toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Batuk, D.; Batuk, M.; Tsirlin, A.A.; Hadermann, J.; Abakumov, A.M.
  Title Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics Type A1 Journal article
  Year 2015 Publication (down) Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
  Volume 54 Issue 54 Pages 14787-14790
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.
  Address Chemistry Department, Moscow State University, 119991, Moscow (Russia). artem.abakumov@uantwerpen.be
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000367723400031 Publication Date 2015-10-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited 3 Open Access
  Notes A.M.A. is grateful to the Russian Science Foundation (grant 14-13-00680). AT was funded by the Mobilitas grant MTT77 of the ESF and by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 11.994; 2015 IF: 11.261
  Call Number c:irua:131104 Serial 4080
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Abakumov, A.M.; Tsirlin, A.A.; Schnelle, W.; Egoavil, R.; Verbeeck, J.; Van Tendeloo, G.; Glazyrin, K.V.; Hanfland, M.; Dubrovinsky, L.
  Title Perovskite-like Mn2O3 : a path to new manganites Type A1 Journal article
  Year 2013 Publication (down) Angewandte Chemie Abbreviated Journal Angew Chem Int Edit
  Volume 52 Issue 5 Pages 1494-1498
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Korund-artiges ε-Mn2O3 und Perowskit-artiges ζ-Mn2O3, zwei neue Phasen von Mn2O3, wurden unter hohen Drücken bei hohen Temperaturen synthetisiert. Die Manganatome können vollständig die A- und B-Positionen der Perowskitstruktur besetzen. ζ-Mn2O3 (siehe Bild, A-Positionsordnung) enthält Mn in den drei Oxidationsstufen +II, +III und +IV.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000313913300027 Publication Date 2012-12-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited 84 Open Access
  Notes This work was supported by the DFG (project OV-110/1-1), Alexander von Humboldt foundation, European Union Council (FP7)-Grant no. 246102 IFOX, European Research Council (FP7)-ERC Starting Grant no. 278510 VORTEX and ERC Grant no. 246791-COUNTATOMS, and Hercules fund from the Flemish Government. ECASJO_; Approved Most recent IF: 11.994; 2013 IF: 11.336
  Call Number UA @ lucian @ c:irua:108765UA @ admin @ c:irua:108765 Serial 2573
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.
  Title Structure solution and refinement of metal-ion battery cathode materials using electron diffraction tomography Type A1 Journal article
  Year 2019 Publication (down) And Materials Abbreviated Journal
  Volume 75 Issue 4 Pages 485-494
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The applicability of electron diffraction tomography to the structure solution and refinement of charged, discharged or cycled metal-ion battery positive electrode (cathode) materials is discussed in detail. As these materials are often only available in very small amounts as powders, the possibility of obtaining single-crystal data using electron diffraction tomography (EDT) provides unique access to crucial information complementary to X-ray diffraction, neutron diffraction and high-resolution transmission electron microscopy techniques. Using several examples, the ability of EDT to be used to detect lithium and refine its atomic position and occupancy, to solve the structure of materials ex situ at different states of charge and to obtain in situ data on structural changes occurring upon electrochemical cycling in liquid electrolyte is discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000480512600002 Publication Date 2019-08-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 2 Open Access
  Notes ; The following funding is acknowledged: Fonds Wetenschappelijk Onderzoek (grant No. G040116N); Russian Foundation of Basic Research (grant No. 17-03-00370-a). ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:161846 Serial 5397
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Karkin, A.E.; Morozova, N.V.; Shchennikov, V.V.; Bykova, E.; Abakumov, A.M.; Tsirlin, A.A.; Glazyrin, K.V.; Dubrovinsky, L.
  Title A hard oxide semiconductor with a direct and narrow bandgap and switchable pn electrical conduction Type A1 Journal article
  Year 2014 Publication (down) Advanced materials Abbreviated Journal Adv Mater
  Volume 26 Issue 48 Pages 8185-8191
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract An oxide semiconductor (perovskite-type Mn2O3) is reported which has a narrow and direct bandgap of 0.45 eV and a high Vickers hardness of 15 GPa. All the known materials with similar electronic band structures (e.g., InSb, PbTe, PbSe, PbS, and InAs) play crucial roles in the semiconductor industry. The perovskite-type Mn2O3 described is much stronger than the above semiconductors and may find useful applications in different semiconductor devices, e.g., in IR detectors.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000346480800016 Publication Date 2014-10-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 27 Open Access
  Notes Approved Most recent IF: 19.791; 2014 IF: 17.493
  Call Number UA @ lucian @ c:irua:122230 Serial 1408
Permanent link to this record
 

 
Author Gonnissen, J.; Batuk, D.; Nataf, G.F.; Jones, L.; Abakumov, A.M.; Van Aert, S.; Schryvers, D.; Salje, E.K.H.
  Title Direct Observation of Ferroelectric Domain Walls in LiNbO3: Wall-Meanders, Kinks, and Local Electric Charges Type A1 Journal article
  Year 2016 Publication (down) Advanced functional materials Abbreviated Journal Adv Funct Mater
  Volume 26 Issue 26 Pages 7599-7604
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Direct observations of the ferroelectric domain boundaries in LiNbO3 are performed using high-resolution high-angle annular dark field scanning transmission electron microscopy imaging, revealing a very narrow width of the domain wall between the 180° domains. The domain walls demonstrate local side-way meandering, which results in inclinations even when the overall wall orientation follows the ferroelectric polarization. These local meanders contain kinks with “head-to-head” and “tail-to-tail” dipolar configurations and are therefore locally charged. The charged meanders are confined to a few cation layers along the polarization direction and are separated by longer stretches of straight domain walls.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000388166700006 Publication Date 2016-09-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited 23 Open Access
  Notes J.G. acknowledges the support from the Research Foundation Flanders (FWO, Belgium) through various project fundings (G.0368.15N, G.0369.15N, and G.0374.13N), as well as the financial support from the European Union Seventh Framework Program (FP7/2007–2013) under Grant agreement no. 312483 (ESTEEM2). The authors thank J. Hadermann for useful suggestions on the interpretation of the HAADFSTEM images. E.K.H.S. thanks the EPSRC (EP/K009702/1) and the Leverhulme Trust (EM-2016-004) for support. G.F.N. thanks the National Research Fund, Luxembourg (FNR/P12/4853155/Kreisel) for support.; esteem2_jra2 Approved Most recent IF: 12.124
  Call Number c:irua:135336 c:irua:135336 Serial 4129
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Hadermann, J.
  Title Synergy between transmission electron microscopy and powder diffraction : application to modulated structures Type A1 Journal article
  Year 2015 Publication (down) Acta crystallographica: section B: structural science Abbreviated Journal Acta Crystallogr B
  Volume 71 Issue 71 Pages 127-143
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The crystal structure solution of modulated compounds is often very challenging, even using the well established methodology of single-crystal X-ray crystallography. This task becomes even more difficult for materials that cannot be prepared in a single-crystal form, so that only polycrystalline powders are available. This paper illustrates that the combined application of transmission electron microscopy (TEM) and powder diffraction is a possible solution to the problem. Using examples of anion-deficient perovskites modulated by periodic crystallographic shear planes, it is demonstrated what kind of local structural information can be obtained using various TEM techniques and how this information can be implemented in the crystal structure refinement against the powder diffraction data. The following TEM methods are discussed: electron diffraction (selected area electron diffraction, precession electron diffraction), imaging (conventional high-resolution TEM imaging, high-angle annular dark-field and annular bright-field scanning transmission electron microscopy) and state-of-the-art spectroscopic techniques (atomic resolution mapping using energy-dispersive X-ray analysis and electron energy loss spectroscopy).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Copenhagen Editor
  Language Wos 000352166500002 Publication Date 2015-04-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2052-5206; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.032 Times cited 11 Open Access
  Notes Fwo G039211n Approved Most recent IF: 2.032; 2015 IF: NA
  Call Number c:irua:124411 Serial 3408
Permanent link to this record
 

 
Author Abakumov, A.M.; Shpanchenko, R.V.; Lebedev, O.I.; Van Tendeloo, G.; Amelinckx, S.; Antipov, E.V.
  Title The phase transition and crystal structures of Ba3RM2O7.5 complex oxides (R=rare-earth elements, M = Al,Ga) Type A1 Journal article
  Year 1999 Publication (down) Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A
  Volume 55 Issue Pages 828-839
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Copenhagen Editor
  Language Wos 000082727000006 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.725 Times cited 7 Open Access
  Notes Approved Most recent IF: 5.725; 1999 IF: 1.601
  Call Number UA @ lucian @ c:irua:29716 Serial 2591
Permanent link to this record
 

 
Author Hadermann, J.; Van Tendeloo, G.; Abakumov, A.M.
  Title Transmission electron microscopy and structural phase transitions in anion-deficient perovskite-based oxides Type A1 Journal article
  Year 2005 Publication (down) Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A
  Volume 61 Issue 1 Pages 77-92
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Copenhagen Editor
  Language Wos 000225865500008 Publication Date 2004-12-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.725 Times cited 18 Open Access
  Notes Approved Most recent IF: 5.725; 2005 IF: 1.791
  Call Number UA @ lucian @ c:irua:51442 Serial 3706
Permanent link to this record
 

 
Author Rossell, M.D.; Abakumov, A.M.; Ramasse, Q.M.; Erni, R.
  Title Direct evidence of stacking disorder in the mixed ionic-electronic conductor Sr4Fe6O12+\delta Type A1 Journal article
  Year 2013 Publication (down) ACS nano Abbreviated Journal Acs Nano
  Volume 7 Issue 4 Pages 3078-3085
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Determining the structure-to-property relationship of materials becomes particularly challenging when the material under investigation is dominated by defects and structural disorder. Knowledge on the exact atomic arrangement at the defective structure is required to understand its influence on the functional properties. However, standard diffraction techniques deliver structural information that is averaged over many unit cells. In particular, information about defects and order-disorder phenomena is contained in the coherent diffuse scattering intensity which often is difficult to uniquely interpret. Thus, the examination of the local disorder in materials requires a direct method to study their structure on the atomic level with chemical sensitivity. Using aberration-corrected scanning transmission electron microscopy in combination with atomic-resolution electron energy-loss spectroscopy, we show that the controversial structural arrangement of the Fe2O2+delta layers in the mixed ionic-electronic conducting Sr4Fe6O12+delta perovskite can be unambiguously resolved. Our results provide direct experimental evidence for the presence of a nanomixture of “ordered” and “disordered” domains in an epitaxial Sr4Fe6O12+delta thin film. The most favorable arrangement is the disordered structure and is interpreted as a randomly occurring but well-defined local shift of the Fe-O chains in the Fe2O2+delta layers. By analyzing the electron energy-loss near-edge structure of the different building blocks in the Sr4Fe6O12+delta unit cell we find that the mobile holes in this mixed ionic-electronic conducting oxide are highly localized in the Fe2O2+delta layers, which are responsible for the oxide-ion conductivity. A possible link between disorder and oxygen-ion transport along the Fe2O2+delta layers is proposed by arguing that the disorder can effectively break the oxygen diffusion pathways.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000318143300021 Publication Date 2013-03-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 4 Open Access
  Notes Approved Most recent IF: 13.942; 2013 IF: 12.033
  Call Number UA @ lucian @ c:irua:108476 Serial 713
Permanent link to this record
 

 
Author Altantzis, T.; Coutino-Gonzalez, E.; Baekelant, W.; Martinez, G.T.; Abakumov, A.M.; Van Tendeloo, G.; Roeffaers, M.B.J.; Bals, S.; Hofkens, J.
  Title Direct Observation of Luminescent Silver Clusters Confined in Faujasite Zeolites Type A1 Journal article
  Year 2016 Publication (down) ACS nano Abbreviated Journal Acs Nano
  Volume 10 Issue 10 Pages 7604-7611
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract One of the ultimate goals in the study of metal clusters is the correlation between the atomic-scale organization and their physicochemical properties. However, direct observation of the atomic organization of such minuscule metal clusters is heavily hindered by radiation damage imposed by the different characterization techniques. We present direct evidence of the structural arrangement, at an atomic level, of luminescent silver species stabilized in faujasite (FAU) zeolites using aberration-corrected scanning transmission electron microscopy. Two different silver clusters were identified in Ag-FAU zeolites, a trinuclear silver species associated with green emission and a tetranuclear silver species related to yellow emission. By combining direct imaging with complementary information obtained from X-ray powder diffraction and Rietveld analysis, we were able to elucidate the main differences at an atomic scale between luminescent (heat-treated) and nonluminescent (cation-exchanged) Ag-FAU zeolites. It is expected that such insights will trigger the directed synthesis of functional metal nanocluster-zeolite composites with tailored luminescent properties.
  Address RIES, Hokkaido University , N20W10, Kita-Ward Sapporo 001-0020, Japan
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000381959100043 Publication Date 2016-07-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 57 Open Access OpenAccess
  Notes The authors gratefully acknowledge financial support from the Belgian Federal government (Belspo through the IAP-VI/27 and IAP-VII/05 programs), the European Union’s Seventh Framework Programme (FP7/2007-2013 under grant agreement no. 310651 SACS and no. 312483-ESTEEM2), the Flemish government in the form of long-term structural funding “Methusalem” grant METH/15/04 CASAS2, the Hercules foundation (HER/11/14), the “Strategisch Initiatief Materialen” SoPPoM program, and the Fund for Scientific Research Flanders (FWO) grants G.0349.12 and G.0B39.15. S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). The authors thank Prof. S. Van Aert for helpful discussions, Dr. T. De Baerdemaeker for XRD measurements, Mr. B. Dieu for the preparation of graphical material, and UOP Antwerp for the kind donation of zeolite samples.; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942
  Call Number c:irua:134576 c:irua:134576 Serial 4102
Permanent link to this record
 

 
Author Yang, C.; Batuk, M.; Jacquet, Q.; Rousse, G.; Yin, W.; Zhang, L.; Hadermann, J.; Abakumov, A.M.; Cibin, G.; Chadwick, A.; Tarascon, J.-M.; Grimaud, A.
  Title Revealing pH-Dependent Activities and Surface Instabilities for Ni-Based Electrocatalysts during the Oxygen Evolution Reaction Type A1 Journal article
  Year 2018 Publication (down) ACS energy letters Abbreviated Journal Acs Energy Lett
  Volume Issue Pages 2884-2890
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Multiple electrochemical processes are involved at the catalyst/ electrolyte interface during the oxygen evolution reaction (OER). With the purpose of elucidating the complexity of surface dynamics upon OER, we systematically studied two Ni-based crystalline oxides (LaNiO3−δ and La2Li0.5Ni0.5O4) and compared them with the state-of-the-art Ni−Fe (oxy)- hydroxide amorphous catalyst. Electrochemical measurements such as rotating ring disk electrode (RRDE) and electrochemical quartz microbalance microscopy (EQCM) coupled with a series of physical characterizations including transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) were conducted to unravel the exact pH effect on both the OER activity and the catalyst stability. We demonstrate that for Ni-based crystalline catalysts the rate for surface degradation depends on the pH and is greater than the rate for surface reconstruction. This behavior is unlike that for the amorphous Ni oxyhydroxide catalyst, which is found to be more stable and pH-independent.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000453805100005 Publication Date 2018-11-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access Not_Open_Access: Available from 06.11.2019
  Notes C.Y., J.-M.T., and A.G. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC GrantProject 670116-ARPEMA. A.G. acknowledges financial support from the ANR MIDWAY (Project ID ANR-17-CE05- 0008). We acknowledge Diamond Light Source for time awarded to the Energy Materials BAG on Beamline B18, under Proposal sp12559. Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:155046 Serial 5067
Permanent link to this record
 

 
Author Abakumov, A.M.; Li, C.; Boev, A.; Aksyonov, D.A.; Savina, A.A.; Abakumova, T.A.; Van Tendeloo, G.; Bals, S.
  Title Grain boundaries as a diffusion-limiting factor in lithium-rich NMC cathodes for high-energy lithium-ion batteries Type A1 Journal article
  Year 2021 Publication (down) ACS applied energy materials Abbreviated Journal
  Volume 4 Issue 7 Pages 6777-6786
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract High-energy lithium-rich layered transition metal oxides are capable of delivering record electrochemical capacity and energy density as positive electrodes for Li-ion batteries. Their electrochemical behavior is extremely complex due to sophisticated interplay between crystal structure, electronic structure, and defect structure. Here we unravel an extra level of this complexity by revealing that the most typical representative Li1.2Ni0.13Mn0.54Co0.13O2 material, prepared by a conventional coprecipitation technique with Na2CO3 as a precipitating agent, contains abundant coherent (001) grain boundaries with a Na-enriched P2-structured block due to segregation of the residual sodium traces. The trigonal prismatic oxygen coordination of Na triggers multiple nanoscale twinning, giving rise to incoherent (104) boundaries. The cationic layers at the (001) grain boundaries are filled with transition metal cations being Mn-depleted and Co-enriched; this makes them virtually not permeable for the Li+ cations, and therefore they negatively influence the Li diffusion in and out of the spherical agglomerates. These results demonstrate that besides the mechanisms intrinsic to the crystal and electronic structure of Li-rich cathodes, their rate capability might also be depreciated by peculiar microstructural aspects. Dedicated engineering of grain boundaries opens a way for improving inherently sluggish kinetics of these materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000678382900042 Publication Date 2021-07-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 4 Open Access OpenAccess
  Notes We thank Dr. M. V. Berekchiian (MSU) for assisting in ICPMS measurements. We acknowledge Russian Science Foundation (Grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, Project No. G0F1320N) for financial support. Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:180556 Serial 6841
Permanent link to this record
 

 
Author Alexander, C.T.; Abakumov, A.M.; Forslund, R.P.; Johnston, K.P.; Stevenson, K.J.
  Title Role of the carbon support on the oxygen reduction and evolution activities in LaNiO3 composite electrodes in alkaline solution Type A1 Journal article
  Year 2018 Publication (down) ACS applied energy materials Abbreviated Journal
  Volume 1 Issue 4 Pages 1549-1558
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Metal-air batteries and fuel cells show a great deal of promise in advancing low-cost, high-energy-density charge storage solutions for sustainable energy applications. To improve the activities and stabilities of electrocatalysts for the critical oxygen reduction and evolution reactions (ORR and OER, respectively), a greater understanding is needed of the catalyst/carbon interactions and carbon stability. Herein, we report how LaNiO3 (LNO) supported on nitrogen-doped carbon nanotubes (N-CNT) made from a high-yield synthesis lowers the overpotential for both the OER and ORR markedly to enable a low bifunctional window of 0.81 V at only a 51 mu g cm(-2) mass loading. Furthermore, the addition of LNO to the N-CNTs improves the galvanostatic stability for the OER by almost 2 orders of magnitude. The nanoscale geometries of the perovskites and the CNTs enhance the number of metal-support and charge transfer interactions and thus the activity. We use rotating ring disk electrodes (RRDEs) combined with Tafel slope analysis and ICP-OES to quantitatively separate current contributions from the OER, carbon oxidation, and even anodic iron leaching from carbon nanotubes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000458705400020 Publication Date 2018-03-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:157642 Serial 8487
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Mayda, S.; Batuk, M.; Reekmans, G.; von Holst, M.; Elen, K.; Abakumov, A.M.; Adriaensens, P.; Lamoen, D.; Partoens, B.; Hadermann, J.; Van Bael, M.K.; Hardy, A.
  Title Understanding the Activation of Anionic Redox Chemistry in Ti4+-Substituted Li2MnO3as a Cathode Material for Li-Ion Batteries Type A1 Journal article
  Year 2023 Publication (down) ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.
  Volume 6 Issue 13 Pages 6956-6971
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract Layered Li-rich oxides, demonstrating both cationic and anionic redox chemistry being used as positive electrodes for Li-ion batteries,have raised interest due to their high specific discharge capacities exceeding 250 mAh/g. However, irreversible structural transformations triggered by anionic redox chemistry result in pronounced voltagefade (i.e., lowering the specific energy by a gradual decay of discharge potential) upon extended galvanostatic cycling. Activating or suppressing oxygen anionic redox through structural stabilization induced by redox-inactivecation substitution is a well-known strategy. However, less emphasishas been put on the correlation between substitution degree and theactivation/suppression of the anionic redox. In this work, Ti4+-substituted Li2MnO3 was synthesizedvia a facile solution-gel method. Ti4+ is selected as adopant as it contains no partially filled d-orbitals. Our study revealedthat the layered “honeycomb-ordered” C2/m structure is preserved when increasing the Ticontent to x = 0.2 in the Li2Mn1-x Ti (x) O-3 solidsolution, as shown by electron diffraction and aberration-correctedscanning transmission electron microscopy. Galvanostatic cycling hintsat a delayed oxygen release, due to an improved reversibility of theanionic redox, during the first 10 charge-discharge cyclesfor the x = 0.2 composition compared to the parentmaterial (x = 0), followed by pronounced oxygen redoxactivity afterward. The latter originates from a low activation energybarrier toward O-O dimer formation and Mn migration in Li2Mn0.8Ti0.2O3, as deducedfrom first-principles molecular dynamics (MD) simulations for the“charged” state. Upon lowering the Ti substitution to x = 0.05, the structural stability was drastically improvedbased on our MD analysis, stressing the importance of carefully optimizingthe substitution degree to achieve the best electrochemical performance.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001018266700001 Publication Date 2023-07-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.4 Times cited Open Access Not_Open_Access: Available from 24.12.2023
  Notes Universiteit Hasselt, AUHL/15/2 – GOH3816N ; Russian Science Foundation, 20-43-01012 ; Fonds Wetenschappelijk Onderzoek, AUHL/15/2 – GOH3816N G040116N ; The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 6.4; 2023 IF: NA
  Call Number EMAT @ emat @c:irua:198160 Serial 8809
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Van Tendeloo, G.; Shpanchenko, R.V.; Oleinikov, P.N.; Antipov, E.V.
  Title Anion ordering in fluorinated La2CuO4 Type H1 Book chapter
  Year 1999 Publication (down) Abbreviated Journal
  Volume Issue Pages 133-138
  Keywords H1 Book chapter; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication s.l. Editor
  Language Wos 000079308200022 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:29278 Serial 122
Permanent link to this record
 

 
Author Van Tendeloo, G.; Lebedev, O.I.; Verbist, K.; Abakumov, A.M.; Shpanchenko, R.V.; Antipov, E.V.; Blank, D.H.A.
  Title The local structure of YBCO based materials by TEM Type H1 Book chapter
  Year 1999 Publication (down) Abbreviated Journal
  Volume Issue Pages 11-19
  Keywords H1 Book chapter; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Kluwer Academic Place of Publication Dordrecht Editor
  Language Wos 000079308200002 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:29709 Serial 1833
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Lebedev, O.I.; Antipov, E.V.; Van Tendeloo, G.
  Title Structural changes in fluorinated T{'} and T* phases Type P3 Proceeding
  Year 2000 Publication (down) Abbreviated Journal
  Volume Issue Pages 193-194
  Keywords P3 Proceeding; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication s.l. Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:36044 Serial 3212
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: