|   | 
Details
   web
Records
Author Tarakina, N.V.; Zubkov, V.G.; Leonidov, I.I.; Tyutunnik, A.P.; Surat, L.L.; Hadermann, J.; Van Tendeloo, G.
Title Crystal structure of the group of optical materials Ln2MeGe4O12 (Me = Ca, Mn) Type A1 Journal article
Year 2009 Publication (down) Zeitschrift für Kristallographie Abbreviated Journal
Volume Issue S:30 Pages 401-406
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of the group of optical materials Ln2MeGe4O12, Ln = Eu, Gd, Dy-Lu, Y; Me = Ca, Mn and of the solid solution (Y1-xErx)2CaGe4O12 (x = 0 – 1), promising materials for photonics, has been studied in detail. The crystal structure of all compounds exhibit two alternating layers: one formed by Ln and Me atoms and another by cyclic [Ge4O12]8- anions.
Address
Corporate Author Thesis
Publisher Place of Publication München Editor
Language Wos 000271325700028 Publication Date 2009-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-486X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 7 Open Access
Notes Iap Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:79988 Serial 575
Permanent link to this record
 

 
Author Van Rompaey, S.; Dachraoui, W.; Turner, S.; Podyacheva, O.Y.; Tan, H.; Verbeeck, J.; Abakumov, A.; Hadermann, J.
Title Layered oxygen vacancy ordering in Nb-doped SrCo1-xFexO3-\delta perovskite Type A1 Journal article
Year 2013 Publication (down) Zeitschrift für Kristallographie Abbreviated Journal Z Krist-Cryst Mater
Volume 228 Issue 1 Pages 28-34
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of SrCo0.7Fe0.2Nb0.1O2.72 was determined using a combination of precession electron diffraction (PED), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and spatially resolved electron energy loss spectroscopy (STEM-EELS). The structure has a tetragonal P4/mmm symmetry with cell parameters a = b = a(p), c = 2a(p) (a(p) being the cell parameter of the perovskite parent structure). Octahedral BO2 layers alternate with the anion-deficient BO1.4 layers, the different B cations are randomly distributed over both layers. The specific feature of the SrCo0.7Fe0.2NB0.1O2.72 microstructure is a presence of extensive nanoscale twinning resulting in domains with alignment of the tetragonal c-axis along all three cubic direction of the perovskite subcell.
Address
Corporate Author Thesis
Publisher Place of Publication München Editor
Language Wos 000315475900004 Publication Date 2013-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4946; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.179 Times cited 9 Open Access
Notes Fwo; Countatoms Approved Most recent IF: 3.179; 2013 IF: NA
Call Number UA @ lucian @ c:irua:107698UA @ admin @ c:irua:107698 Serial 1808
Permanent link to this record
 

 
Author Shpanchenko, R.V.; Chyornaya, V.V.; Abakumov, A.M.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.; Kaul, E.; Geibel, C.; Sheptyakov, D.; Balagurov, A.M.
Title Crystal structure and magnetic properties of novel reduced V(IV)-based oxide Pb2V5O12 Type A1 Journal article
Year 2001 Publication (down) Zeitschrift für anorganische und allgemeine Chemie Abbreviated Journal Z Anorg Allg Chem
Volume 627 Issue Pages 2143-2150
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Leipzig Editor
Language Wos 000171339000023 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0044-2313;1521-3749; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.144 Times cited 4 Open Access
Notes Approved Most recent IF: 1.144; 2001 IF: 1.165
Call Number UA @ lucian @ c:irua:36048 Serial 560
Permanent link to this record
 

 
Author Alekseeva, A.M.; Abakumov, A.M.; Leithe-Jasper, A.; Schnelle, W.; Prots, Y.; Hadermann, J.; Van Tendeloo, G.; Antipov, E.V.; Grin, Y.
Title Mg1-xRhB, a new boridometallide with 2D polyanion Type A1 Journal article
Year 2005 Publication (down) Zeitschrift für anorganische und allgemeine Chemie Abbreviated Journal Z Anorg Allg Chem
Volume 631 Issue 6/7 Pages 1047-1054
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Leipzig Editor
Language Wos 000228931900010 Publication Date 2005-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0044-2313;1521-3749; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.144 Times cited 13 Open Access
Notes Iap V-1 Approved Most recent IF: 1.144; 2005 IF: 1.202
Call Number UA @ lucian @ c:irua:52374 Serial 3543
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Tsirlin, A.A.; Filonenko, V.P.; Gonnissen, J.; Tan, H.; Verbeeck, J.; Gemmi, M.; Antipov, E.V.; Rosner, H.
Title Direct space structure solution from precession electron diffraction data: resolving heavy and light scatterers in Pb13Mn9O25 Type A1 Journal article
Year 2010 Publication (down) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 110 Issue 7 Pages 881-890
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of a novel compound Pb13Mn9O25 has been determined through a direct space structure solution with a Monte-Carlo-based global optimization using precession electron diffraction data (a=14.177(3) Å, c=3.9320(7) Å, SG P4/m, RF=0.239) and compositional information obtained from energy dispersive X-ray analysis and electron energy loss spectroscopy. This allowed to obtain a reliable structural model even despite the simultaneous presence of both heavy (Pb) and light (O) scattering elements and to validate the accuracy of the electron diffraction-based structure refinement. This provides an important benchmark for further studies of complex structural problems with electron diffraction techniques. Pb13Mn9O25 has an anion- and cation-deficient perovskite-based structure with the A-positions filled by the Pb atoms and 9/13 of the B positions filled by the Mn atoms in an ordered manner. MnO6 octahedra and MnO5 tetragonal pyramids form a network by sharing common corners. Tunnels are formed in the network due to an ordered arrangement of vacancies at the B-sublattice. These tunnels provide sufficient space for localization of the lone 6s2 electron pairs of the Pb2+ cations, suggested as the driving force for the structural difference between Pb13Mn9O25 and the manganites of alkali-earth elements with similar compositions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000280050900023 Publication Date 2010-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 24 Open Access
Notes Fwo; Bof; Esteem Approved Most recent IF: 2.843; 2010 IF: 2.063
Call Number UA @ lucian @ c:irua:84085UA @ admin @ c:irua:84085 Serial 721
Permanent link to this record
 

 
Author E. Zaghi, A.; Buffière, M.; Koo, J.; Brammertz, G.; Batuk, M.; Verbist, C.; Hadermann, J.; Kim, W.K.; Meuris, M.; Poortmans, J.; Vleugels, J.;
Title Effect of selenium content of CuInSex alloy nanopowder precursors on recrystallization of printed CuInSe2 absorber layers during selenization heat treatment Type A1 Journal article
Year 2014 Publication (down) Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume Issue Pages 1-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline CuInSe2 semiconductors are efficient light absorber materials for thin film solar cell technology, whereas printing is one of the promising low cost and non-vacuum approaches for the fabrication of thin film solar cells. The printed precursors are transformed into a dense polycrystalline CuInSe2 semiconductor film via thermal treatment in ambient selenium atmosphere (selenization). In this study, the effect of the selenium content in high purity mechanically synthesized CuInSex (x = 2, 1.5, 1 or 0.5) alloy precursors on the recrystallization of the CuInSe2 phase during the selenization process was investigated. The nanostructure and phase variation of CuInSex nanopowders were investigated by different characterization techniques. The recrystallization process of the 12 μm thick CuInSex coatings into the CuInSe2 phase during selenization in selenium vapor was investigated via in-situ high temperature X-ray diffraction. The CuInSex precursors with lower selenium content showed a more pronounced phase conversion into CuInSe2 compared to the higher selenium content CuInSex precursors. Moreover, the CuInSex (x = 0.5 and 1) precursor resulted in a denser polycrystalline CuInSe2 semiconductor film with larger crystals. This could be attributed to a more intensive atomic interdiffusion within the CuInSex precursor system compared to a CuInSe2 phase precursor, and the formation of intermediate CuSe and CuSe2 fluxing phases during selenization.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000352225900004 Publication Date 2014-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 7 Open Access
Notes Approved Most recent IF: 1.879; 2014 IF: 1.759
Call Number c:irua:121330 Serial 834
Permanent link to this record
 

 
Author Batuk, M.; Buffiere, M.; Zaghi, A.E.; Lenaers, N.; Verbist, C.; Khelifi, S.; Vleugels, J.; Meuris, M.; Hadermann, J.
Title Effect of the burn-out step on the microstructure of the solution-processed Cu(In,Ga)Se2 solar cells Type A1 Journal article
Year 2015 Publication (down) Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 583 Issue 583 Pages 142-150
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract For the development of the photovoltaic industry cheap methods for the synthesis of Cu(In,Ga)Se-2 (CIGSe) based solar cells are required. In this work, CIGSe thin films were obtained by a solution-based method using oxygen-bearing derivatives. With the aimof improving the morphology of the printed CIGSe layers, we investigated two different annealing conditions of the precursor layer, consisting of (1) a direct selenization step (reference process), and (2) a pre-treatment thermal step prior to the selenization. We showed that the use of an Air/H2S burn-out step prior to the selenization step increases the CIGSe grain size and reduces the carbon content. However, it leads to the reduction of the solar cell efficiency from 4.5% in the reference sample down to 0.5% in the annealed sample. Detailed transmission electron microscopy analysis, including high angle annular dark field scanning transmission electron microscopy and energy dispersive X-ray mapping, was applied to characterize the microstructure of the film and to determine the relationship between microstructure and the solar cell performance. We demonstrated that the relatively low efficiency of the reference solar cells is related not only to the nanosize of the CIGSe grains and presence of the pores in the CIGSe layer, but also to the high amount of secondary phases, namely, In/Ga oxide (or hydroxide) amorphous matter, residuals of organicmatter (carbon), and copper sulfide that is formed at the CIGSe/MoSe2 interface. The annealing in H2S during the burn-out step leads to the formation of the copper sulfide at all grain boundaries and surfaces in the CIGSe layer, which results in the noticeably efficiency drop. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000353812400024 Publication Date 2015-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 5 Open Access
Notes Approved Most recent IF: 1.879; 2015 IF: 1.759
Call Number c:irua:126009 Serial 845
Permanent link to this record
 

 
Author Gillie, L.J.; Palmer, H.M.; Wright, A.J.; Hadermann, J.; Van Tendeloo, G.; Greaves, C.
Title Crystallographic and magnetic structures of Y0.8Sr2.2Mn2GaO8-\delta: a new vacancy-ordered perovskite structure Type A1 Journal article
Year 2004 Publication (down) The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids
Volume 65 Issue Pages 87-93
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000188127400014 Publication Date 2003-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3697; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.059 Times cited 15 Open Access
Notes Approved Most recent IF: 2.059; 2004 IF: 0.988
Call Number UA @ lucian @ c:irua:43875 Serial 585
Permanent link to this record
 

 
Author Saniz, R.; Sarmadian, N.; Partoens, B.; Batuk, M.; Hadermann, J.; Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Lamoen, D.
Title First-principles study of CO and OH adsorption on in-doped ZnO surfaces Type A1 Journal article
Year 2019 Publication (down) The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids
Volume 132 Issue Pages 172-181
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present a first-principles computational study of CO and OH adsorption on non-polar ZnO (10¯10) surfaces doped with indium. The calculations were performed using a model ZnO slab. The position of the In dopants was varied from deep bulk-like layers to

the surface layers. It was established that the preferential location of the In atoms is at the surface by examining the dependence of

the defect formation energy as well as the surface energy on In location. The adsorption sites on the surface of ZnO and the energy

of adsorption of CO molecules and OH-species were determined in connection to In doping. It was found that OH has higher

bonding energy to the surface than CO. The presence of In atoms at the surface of ZnO is favorable for CO adsorption, resulting

in an elongation of the C-O bond and in charge transfer to the surface. The effect of CO and OH adsorption on the electronic

and conduction properties of surfaces was assessed. We conclude that In-doped ZnO surfaces should present a higher electronic

response upon adsorption of CO.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472124700023 Publication Date 2019-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.059 Times cited 7 Open Access Not_Open_Access: Available from 26.04.2021
Notes FWO-Vlaanderen, G0D6515N ; ERA.Net RUS Plus, 096 ; VSC; HPC infrastructure of the University of Antwerp; FWO-Vlaanderen; Flemish Government-department EWI; Approved Most recent IF: 2.059
Call Number EMAT @ emat @UA @ admin @ c:irua:159656 Serial 5170
Permanent link to this record
 

 
Author Buffière, M.; Zaghi, A.E.; Lenaers, N.; Batuk, M.; Khelifi, S.; Drijkoningen, J.; Hamon, J.; Stesmans, A.; Kepa, J.; Afanas’ev, V.V.; Hadermann, J.; D’Haen, J.; Manca, J.; Vleugels, J.; Meuris, M.; Poortmans, J.;
Title Effect of binder content in Cu-In-Se precursor ink on the physical and electrical properties of printed CuInSe2 solar cells Type A1 Journal article
Year 2014 Publication (down) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 47 Pages 27201-27209
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Printed chalcopyrite thin films have attracted considerable attention in recent years due to their potential in the high-throughput production of photovoltaic devices. To improve the homogeneity of printed CuInSe2 (CISe) layers, chemical additives such as binder can be added to the precursor ink. In this contribution, we investigate the influence of the dicyandiamide (DCDA) content, used as a binder in the precursor ink, on the physical and electrical properties of printed CISe solar cells. It is shown that the use of the binder leads to a dense absorber, composed of large CISe grains close to the surface, while the bulk of the layer consists of CISe crystallites embedded in a CuxS particle based matrix, resulting from the limited sintering of the precursor in this region. The expected additional carbon contamination of the CISe layer due to the addition of the binder appears to be limited, and the optical properties of the CISe layer are similar to the reference sample without additive. The electrical characterization of the corresponding CISe/CdS solar cells shows a degradation of the efficiency of the devices, due to a modification in the predominant recombination mechanisms and a limitation of the space charge region width when using the binder; both effects could be explained by the inhomogeneity of the bulk of the CISe absorber and high defect density at the CISe/CuxS-based matrix interface.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000345722400003 Publication Date 2014-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 4 Open Access
Notes Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:121332 Serial 801
Permanent link to this record
 

 
Author Ban, V.; Soloninin, A.V.; Skripov, A.V.; Hadermann, J.; Abakumov, A.; Filinchuk, Y.
Title Pressure-Collapsed Amorphous Mg(BH4)(2): An Ultradense Complex Hydride Showing a Reversible Transition to the Porous Framework Type A1 Journal article
Year 2014 Publication (down) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 40 Pages 23402-23408
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hydrogen-storage properties of complex hydrides depend of their form, such as a polymorphic form or an eutectic mixture. This Paper reports on an easy and reproducible way to synthesize a new stable form of magnesium borohydride by pressure-induced collapse of the porous gamma-Mg(BH4)(2). This amorphous complex hydride was investigated by temperature-programmed synchrotron X-ray diffraction (SXRD), transmission electron microscopy (TEM), thermogravimetric analysis, differential scanning calorimetry analysis, and Raman spectroscopy, and the dynamics of the BH4 reorientation was studied by spinlattice relaxation NMR spectroscopy. No long-range order is observed in the lattice region by Raman spectroscopy, while the internal vibration modes of the BH4 groups are the same as in the crystalline state. A hump at 4.9 angstrom in the SXRD pattern suggests the presence of nearly linear MgBH4 Mg fragments constituting all the known crystalline polymorphs of Mg(BH4)(2), which are essentially frameworks built of tetrahedral Mg nodes and linear BH4 linkers. TEM shows that the pressure-collapsed phase is amorphous down to the nanoscale, but surprisingly, SXRD reveals a transition at similar to 90 degrees C from the dense amorphous state (density of 0.98 g/cm(3)) back to the porous ? phase having only 0.55 g/cm(3) crystal density. The crystallization is slightly exothermic, with the enthalpy of -4.3 kJ/mol. The volumetric hydrogen density of the amorphous form is 145 g/L, one of the highest among hydrides. Remarkably, this form of Mg(BH4)2 has different reactivity compared to the crystalline forms. The parameters of the reorientational motion of BH4 groups in the amorphous Mg(BH4)(2) found from NMR measurements differ significantly from those in the known crystalline forms. The behavior of the nuclear spinlattice relaxation rates can be described in terms of a Gaussian distribution of the activation energies centered on 234 +/- 9 meV with the dispersion of 100 +/- 10 meV.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000343016800067 Publication Date 2014-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 23 Open Access
Notes Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:121113 Serial 2711
Permanent link to this record
 

 
Author Sirotina, A.P.; Callaert, C.; Volykhov, A.A.; Frolov, A.S.; Sanchez-Barriga, J.; Knop-Gericke, A.; Hadermann, J.; Yashina, L.V.
Title Mechanistic studies of gas reactions with multicomponent solids : what can we learn by combining NAP XPS and atomic resolution STEM/EDX? Type A1 Journal article
Year 2019 Publication (down) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 43 Pages 26201-26210
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Rapid development of experimental techniques has enabled real time studies of solid gas reactions at the level reaching the atomic scale. In the present paper, we focus on a combination of atomic resolution STEM/EDX, which visualizes the reaction zone, and near ambient pressure (NAP) XPS, which collects information for a surface layer of variable thickness under reaction conditions. We compare the behavior of two affined topological insulators, Bi2Te3 and Sb2Te3. We used a simple reaction with molecular oxygen occurring at 298 K, which is of practical importance to avoid material degradation. Despite certain limitations, a combination of in situ XPS and ex situ cross-sectional STEM/EDX allowed us to obtain a self-consistent picture of the solid gas reaction mechanism for oxidation of Sb2Te3 and Bi2Te3 crystals, which includes component redistribution between the oxide and the subsurface layer and Te segregation with formation of a thin ordered layer at the interface. The process is multistep in case of both compounds. At the very beginning of the oxidation process the reactivity is determined by the energy benefit of the corresponding element oxygen bond formation. Further in the oxidation process, the behavior of these two compounds becomes similar and features component redistribution between the oxide and the subsurface layer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000493865700019 Publication Date 2019-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:164664 Serial 6310
Permanent link to this record
 

 
Author Brammertz, G.; Buffiere, M.; Verbist, C.; Bekaert, J.; Batuk, M.; Hadermann, J.; et al.
Title Process variability in Cu2ZnSnSe4 solar cell devices: Electrical and structural investigations Type P1 Proceeding
Year 2015 Publication (down) The conference record of the IEEE Photovoltaic Specialists Conference T2 – IEEE 42nd Photovoltaic Specialist Conference (PVSC), JUN 14-19, 2015, New Orleans, LA Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We have fabricated 9.7% efficient Cu2ZnSnSe4/CdS/ZnO solar cells by H2Se selenization of sequentially sputtered metal layers. Despite the good efficiency obtained, process control appears to be difficult. In the present contribution we compare the electrical and physical properties of two devices with nominal same fabrication procedure, but 1% and 9.7% power conversion efficiency respectively. We identify the problem of the lower performing device to be the segregation of ZnSe phases at the backside of the sample. This ZnSe seems to be the reason for the strong bias dependent photocurrent observed in the lower performing devices, as it adds a potential barrier for carrier collection. The reason for the different behavior of the two nominally same devices is not fully understood, but speculated to be related to sputtering variability.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4799-7944-8 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:132335 Serial 4229
Permanent link to this record
 

 
Author Quintelier, M.; Perkisas, T.; Poppe, R.; Batuk, M.; Hendrickx, M.; Hadermann, J.
Title Determination of spinel content in cycled Li1.2Ni0.13Mn0.54Co0.13O2 using three-dimensional electron diffraction and precession electron diffraction Type A1 Journal article
Year 2021 Publication (down) Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 13 Issue 11 Pages 1989-17
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract Among lithium battery cathode materials, Li1.2Ni0.13Mn0.54Co0.13O2 (LR-NMC) has a high theoretical capacity, but suffers from voltage and capacity fade during cycling. This is partially ascribed to transition metal cation migration, which involves the local transformation of the honeycomb layered structure to spinel-like nano-domains. Determination of the honeycomb layered/spinel phase ratio from powder X-ray diffraction data is hindered by the nanoscale of the functional material and the domains, diverse types of twinning, stacking faults, and the possible presence of the rock salt phase. Determining the phase ratio from transmission electron microscopy imaging can only be done for thin regions near the surfaces of the crystals, and the intense beam that is needed for imaging induces the same transformation to spinel as cycling does. In this article, it is demonstrated that the low electron dose sufficient for electron diffraction allows the collection of data without inducing a phase transformation. Using calculated electron diffraction patterns, we demonstrate that it is possible to determine the volume ratio of the different phases in the particles using a pair-wise comparison of the intensities of the reflections. Using this method, the volume ratio of spinel structure to honeycomb layered structure is determined for a submicron sized crystal from experimental three-dimensional electron diffraction (3D ED) and precession electron diffraction (PED) data. Both twinning and the possible presence of the rock salt phase are taken into account. After 150 charge-discharge cycles, 4% of the volume in LR-NMC particles was transformed irreversibly from the honeycomb layered structure to the spinel structure. The proposed method would be applicable to other multi-phase materials as well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000815310500001 Publication Date 2021-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.457 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.457
Call Number UA @ admin @ c:irua:189468 Serial 7080
Permanent link to this record
 

 
Author Vermang, B.; Brammertz, G.; Meuris, M.; Schnabel, T.; Ahlswede, E.; Choubrac, L.; Harel, S.; Cardinaud, C.; Arzel, L.; Barreau, N.; van Deelen, J.; Bolt, P.-J.; Bras, P.; Ren, Y.; Jaremalm, E.; Khelifi, S.; Yang, S.; Lauwaert, J.; Batuk, M.; Hadermann, J.; Kozina, X.; Handick, E.; Hartmann, C.; Gerlach, D.; Matsuda, A.; Ueda, S.; Chikyow, T.; Felix, R.; Zhang, Y.; Wilks, R.G.; Baer, M.
Title Wide band gap kesterite absorbers for thin film solar cells: potential and challenges for their deployment in tandem devices Type A1 Journal article
Year 2019 Publication (down) Sustainable Energy & Fuels Abbreviated Journal
Volume 3 Issue 9 Pages 2246-2259
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This work reports on developments in the field of wide band gap Cu2ZnXY4 (with X = Sn, Si or Ge, and Y = S, Se) kesterite thin film solar cells. An overview on recent developments and the current understanding of wide band gap kesterite absorber layers, alternative buffer layers, and suitable transparent back contacts is presented. Cu2ZnGe(S,Se)(4) absorbers with absorber band gaps up to 1.7 eV have been successfully developed and integrated into solar cells. Combining a CdS buffer layer prepared by an optimized chemical bath deposition process with a 1.36 eV band gap absorber resulted in a record Cu2ZnGeSe4 cell efficiency of 7.6%, while the highest open-circuit voltage of 730 mV could be obtained for a 1.54 eV band gap absorber and a Zn(O,S) buffer layer. Employing InZnOx or TiO2 protective top layers on SnO2:In transparent back contacts yields 85-90% of the solar cell performance of reference cells (with Mo back contact). These advances show the potential as well as the challenges of wide band gap kesterites for future applications in high-efficiency and low-cost tandem photovoltaic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000482057500004 Publication Date 2019-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes ; This project has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement No. 640868. The synchrotron radiation experiments were performed at the SPring-8 beamline BL15XU with the approval of the NIMS Synchrotron X-ray Station (Proposals 2016A4600, 2016B4601, and 2017A4600) and at BESSY II with the approval of HZB. B. Vermang has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement no. 715027). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:161785 Serial 5404
Permanent link to this record
 

 
Author Vladimirova, N.V.; Frolov, A.S.; Sanchez-Barriga, J.; Clark, O.J.; Matsui, F.; Usachov, D.Y.; Muntwiler, M.; Callaert, C.; Hadermann, J.; Neudachina, V.S.; Tamm, M.E.; Yashina, L.V.
Title Occupancy of lattice positions probed by X-ray photoelectron diffraction : a case study of tetradymite topological insulators Type A1 Journal article
Year 2023 Publication (down) Surfaces and interfaces Abbreviated Journal
Volume 36 Issue Pages 102516-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Occupancy of different structural positions in a crystal lattice often seems to play a key role in material prop-erties. Several experimental techniques have been developed to uncover this issue, all of them being mostly bulk sensitive. However, many materials including topological insulators (TIs), which are among the most intriguing modern materials, are intended to be used in devices as thin films, for which the sublattice occupancy may differ from the bulk. One of the possible approaches to occupancy analysis is X-ray Photoelectron Diffraction (XPD), a structural method in surface science with chemical sensitivity. We applied this method in a case study of Sb2(Te1-xSex)3 mixed crystals, which belong to prototypical TIs. We used high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) as a reference method to verify our analysis. We revealed that the XPD data for vacuum cleaved bulk crystals are in excellent agreement with the reference ones. Also, we demonstrate that the anion occupancy near a naturally formed surface can be rather different from that of the bulk. The present results are relevant for a wide range of compositions where the system remains a topological phase, as we ultimately show by probing the transiently occupied topological surface state above the Fermi level by ultrafast photoemission.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000901694900001 Publication Date 2022-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.2; 2023 IF: NA
Call Number UA @ admin @ c:irua:193502 Serial 7327
Permanent link to this record
 

 
Author Abakumov, A.M.; Kalyuzhnaya, A.S.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.
Title Compositionally induced phase transition in the Ca2MnGa1-xAlxO5 solid solutions: ordering of tetrahedral chains in brownmillerite structure Type A1 Journal article
Year 2005 Publication (down) Solid state sciences Abbreviated Journal Solid State Sci
Volume 7 Issue 7 Pages 801-811
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000230259500001 Publication Date 2005-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 38 Open Access
Notes IAP V-1; RFBR 04-03-32785-a. Approved Most recent IF: 1.811; 2005 IF: 1.708
Call Number UA @ lucian @ c:irua:54700 Serial 448
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Nikolaev, I.V.; Antipov, E.V.; Van Tendeloo, G.
Title Local structure of perovskite-based “Pb2Fe2O5 Type A1 Journal article
Year 2008 Publication (down) Solid state sciences Abbreviated Journal Solid State Sci
Volume 10 Issue 4 Pages 382-389
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000256200200003 Publication Date 2008-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 29 Open Access
Notes Approved Most recent IF: 1.811; 2008 IF: 1.742
Call Number UA @ lucian @ c:irua:69289 Serial 1832
Permanent link to this record
 

 
Author Lobanov, M.V.; Abakumov, A.M.; Sidorova, A.V.; Rozova, M.G.; D'yachenko, O.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.
Title Synthesis and investigation of novel Mn-based oxyfluoride Sr2Mn2O5-xF1+x Type A1 Journal article
Year 2002 Publication (down) Solid state sciences Abbreviated Journal Solid State Sci
Volume 4 Issue Pages 19-22
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000174141100004 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 21 Open Access
Notes Approved Most recent IF: 1.811; 2002 IF: 1.667
Call Number UA @ lucian @ c:irua:40346 Serial 3432
Permanent link to this record
 

 
Author Khelifi, S.; Brammertz, G.; Choubrac, L.; Batuk, M.; Yang, S.; Meuris, M.; Barreau, N.; Hadermann, J.; Vrielinck, H.; Poelman, D.; Neyts, K.; Vermang, B.; Lauwaert, J.
Title The path towards efficient wide band gap thin-film kesterite solar cells with transparent back contact for viable tandem application Type A1 Journal article
Year 2021 Publication (down) Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C
Volume 219 Issue Pages 110824
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Wide band gap thin-film kesterite solar cell based on non-toxic and earth-abundant materials might be a suitable candidate as a top cell for tandem configuration in combination with crystalline silicon as a bottom solar cell. For this purpose and based on parameters we have extracted from electrical and optical characterization techniques of Cu2ZnGeSe4 absorbers and solar cells, a model has been developed to describe the kesterite top cell efficiency limitations and to investigate the different possible configurations with transparent back contact for fourterminal tandem solar cell application. Furthermore, we have studied the tandem solar cell performance in view of the band gap and the transparency of the kesterite top cell and back contact engineering. Our detailed analysis shows that a kesterite top cell with efficiency > 14%, a band gap in the range of 1.5-1.7 eV and transparency above 80% at the sub-band gaps photons energies are required to achieve a tandem cell with higher efficiency than with a single silicon solar cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000591683500002 Publication Date 2020-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited Open Access OpenAccess
Notes The authors would like to acknowledge the SWInG project financed by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640868 and the Research Foundation Flanders-Hercules Foundation (FWO-Vlaanderen, project No AUGE/13/16:FT-IMAGER). Approved Most recent IF: 4.784
Call Number EMAT @ emat @c:irua:174337 Serial 6706
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Platonov, V.B.; Chizhov, A.S.; Batuk, M.; Hadermann, J.; Khmelevsky, N.O.; Gaskov, A.M.
Title Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers Type A1 Journal article
Year 2020 Publication (down) Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 307 Issue Pages 127624
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Tubular ZnO – Co3O4 nanofibers were co-electrospun from polymer solution containing zinc and cobalt acetates. Phase composition, cobalt electronic state and element distribution in the fibers were investigated by XRD, SEM, HRTEM, HAADF-STEM with EDX mapping, and XPS. Bare ZnO has high selective sensitivity to NO and NO2, while ZnO-Co3O4 composites demonstrate selective sensitivity to H2S in dry and humid air. This effect is discussed in terms of transformation of cobalt oxides into cobalt sulfides and change in the acidity of ZnO oxide surface upon cobalt doping. Reduction in response and recovery time is attributed to the formation of a tubular structure facilitating gas transport through the sensitive layer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000508110400059 Publication Date 2019-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited Open Access Not_Open_Access
Notes This work was supported by RFBR grants No. 18-03-00091 and No. 18-03-00580. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:166449 Serial 6343
Permanent link to this record
 

 
Author Chizhov, As.; Rumyantseva, Mn.; Drozdov, Ka.; Krylov, Iv.; Batuk, M.; Hadermann, J.; Filatova, Dg.; Khmelevsky, No.; Kozlovsky, Vf.; Maltseva, Ln.; Gaskov, Am.
Title Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals Type A1 Journal article
Year 2021 Publication (down) Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 329 Issue Pages 129035
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The development of sensor materials of which gas sensitivity activates under light illumination is of great importance for the design of portable gas analyzers with low power consumption. In the present work a ZnO/CsPbBr3 nanocomposite based on nanocrystalline ZnO and colloidal cubic-shaped perovskite CsPbBr3 nanocrystals (NCs) capped by oleic acide and oleylamine was synthesized. The individual materials and obtained nanocomposite are characterized by x-ray diffraction, low-temperature nitrogen adsorption, x-ray photoelectron spectroscopy, high angle annular dark field scanning transmission electron microscopy with energy-dispersive Xray spectroscopy mapping and UV-vis absorption spectroscopy. The spectral dependence of the photoconductivity of the ZnO/CsPbBr3 nanocomposite reveals a well-defined peak that strongly correlates with the its optical absorption spectrum. The nanocomposite ZnO/CsPbBr3 shows enhanced photoresponse under visible light illumination (lambda(max) = 470 nm, 8 mW/cm(2)) in air, oxygen and argone, compared with pure nanocrystalline ZnO. Under periodic illumination in the temperature range of 25-100 degrees C, the ZnO/CsPbBr3 nanocomposite shows a sensor response to 0.5-3.0 ppm NO2, unlike pure nanocrystalline ZnO matrix, which demonstrates sensor sensitivity to NO2 under the same conditions above 100 degrees C. The effects of humidity on the sensor signal and photoresponse are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000612060700009 Publication Date 2020-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited Open Access OpenAccess
Notes The reported study was funded by RFBR according to the research project N◦ 18-33-01004 and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 46380300). Element mapping for sensors were supported by M.V. Lomonosov Moscow State University Program of Development (X-ray fluorescence spectrometer Tornado M4 plus). Approved Most recent IF: 5.401
Call Number EMAT @ emat @c:irua:176123 Serial 6707
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Vorobyeva, N.A.; Giebelhaus, I.; Mathur, S.; Chizhov, A.S.; Khmelevsky, N.O.; Aksenenko, A.Y.; Kozlovsky, V.F.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Gaskov, A.M.
Title p -CoO x / n -SnO 2 nanostructures: New highly selective materials for H 2 S detection Type A1 Journal article
Year 2017 Publication (down) Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanostructures p-CoOx/n-SnO2 based on tin oxide nanowires have been prepared by two step CVD technique and characterized in detail by XRD, XRF, XPS, HAADF-STEM imaging and EDX-STEM mapping. Depending on the temperature of decomposition of cobalt complex during the second step of CVD synthesis of nanostructures cobalt oxide forms a coating and/or isolated nanoparticles on SnO2 nanowire surface. It was found that cobalt presents in +2 and +3 oxidation states. The measurements of gas sensor properties have been carried out during exposure to CO (14 ppm), NH3 (21 ppm), and H2S (2 ppm) in dry air. The opposite trends were observed in the effect of cobalt oxide on the SnO2 gas sensitivity when detecting CO or NH3 in comparison to H2S. The decrease of sensor signal toward CO and NH3 was attributed to high catalytic activity of Co3O4 in oxidation of these gases. Contrary, the significant increase of sensor signal in the presence of H2S was attributed to the formation of metallic cobalt sulfide and removal of the barrier between p-CoOx and n-SnO2. This effect provides an excellent selectivity of p-CoOx/n-SnO2 nanostructures in H2S detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414151800068 Publication Date 2017-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 13 Open Access Not_Open_Access: Available from 10.10.2019
Notes ERA-Net.Plus, 096 FONSENS ; Approved Most recent IF: 5.401
Call Number EMAT @ emat @c:irua:145926 Serial 4710
Permanent link to this record
 

 
Author Marikutsa, A.; Yang, L.; Rumyantseva, M.; Batuk, M.; Hadermann, J.; Gaskov, A.
Title Sensitivity of nanocrystalline tungsten oxide to CO and ammonia gas determined by surface catalysts Type A1 Journal article
Year 2018 Publication (down) Sensors and actuators : B : chemical Abbreviated Journal
Volume 277 Issue Pages 336-346
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline tungsten oxide with variable particle size and surface area was synthesized by aqueous deposition and heat treatment for use in resistive gas sensors. Surface modification with 1 wt.% Pd and Ru was performed by impregnation to improve the sensitivity to CO and ammonia. Acid and oxidation surface sites were evaluated by temperature-programmed techniques using probe molecules. The surface acidity dropped with increasing particle size, and was weakly affected by additives. Lower crystallinity of WO3 and the presence of Ru species favoured temperature-programmed reduction of the materials. Modifying WO3 increased its sensitivity, to CO at ambient condition for modification by Pd and to NH3 at elevated temperature for Ru modification. An in situ infrared study of the gas – solid interaction showed that the catalytic additives change the interaction route of tungsten oxide with the target gases and make the reception of detected molecules independent of the semiconductor oxide matrix.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453066700042 Publication Date 2018-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156219 Serial 8513
Permanent link to this record
 

 
Author Watanabe, Y.; Hyeon-Deuk, K.; Yamamoto, T.; Yabuuchi, M.; Karakulina, O.M.; Noda, Y.; Kurihara, T.; Chang, I.-Y.; Higashi, M.; Tomita, O.; Tassel, C.; Kato, D.; Xia, J.; Goto, T.; Brown, C.M.; Shimoyama, Y.; Ogiwara, N.; Hadermann, J.; Abakumov, A.M.; Uchida, S.; Abe, R.; Kageyama, H.
Title Polyoxocationic antimony oxide cluster with acidic protons Type A1 Journal article
Year 2022 Publication (down) Science Advances Abbreviated Journal
Volume 8 Issue 24 Pages eabm5379-8
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The success and continued expansion of research on metal-oxo clusters owe largely to their structural richness and wide range of functions. However, while most of them known to date are negatively charged polyoxometalates, there is only a handful of cationic ones, much less functional ones. Here, we show an all-inorganic hydroxyiodide [H(10.)7Sb(32.1)O(44)][H2.1Sb2.1I8O6][Sb0.76I6](2)center dot 25H(2)O (HSbOI), forming a face-centered cubic structure with cationic Sb32O44 clusters and two types of anionic clusters in its interstitial spaces. Although it is submicrometer in size, electron diffraction tomography of HSbOI allowed the construction of the initial structural model, followed by powder Rietveld refinement to reach the final structure. The cationic cluster is characterized by the presence of acidic protons on its surface due to substantial Sb3+ deficiencies, which enables HSbOI to serve as an excellent solid acid catalyst. These results open up a frontier for the exploration and functionalization of cationic metal-oxo clusters containing heavy main group elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000812533800008 Publication Date 2022-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 13.6
Call Number UA @ admin @ c:irua:189689 Serial 7091
Permanent link to this record
 

 
Author Kovba, M.L.; Skolis, Y.Y.; Abakumov, A.M.; Hadermann, J.; Sukhushina, I.S.
Title The synthesis and thermodynamic properties of strontium fluoromanganite Sr2.5Mn6O12.5-\deltaF2 Type A1 Journal article
Year 2010 Publication (down) Russian journal of physical chemistry A Abbreviated Journal Russ J Phys Chem A+
Volume 84 Issue 12 Pages 2033-2038
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The existence of the [SrF(0.8)O(0.1)](2.5)[Mn(6)O(12)] = Sr(2.5)Mn(6)O(12.5 – delta)F(2) compound was established in the SrO-Mn(2)O(3)-SrF(2) system at 900A degrees C and p(O(2)) = 1 atm. The crystal structure of strontium fluoromanganite was determined from the X-ray powder diffraction data, electron diffraction, and high-resolution electron microscopy. It can be described in the monoclynic system with four Miller hklm indices: hklm: H = h a* + k b* + l c (1) (*) + m q (1), q (1), q (1) = c (2) (*) = gamma c (1) (*) , gamma a parts per thousand 0.632, a a parts per thousand a a parts per thousand 9.72 , b a parts per thousand 9.55 , c (1) a parts per thousand 2.84 , c (2) a parts per thousand 4.49 , monoclinic angle gamma a parts per thousand 95.6A degrees. The electromotive force method with a solid fluorine ion electrolyte was used to refine the composition of fluoromanganite and determine the thermodynamic functions of its formation from phases neighboring in the phase diagram (SrMn(3)O(6), Mn(2)O(3), SrF(2), and oxygen), Delta GA degrees, kJ/mol = -(111.7 +/- 1.9) + (89.5 +/- 1.5) x 10(-3) T.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000284775000004 Publication Date 2011-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-0244;1531-863X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.581 Times cited 1 Open Access
Notes Approved Most recent IF: 0.581; 2010 IF: 0.503
Call Number UA @ lucian @ c:irua:99190 Serial 3601
Permanent link to this record
 

 
Author Oleynikov, P.N.; Shpanchenko, R.V.; Rozova, M.G.; Abakumov, A.M.; Antipov, E.V.; Hadermann, J.; Lebedev, O.I.; Van Tendeloo, G.
Title Synthesis and structure of fluorinated RBa2Cu2O6+. (R=Dy, Ho and Tm) phases Type A1 Journal article
Year 2001 Publication (down) Russian journal of inorganic chemistry Abbreviated Journal Russ J Inorg Chem+
Volume 46 Issue 2 Pages 153-158
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-0236 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.787 Times cited Open Access
Notes Approved Most recent IF: 0.787; 2001 IF: NA
Call Number UA @ lucian @ c:irua:36045 Serial 3443
Permanent link to this record
 

 
Author Malkov, I., V; Krivetskii, V.V.; Potemkin, D., I; Zadesenets, A., V; Batuk, M.M.; Hadermann, J.; Marikutsa, A., V; Rumyantseva, M.N.; Gas'kov, A.M.
Title Effect of Bimetallic Pd/Pt Clusters on the Sensing Properties of Nanocrystalline SnO2 in the Detection of CO Type A1 Journal article
Year 2018 Publication (down) Russian journal of inorganic chemistry Abbreviated Journal Russ J Inorg Chem+
Volume 63 Issue 8 Pages 1007-1011
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline tin dioxide modified by Pd and Pt clusters or by bimetallic PdPt nanoparticles was synthesized. Distribution of the modifers on the SnO2 surface was studied by high-resolution transmission electron microscopy and energy dispersive X-ray microanalysis with element distribution mapping. It was shown that the Pd/Pt ratio in bimetallic particles varies over a broad range and does not depend on the particle diameter. The effect of platinum metals on the reducibility of nanocrystalline SnO2 by hydrogen was determined. The sensing properties of the resulting materials towards 6.7 ppm CO in air were estimated in situ by electrical conductivity measurements. The sensor response of SnO2 modified with bimetallic PdPt particles was a superposition of the signals of samples with Pt and Pd clusters.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000442749500003 Publication Date 2018-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-0236 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.787 Times cited 3 Open Access Not_Open_Access
Notes ; This work was supported by the ERA.Net RUS Plus program (project 096 FONSENS, RFBR grant 16-53-76001). ; Approved Most recent IF: 0.787
Call Number UA @ lucian @ c:irua:153752 Serial 5092
Permanent link to this record
 

 
Author Mazo, G.N.; Savvin, S.N.; Abakumov, A.M.; Hadermann, J.; Dobrovol'skii, Y.A.; Leonova, L.S.
Title Lanthanum-strontium cuprate as a promising cathodic matreila for solid oxide fuel cells Type A1 Journal article
Year 2007 Publication (down) Russian journal of electrochemistry Abbreviated Journal Russ J Electrochem+
Volume 43 Issue 4 Pages 436-442
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000246338500010 Publication Date 2007-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1023-1935;1608-3342; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.828 Times cited 8 Open Access
Notes Approved Most recent IF: 0.828; 2007 IF: 0.263
Call Number UA @ lucian @ c:irua:62062 Serial 1777
Permanent link to this record
 

 
Author Panin, R.V.; Khasanova, N.R.; Abakumov, A.M.; Schnelle, W.; Hadermann, J.; Antipov, E.V.
Title Crystal structure and properties of the Na1-xRu2O4 phase Type A1 Journal article
Year 2006 Publication (down) Russian chemical bulletin Abbreviated Journal Russ Chem B+
Volume 55 Issue 10 Pages 1717-1722
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000245091400003 Publication Date 2007-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1066-5285;1573-9171; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.529 Times cited 5 Open Access
Notes Approved Most recent IF: 0.529; 2006 IF: 0.505
Call Number UA @ lucian @ c:irua:63810 Serial 566
Permanent link to this record