to the number of GPUs used. In this manuscript, we use a learning approach and

present a densely connected neural network that is able to perform real-time ADF STEM PPISCS predictions as

a function of atomic column thickness for most common face-centered cubic (fcc) crystals (i.e., Al, Cu, Pd, Ag,

Pt, Au and Pb) along [100] and [111] zone axis orientations, root-mean-square displacements, and microscope

parameters. The proposed architecture is parameter efficient and yields accurate predictions for the PPISCS

values for a wide range of input parameters that are commonly used for aberration-corrected transmission

electron microscopes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001011617200001 Publication Date 2023-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.2 Times cited Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G034621N and G0A7723N) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF), Belgium. Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:197275 Serial 8812
Permanent link to this record
 

 
Author Denisov, N.; Jannis, D.; Orekhov, A.; Müller-Caspary, K.; Verbeeck, J.
Title Characterization of a Timepix detector for use in SEM acceleration voltage range Type A1 Journal article
Year 2023 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 253 Issue Pages 113777
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hybrid pixel direct electron detectors are gaining popularity in electron microscopy due to their excellent properties. Some commercial cameras based on this technology are relatively affordable which makes them attractive tools for experimentation especially in combination with an SEM setup. To support this, a detector characterization (Modulation Transfer Function, Detective Quantum Efficiency) of an Advacam Minipix and Advacam Advapix detector in the 15–30 keV range was made. In the current work we present images of Point Spread Function, plots of MTF/DQE curves and values of DQE(0) for these detectors. At low beam currents, the silicon detector layer behaviour should be dominant, which could make these findings transferable to any other available detector based on either Medipix2, Timepix or Timepix3 provided the same detector layer is used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001026912700001 Publication Date 2023-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.2 Times cited Open Access OpenAccess
Notes The authors acknowledge the financial support of the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. The authors are grateful to Dr. Lobato for productive discussion of methods. Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:198258 Serial 8815
Permanent link to this record
 

 
Author Van den Broek, W.; Jannis, D.; Verbeeck, J.
Title Convexity constraints on linear background models for electron energy-loss spectra Type A1 Journal Article
Year 2023 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 254 Issue Pages 113830
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract In this paper convexity constraints are derived for a background model of electron energy loss spectra (EELS) that is linear in the fitting parameters. The model outperforms a power-law both on experimental and simulated backgrounds, especially for wide energy ranges, and thus improves elemental quantification results. Owing to the model’s linearity, the constraints can be imposed through fitting by quadratic programming. This has important advantages over conventional nonlinear power-law fitting such as high speed and a guaranteed unique solution without need for initial parameters. As such, the need for user input is significantly reduced, which is essential for unsupervised treatment of large datasets. This is demonstrated on a demanding spectrum image of a semiconductor device sample with a high number of elements over a wide energy range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-08-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record
Impact Factor 2.2 Times cited Open Access Not_Open_Access
Notes ECSEL, 875999 ; Horizon 2020; Horizon 2020 Framework Programme; Electronic Components and Systems for European Leadership; Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:200588 Serial 8961
Permanent link to this record
 

 
Author Raes, A.; Ninakanti, R.; Van den Bergh, L.; Borah, R.; Van Doorslaer, S.; Verbruggen, S.W.
Title Black titania by sonochemistry : a critical evaluation of existing methods Type A1 Journal article
Year 2023 Publication (up) Ultrasonics sonochemistry Abbreviated Journal
Volume 100 Issue Pages 106601-106609
Keywords A1 Journal article; Theory and Spectroscopy of Molecules and Materials (TSM²); Laboratory of adsorption and catalysis (LADCA)
Abstract In the field of photocatalysis, the fabrication of black titania is a booming topic, as it offers a system with improved solar light harvesting properties and increased overall efficiency. The darkening of white TiO2 powders can be ascribed to surface hydroxylation, oxygen vacancies, Ti3+ centres, or a combination thereof. A handful of studies suggests these defects can be conveniently introduced by acoustic cavitation, generated during sonochemical treatment of pristine TiO2 powders. In reproducing these studies, P25 TiO2 samples were ultrasonicated for various hours with a power density of 8000 W/L, resulting in powders that indeed became gradually darker with increasing sonication time. However, HAADF–STEM revealed that extensive erosion of the sonotrode tip took place and contaminated the samples, which appeared to be the primary reason for the observed colour change. This was confirmed by UV–Vis DRS and DRIFTS, that showed no significant alteration of the catalyst surface after sonication. EPR measurements showed that only an insignificant fraction of Ti3+ centres were produced, far less than in a TiO2 sample that was chemically reduced with NaBH4. No evidence of the presence oxygen vacancies could be found. The enhanced photocatalytic activities of ultrasonicated materials reported in literature can therefore not be ascribed to the synthesis of actual black (defected) TiO2, but rather to specific changes in morphology as a result of acoustic cavitation. Also, this study underlines the importance of considering probe erosion in sonochemical catalyst synthesis, which is an unavoidable side effect that can have an important impact on the catalyst appearance, properties and performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001084391500001 Publication Date 2023-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-4177 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.4; 2023 IF: 4.218
Call Number UA @ admin @ c:irua:198848 Serial 8838
Permanent link to this record
 

 
Author Van Oijstaeijen, W.; Finizola e Silva, M.; Back, P.; Collins, A.; Verheyen, K.; De Beelde, R.; Cools, J.; Van Passel, S.
Title The Nature Smart Cities business model : a rapid decision-support and scenario analysis tool to reveal the multi-benefits of green infrastructure investments Type Administrative Services
Year 2023 Publication (up) Urban forestry & urban greening Abbreviated Journal
Volume 84 Issue Pages 127923-14
Keywords Administrative Services; A1 Journal article; Art; Engineering Management (ENM)
Abstract Incorporating natural spaces within urban areas has been shown to have multiple benefits. However, despite greening and adaptation strategies at different levels of government, progress remains slow with a lack of easy to use and comprehensive tools identified as key to overcoming this. This paper presents a co-designed tool with academic and local authority partners to demonstrate the ecosystem service benefits of small-scale urban green infrastructure projects. Through the tool, users can readily assess the impact of green infrastructure investments on the delivery of a selection of ecosystem services in the early stages of a project. Furthermore, the tool provides a standardised assessment of cultural ecosystem services' contributions, as well as offering a method to score spatial designs on the impact on habitat for biodiversity. Use of the tool is demonstrated using a pilot study in Kapelle, the Netherlands. The results set out an overview of the impacts of the spatial design on estimated ecosystem service delivery. They also show the tool's potential to add value in early project stages and as a planning and design tool, helping to maximise the benefits that can be achieved through green infrastructure design. Complementing these arguments with ball-park estimations on green infrastructure costs, the Nature Smart Cities Business Model aims to offer public sector officers the means to create a business case for green infrastructure measures, facilitating the translation from strategies to actual plans, thus benefitting green infrastructure implementation in the public realm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000982199900001 Publication Date 2023-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-8667 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access
Notes Approved Most recent IF: 6.4; 2023 IF: 2.113
Call Number UA @ admin @ c:irua:196748 Serial 9235
Permanent link to this record
 

 
Author Kovács, A.; Janssens, N.; Mielants, M.; Cornet, I.; Neyts, E.C.; Billen, P.
Title Biocatalyzed vinyl laurate transesterification in natural deep eutectic solvents Type A1 Journal article
Year 2023 Publication (up) Waste and biomass valorization Abbreviated Journal
Volume Issue Pages 1-12
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Purpose Natural deep eutectic solvents (NADES) represent a green alternative to conventional organic solvents as reaction medium, offering more benign properties. To efficiently design NADES for biocatalysis, a better understanding of their effect on these reactions is needed. We hypothesize that this effect can be described by separately considering (1) the solvent interactions with the substrates, (2) the solvent viscosities and (3) the enzyme stability in NADES. Methods We investigated the effect of substrate solvation and viscosity on the reaction rate; and the stability of the enzyme in NADES. To this end, we monitored the conversion over time of the transesterification of vinyl laurate with 1- butanol by the lipase enzyme Candida antarctica B in NADES of different compounds and molar ratios. Results The initial reaction rate is higher in most NADES ( varying between 1.14 and 15.07 mu mol min(-1) mg(-1)) than in the reference n-hexane (4.0 mu mol min(-1) mg(-1))), but no clear relationship between viscosity and initial reaction rate was found. The increased reaction rate is most likely related to the solvation of the substrate due to a change in the activation energy of the reaction or a change in the conformation of the substrate. The enzyme retained part of its activity after the first 2 h of reaction (on average 20 % of the substrate reacted in the 2-24 h period). Enzyme incubation in ethylene glycol-based NADES resulted in a reduced reaction rate ( 15.07 vs. 3.34 mu mol min(-1) mg(-1)), but this may also be due to slow dissolution of the substrate. Conclusions The effect of viscosity seems to be marginal next to the effect of solvation and possible enzyme-NADES interaction. The enzyme retains some of its activity during the 24-hour measurements, but the enzyme incubation experiments did not yield accurate, comparable values. [GRAPHICS] .
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001117290800003 Publication Date 2023-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1877-2641; 1877-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited Open Access
Notes Approved Most recent IF: 3.2; 2023 IF: 1.337
Call Number UA @ admin @ c:irua:202709 Serial 9005
Permanent link to this record
 

 
Author Janssens, K.
Title EXRS2022 : the 2022 edition of the European X-ray Spectrometry conference, held in Bruges, Belgium Type Editorial
Year 2023 Publication (up) X-ray spectrometry Abbreviated Journal
Volume 52 Issue 6 Pages 276-278
Keywords Editorial; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001043528400001 Publication Date 2023-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 1.2; 2023 IF: 1.298
Call Number UA @ admin @ c:irua:198217 Serial 8865
Permanent link to this record