|   | 
Details
   web
Records
Author Gurel, T.; Altunay, Y.A.; Bulut, P.; Yildirim, S.; Sevik, C.
Title Comprehensive investigation of the extremely low lattice thermal conductivity and thermoelectric properties of BaIn₂Te₄ Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 106 Issue 19 Pages 195204-195210
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, an extremely low lattice thermal conductivity value has been reported for the alkali-based telluride material BaIn2Te4. The value is comparable with low-thermal conductivity metal chalcogenides, and the glass limit is highly intriguing. Therefore, to shed light on this issue, we performed first-principles phonon thermal transport calculations. We predicted highly anisotropic lattice thermal conductivity along different directions via the solution of the linearized phonon Boltzmann transport equation. More importantly, we determined several different factors as the main sources of the predicted ultralow lattice thermal conductivity of this crystal, such as the strong interactions between low-frequency optical phonons and acoustic phonons, small phonon group velocities, and lattice anharmonicity indicated by large negative mode Gruneisen parameters. Along with thermal transport calculations, we also investigated the electronic transport properties by accurately calculating the scattering mechanisms, namely the acoustic deformation potential, ionized impurity, and polar optical scatterings. The inclusion of spin-orbit coupling (SOC) for electronic structure is found to strongly affect the p-type Seebeck coefficients. Finally, we calculated the thermoelectric properties accurately, and the optimal ZT value of p-type doping, which originated from high Seebeck coefficients, was predicted to exceed unity after 700 K and have a direction averaged value of 1.63 (1.76 in the y-direction) at 1000 K around 2 x 1020 cm-3 hole concentration. For n-type doping, a ZT around 3.2 x 1019 cm-3 concentration was predicted to be a direction-averaged value of 1.40 (1.76 in the z-direction) at 1000 K, mostly originating from its high electron mobility. With the experimental evidence of high thermal stability, we showed that the BaIn2Te4 compound has the potential to be a promising mid- to high-temperature thermoelectric material for both p-type and n-type systems with appropriate doping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000918954800001 Publication Date (down) 2022-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:194384 Serial 7290
Permanent link to this record
 

 
Author McNaughton, B.; Pinto, N.; Perali, A.; Milošević, M.V.
Title Causes and consequences of ordering and dynamic phases of confined vortex rows in superconducting nanostripes Type A1 Journal article
Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 12 Issue 22 Pages 4043-18
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Understanding the behaviour of vortices under nanoscale confinement in superconducting circuits is important for the development of superconducting electronics and quantum technologies. Using numerical simulations based on the Ginzburg-Landau theory for non-homogeneous superconductivity in the presence of magnetic fields, we detail how lateral confinement organises vortices in a long superconducting nanostripe, presenting a phase diagram of vortex configurations as a function of the stripe width and magnetic field. We discuss why the average vortex density is reduced and reveal that confinement influences vortex dynamics in the dissipative regime under sourced electrical current, mapping out transitions between asynchronous and synchronous vortex rows crossing the nanostripe as the current is varied. Synchronous crossings are of particular interest, since they cause single-mode modulations in the voltage drop along the stripe in a high (typically GHz to THz) frequency range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000887683200001 Publication Date (down) 2022-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 5.3
Call Number UA @ admin @ c:irua:192731 Serial 7286
Permanent link to this record
 

 
Author Miranda, L.P.; da Costa, D.R.; Peeters, F.M.; Costa Filho, R.N.
Title Vacancy clustering effect on the electronic and transport properties of bilayer graphene nanoribbons Type A1 Journal article
Year 2023 Publication Nanotechnology Abbreviated Journal
Volume 34 Issue 5 Pages 055706-55710
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Experimental realizations of two-dimensional materials are hardly free of structural defects such as e.g. vacancies, which, in turn, modify drastically its pristine physical defect-free properties. In this work, we explore effects due to point defect clustering on the electronic and transport properties of bilayer graphene nanoribbons, for AA and AB stacking and zigzag and armchair boundaries, by means of the tight-binding approach and scattering matrix formalism. Evident vacancy concentration signatures exhibiting a maximum amplitude and an universality regardless of the system size, stacking and boundary types, in the density of states around the zero-energy level are observed. Our results are explained via the coalescence analysis of the strong sizeable vacancy clustering effect in the system and the breaking of the inversion symmetry at high vacancy densities, demonstrating a similar density of states for two equivalent degrees of concentration disorder, below and above the maximum value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000886630000001 Publication Date (down) 2022-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.5; 2023 IF: 3.44
Call Number UA @ admin @ c:irua:192030 Serial 7350
Permanent link to this record
 

 
Author Nulens, L.; Dausy, H.; Wyszynski, M.J.; Raes, B.; Van Bael, M.J.; Milošević, M.V.; Van de Vondel, J.
Title Metastable states and hidden phase slips in nanobridge SQUIDs Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 106 Issue 13 Pages 134518-134519
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We fabricated an asymmetric nanoscale SQUID consisting of one nanobridge weak link and one Dayem bridge weak link. The current phase relation of these particular weak links is characterized by multivaluedness and linearity. While the latter is responsible for a particular magnetic field dependence of the critical current (so-called vorticity diamonds), the former enables the possibility of different vorticity states (phase winding numbers) existing at one magnetic field value. In experiments the observed critical current value is stochastic in nature, does not necessarily coincide with the current associated with the lowest energy state and critically depends on the measurement conditions. In this paper, we unravel the origin of the observed metastability as a result of the phase dynamics happening during the freezing process and while sweeping the current. Moreover, we employ special measurement protocols to prepare the desired vorticity state and identify the (hidden) phase slip dynamics ruling the detected state of these nanodevices. In order to gain insights into the dynamics of the condensate and, more specifically the hidden phase slips, we performed time-dependent Ginzburg-Landau simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000904657300007 Publication Date (down) 2022-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:193393 Serial 7321
Permanent link to this record
 

 
Author Gobato, Y.G.; de Brito, C.S.; Chaves, A.; Prosnikov, M.A.; Wozniak, T.; Guo, S.; Barcelos, I.D.; Milošević, M.V.; Withers, F.; Christianen, P.C.M.
Title Distinctive g-factor of Moire-confined excitons in van der Waals heterostructures Type A1 Journal article
Year 2022 Publication Nano letters Abbreviated Journal Nano Lett
Volume 22 Issue 21 Pages 8641-8641
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We investigated the valley Zeeman splitting of excitonic peaks in the microphotoluminescence (mu PL) spectra of high-quality hBN/WS2/MoSe2/hBN heterostructures under perpendicular magnetic fields up to 20 T. We identify two neutral exciton peaks in the mu PL spectra; the lower-energy peak exhibits a reduced g-factor relative to that of the higher energy peak and much lower than the recently reported values for interlayer excitons in other van der Waals (vdW) heterostructures. We provide evidence that such a discernible g-factor stems from the spatial confinement of the exciton in the potential landscape created by the moire pattern due to lattice mismatch or interlayer twist in heterobilayers. This renders magneto-mu PL an important tool to reach a deeper understanding of the effect of moire patterns on excitonic confinement in vdW heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000877287800001 Publication Date (down) 2022-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 3 Open Access OpenAccess
Notes Approved Most recent IF: 10.8
Call Number UA @ admin @ c:irua:192166 Serial 7298
Permanent link to this record
 

 
Author Seyedmohammadzadeh, M.; Sevik, C.; Guelseren, O.
Title Two-dimensional heterostructures formed by graphenelike ZnO and MgO monolayers for optoelectronic applications Type A1 Journal article
Year 2022 Publication Physical review materials Abbreviated Journal
Volume 6 Issue 10 Pages 104004-104013
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional heterostructures are an emerging class of materials for novel applications because of extensive engineering potential by tailoring intriguing properties of different layers as well as the ones arising from their interface. A systematic investigation of mechanical, electronic, and optical properties of possible heterostructures formed by bilayer structures graphenelike ZnO and MgO monolayers is presented. Different functionality of each layer makes these heterostructures very appealing for device applications. ZnO layer is convenient for electron transport in these structures, while MgO layer improves electron collection. At the outset, all of the four possible stacking configurations across the heterostructure are mechanically stable. In addition, stability analysis using phonon dispersion reveals that the AB stacking formed by placing the Mg atom on top of the O atom of the ZnO layer is also dynamically stable at zero temperature. Henceforth, we have investigated the optical properties of these stable heterostructures by applying many-body perturbation theory within the framework of GW approximation and solving the Bethe-Salpeter equation. It is demonstrated that strong excitonic effects reduce the optical band gap to the visible light spectrum range. These results show that this new two-dimensional form of ZnO/MgO heterostructures open an avenue for novel optoelectronic device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000877514900005 Publication Date (down) 2022-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.4
Call Number UA @ admin @ c:irua:192167 Serial 7346
Permanent link to this record
 

 
Author Souza, J.C.B.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A.
Title Magnus induced diode effect for skyrmions in channels with periodic potentials Type A1 Journal article
Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal
Volume 35 Issue 1 Pages 015804-15810
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a particle based model, we investigate the skyrmion dynamical behavior in a channel where the upper wall contains divots of one depth and the lower wall contains divots of a different depth. Under an applied driving force, skyrmions in the channels move with a finite skyrmion Hall angle that deflects them toward the upper wall for -x direction driving and the lower wall for +x direction driving. When the upper divots have zero height, the skyrmions are deflected against the flat upper wall for -x direction driving and the skyrmion velocity depends linearly on the drive. For +x direction driving, the skyrmions are pushed against the lower divots and become trapped, giving reduced velocities and a nonlinear velocity-force response. When there are shallow divots on the upper wall and deep divots on the lower wall, skyrmions get trapped for both driving directions; however, due to the divot depth difference, skyrmions move more easily under -x direction driving, and become strongly trapped for +x direction driving. The preferred -x direction motion produces what we call a Magnus diode effect since it vanishes in the limit of zero Magnus force, unlike the diode effects observed for asymmetric sawtooth potentials. We show that the transport curves can exhibit a series of jumps or dips, negative differential conductivity, and reentrant pinning due to collective trapping events. We also discuss how our results relate to recent continuum modeling on a similar skyrmion diode system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000880827900001 Publication Date (down) 2022-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7; 2023 IF: 2.649
Call Number UA @ admin @ c:irua:192031 Serial 7320
Permanent link to this record
 

 
Author Pandey, T.; Du, M.-H.; Parker, D.S.; Lindsay, L.
Title Origin of ultralow phonon transport and strong anharmonicity in lead-free halide perovskites Type A1 Journal article
Year 2022 Publication Materials Today Physics Abbreviated Journal
Volume 28 Issue Pages 100881-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract All-inorganic lead-free halide double perovskites offer a promising avenue toward non-toxic, stable optoelec-tronic materials, properties that are missing in their prominent lead-containing counterparts. Their large ther-mopowers and high carrier mobilities also make them promising for thermoelectric applications. Here, we present a first-principles study of the lattice vibrations and thermal transport behaviors of Cs2SnI6 and gamma-CsSnI3, two prototypical compounds in this materials class. We show that conventional static zero temperature density functional theory (DFT) calculations severely underestimate the lattice thermal conductivities (kappa l) of these compounds, indicating the importance of dynamical effects. By calculating anharmonic renormalized phonon dispersions, we show that some optic phonons significantly harden with increasing temperature (T), which reduces the scattering of heat carrying phonons and enhances calculated kappa l values when compared with standard zero temperature DFT. Furthermore, we demonstrate that coherence contributions to kappa l, arising from wave like phonon tunneling, are important in both compounds. Overall, calculated kappa l with temperature-dependent inter-atomic force constants, built from particle and coherence contributions, are in good agreement with available measured data, for both magnitude and temperature dependence. Large anharmonicity combined with low phonon group velocities yield ultralow kappa l values, with room temperature values of 0.26 W/m-K and 0.72 W/m-K predicted for Cs2SnI6 and gamma-CsSnI3, respectively. We further show that the lattice dynamics of these compounds are highly anharmonic, largely mediated by rotation of the SnI6 octahedra and localized modes originating from Cs rattling motion. These thermal characteristics combined with their previously computed excellent electronic properties make these perovskites promising candidates for optoelectronic and room temperature thermoelectric applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000876484300002 Publication Date (down) 2022-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.5 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 11.5
Call Number UA @ admin @ c:irua:192139 Serial 7329
Permanent link to this record
 

 
Author Bellizotti Souza, J.C.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A.
Title Clogging, diode and collective effects of skyrmions in funnel geometries Type A1 Journal article
Year 2022 Publication New journal of physics Abbreviated Journal New J Phys
Volume 24 Issue 10 Pages 103030-14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a particle-based model, we examine the collective dynamics of skyrmions interacting with a funnel potential under dc driving as the skyrmion density and relative strength of the Magnus and damping terms are varied. For driving in the easy direction, we find that increasing the skyrmion density reduces the average skyrmion velocity due to jamming of skyrmions near the funnel opening, while the Magnus force causes skyrmions to accumulate on one side of the funnel array. For driving in the hard direction, there is a critical skyrmion density below which the skyrmions become trapped. Above this critical value, a clogging effect appears with multiple depinning and repinning states where the skyrmions can rearrange into different clogged configurations, while at higher drives, the velocity-force curves become continuous. When skyrmions pile up near the funnel opening, the effective size of the opening is reduced and the passage of other skyrmions is blocked by the repulsive skyrmion-skyrmion interactions. We observe a strong diode effect in which the critical depinning force is higher and the velocity response is smaller for hard direction driving. As the ratio of Magnus force to dissipative term is varied, the skyrmion velocity varies in a non-linear and non-monotonic way due to the pile up of skyrmions on one side of the funnels. At high Magnus forces, the clogging effect for hard direction driving is diminished.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000873333400001 Publication Date (down) 2022-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:192178 Serial 7287
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.H.; Barry, D.; Xin, B.; Yagmurcukardes, M.; Zhang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M.
Title Wien effect in interfacial water dissociation through proton-permeable graphene electrodes Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 5776-5777
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 10(7) V m(-1), sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O reversible arrow H+ + OH-) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 10(8) V m(-1). The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000862552600012 Publication Date (down) 2022-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 3 Open Access OpenAccess
Notes Approved Most recent IF: 16.6
Call Number UA @ admin @ c:irua:191575 Serial 7228
Permanent link to this record
 

 
Author Mirzakhani, M.; Myoung, N.; Peeters, F.M.; Park, H.C.
Title Electronic Mach-Zehnder interference in a bipolar hybrid monolayer-bilayer graphene junction Type A1 Journal article
Year 2023 Publication Carbon Abbreviated Journal
Volume 201 Issue Pages 734-744
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Graphene matter in a strong magnetic field, realizing one-dimensional quantum Hall channels, provides a unique platform for studying electron interference. Here, using the Landauer-Buttiker formalism along with the tightbinding model, we investigate the quantum Hall (QH) effects in unipolar and bipolar monolayer-bilayer graphene (MLG-BLG) junctions. We find that a Hall bar made of an armchair MLG-BLG junction in the bipolar regime results in valley-polarized edgechannel interferences and can operate a fully tunable Mach-Zehnder (MZ) interferometer device. Investigation of the bar-width and magnetic-field dependence of the conductance oscillations shows that the MZ interference in such structures can be drastically affected by the type of (zigzag) edge termination of the second layer in the BLG region [composed of vertical dimer or non-dimer atoms]. Our findings reveal that both interfaces exhibit a double set of Aharonov-Bohm interferences, with the one between two oppositely valley-polarized edge channels dominating and causing a large amplitude conductance oscillation ranging from 0 to 2e2/h. We explain and analyze our findings by analytically solving the Dirac-Weyl equation for a gated semi-infinite MLG-BLG junction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000868911500004 Publication Date (down) 2022-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.9 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 10.9; 2023 IF: 6.337
Call Number UA @ admin @ c:irua:191516 Serial 7302
Permanent link to this record
 

 
Author Jiang, J.; Milošević, M.V.; Wang, Y.-L.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H.
Title Field-free superconducting diode in a magnetically nanostructured superconductor Type A1 Journal article
Year 2022 Publication Physical review applied Abbreviated Journal Phys Rev Appl
Volume 18 Issue 3 Pages 034064-34069
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A strong superconducting diode effect (SDE) is revealed in a thin superconducting film periodically nanostructured with magnetic dots. The SDE is caused by the current-activated dissipation mitigated by vortex-antivortex pairs (VAPs), which periodically nucleate under the dots, move and annihilate in the superconductor-eventually driving the system to the high-resistive state. Inversing the polarity of the applied current destimulates the nucleation of VAPs, the system remains superconducting up to far larger currents, leading to the pronounced diodic response. Our dissipative Ginzburg-Landau simulations detail the involved processes, and provide reliable geometric and parametric ranges for the experimental realiza-tion of such a nonvolatile superconducting diode, which operates in the absence of any applied magnetic field while being fluxonic by design.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000870234200001 Publication Date (down) 2022-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 4.6
Call Number UA @ admin @ c:irua:191539 Serial 7307
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Fischetti, M.V.; Sorée, B.; Vandenberghe, W.G.
Title Image-force barrier lowering in top- and side-contacted two-dimensional materials Type A1 Journal article
Year 2022 Publication Solid state electronics Abbreviated Journal Solid State Electron
Volume 198 Issue Pages 108458-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We compare the image-force barrier lowering (IFBL) and calculate the resulting contact resistance for four different metal-dielectric-two-dimensional (2D) material configurations. We analyze edge contacts in three different geometries (a homogeneous dielectric throughout, including the 2D layer; a homogeneous dielectric surrounding the 2D layer, both ungated and back gated) and also a top-contact assuming a homogeneous dielectric. The image potential energy of each configuration is determined and added to the Schottky energy barrier which is calculated assuming a textbook Schottky potential. For each configuration, the contact resistivity is calculated using the WKB approximation and the effective mass approximation using either SiO2 or HfO2 as the surrounding dielectric. We obtain the lowest contact resistance of 1 k Omega mu m by n-type doping an edge contacted transition metal-dichalcogenide (TMD) monolayer, sandwiched between SiO2 dielectric, with similar to 1012 cm-2 donor atoms. When this optimal configuration is used, the contact resistance is lowered by a factor of 50 compared to the situation when the IFBL is not considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000876289800003 Publication Date (down) 2022-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1101 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 1.7
Call Number UA @ admin @ c:irua:191556 Serial 7312
Permanent link to this record
 

 
Author Reichhardt, C.; Reichhardt, C.J.O.; Milošević, M.V.
Title Statics and dynamics of skyrmions interacting with disorder and nanostructures Type A1 Journal article
Year 2022 Publication Reviews of modern physics Abbreviated Journal Rev Mod Phys
Volume 94 Issue 3 Pages 035005-35061
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnetic skyrmions are topologically stable nanoscale particlelike objects that were discovered in 2009. Since that time, intense research interest in the field has led to the identification of numerous compounds that support skyrmions over a range of conditions spanning from cryogenic to room temperatures. Skyrmions can be set into motion under various types of driving, and the combination of their size, stability, and dynamics makes them ideal candidates for numerous applications. At the same time, skyrmions represent a new class of system in which the energy scales of the skyrmion-skyrmion interactions, sample disorder, temperature, and drive can compete. A growing body of work indicates that the static and dynamic states of skyrmions can be influenced strongly by pinning or disorder in the sample; thus, an understanding of such effects is essential for the eventual use of skyrmions in applications. The current state of knowledge regarding individual skyrmions and skyrmion assemblies interacting with quenched disorder or pinning is reviewed. The microscopic mechanisms for skyrmion pinning, including the repulsive and attractive interactions that can arise from impurities, grain boundaries, or nanostructures, are outlined. This is followed by descriptions of depinning phenomena, sliding states over disorder, the effect of pinning on the skyrmion Hall angle, the competition between thermal and pinning effects, the control of skyrmion motion using ordered potential landscapes such as one-or two-dimensional periodic asymmetric substrates, the creation of skyrmion diodes, and skyrmion ratchet effects. Highlighted are the distinctions arising from internal modes and the strong gyrotropic or Magnus forces that cause the dynamical states of skyrmions to differ from those of other systems with pinning, such as vortices in type-II superconductors, charge density waves, or colloidal particles. Throughout this review future directions and open questions related to the and in are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861559900001 Publication Date (down) 2022-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-6861; 1539-0756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 44.1 Times cited 12 Open Access OpenAccess
Notes Approved Most recent IF: 44.1
Call Number UA @ admin @ c:irua:191507 Serial 7339
Permanent link to this record
 

 
Author Lazarevic, N.; Baum, A.; Milosavljevic, A.; Peis, L.; Stumberger, R.; Bekaert, J.; Solajic, A.; Pesic, J.; Wang, A.; Scepanovic, M.; Abeykoon, A.M.M.; Milošević, M.V.; Petrovic, C.; Popovic, Z.V.; Hackl, R.
Title Evolution of lattice, spin, and charge properties across the phase diagram of Fe1-xSx Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 106 Issue 9 Pages 094510-94519
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A Raman scattering study covering the entire substitution range of the FeSe1-xSx solid solution is presented. Data were taken as a function of sulfur concentration x for 0 <= x <= 1, of temperature and of scattering symmetry. All types of excitations including phonons, spins, and charges are analyzed in detail. It is observed that the energy and width of the iron-related B-1g phonon mode vary continuously across the entire range of sulfur substitution. The A(1g) chalcogenide mode disappears above x = 0.23 and reappears at a much higher energy for x = 0.69. In a similar way the spectral features appearing at finite doping in A(1g) symmetry vary discontinuously. The magnetic excitation centered at approximately 500 cm(-1) disappears above x = 0.23 where the A(1g) lattice excitations exhibit a discontinuous change in energy. The low-energy mode associated with fluctuations displays maximal intensity at the nematostructural transition and thus tracks the phase boundary.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000917933500004 Publication Date (down) 2022-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:194397 Serial 7304
Permanent link to this record
 

 
Author Yu, Y.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L.
Title Two-dimensional semimetal states in transition metal trichlorides : a first-principles study Type A1 Journal article
Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 121 Issue 11 Pages 112405-112407
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The two-dimensional (2D) transition metal trihalide (TMX3, X = Cl, Br, I) family has attracted considerable attention in recent years due to the realization of CrCl3, CrBr3, and CrI3 monolayers. Up to now, the main focus of the theoretically predicted TMX3 monolayers has been on the Chern insulator states, which can realize the quantum anomalous Hall effect. Here, using first-principles calculations, we theoretically demonstrate that the stable OsCl3 monolayer has a ferromagnetic ground state and a spin-polarized Dirac point without spin-orbit coupling (SOC), which disappears in the band structure of a Janus OsBr1.5Cl1.5 monolayer. We find that OsCl3 exhibits in-plane magnetization when SOC is included. By manipulating the magnetization direction along the C-2 symmetry axis of the OsCl3 structure, a gapless half-Dirac semimetal state with SOC can be achieved, which is different from the gapped Chern insulator state. Both semimetal states of OsCl3 monolayer without and with SOC exhibit a linear half-Dirac point (twofold degenerate) with high Fermi velocities. The achievement of the 2D semimetal state with SOC is expected to be found in other TMX3 monolayers, and we confirm it in a TiCl3 monolayer. This provides a different perspective to study the band structure with SOC of the 2D TMX3 family.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000863219400003 Publication Date (down) 2022-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4
Call Number UA @ admin @ c:irua:191541 Serial 7223
Permanent link to this record
 

 
Author Blundo, E.; Faria, P.E., Jr.; Surrente, A.; Pettinari, G.; Prosnikov, M.A.; Olkowska-Pucko, K.; Zollner, K.; Wozniak, T.; Chaves, A.; Kazimierczuk, T.; Felici, M.; Babinski, A.; Molas, M.R.; Christianen, P.C.M.; Fabian, J.; Polimeni, A.
Title Strain-Induced Exciton Hybridization in WS2 Monolayers Unveiled by Zeeman-Splitting Measurements Type A1 Journal article
Year 2022 Publication Physical review letters Abbreviated Journal
Volume 129 Issue 6 Pages 067402
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Mechanical deformations and ensuing strain are routinely exploited to tune the band gap energy and to enhance the functionalities of two-dimensional crystals. In this Letter, we show that strain leads also to a strong modification of the exciton magnetic moment in WS2 monolayers. Zeeman-splitting measurements under magnetic fields up to 28.5 T were performed on single, one-layer-thick WS2 microbubbles. The strain of the bubbles causes a hybridization of k-space direct and indirect excitons resulting in a sizable decrease in the modulus of they factor of the ground-state exciton. These findings indicate that strain may have major effects on the way the valley number of excitons can be used to process binary information in two-dimensional crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000842367600007 Publication Date (down) 2022-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007; 1079-7114 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:198538 Serial 8936
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
Title Arresting aqueous swelling of layered graphene-oxide membranes with H3O+ and OH- ions Type A1 Journal article
Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 14 Issue 30 Pages 34946-34954
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Over the past decade, graphene oxide (GO) has emerged as a promising membrane material with superior separation performance and intriguing mechanical/chemical stability. However, its practical implementation remains very challenging primarily because of its undesirable swelling in an aqueous environment. Here, we demonstrated that dissociation of water molecules into H3O+ and OH- ions inside the interlayer gallery of a layered GO membrane can strongly affect its stability and performance. We reveal that H3O+ and OH- ions form clusters inside the GO laminates that impede the permeance of water and salt ions through the membrane. Dynamics of those clusters is sensitive to an external ac electric field, which can be used to tailor the membrane performance. The presence of H3O+ and OH- ions also leads to increased stability of the hydrogen bond (H-bond) network among the water molecules and the GO layers, which further reduces water permeance through the membrane, while crucially imparting stability to the layered GO membrane against undesirable swelling. KEYWORDS: layered graphene-oxide membrane, aqueous stability, H3O+ and OH- ions, external electric field, molecular dynamics
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000835946500001 Publication Date (down) 2022-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: 9.5
Call Number UA @ admin @ c:irua:189467 Serial 7127
Permanent link to this record
 

 
Author Moura, V.N.; Dantas, D.S.; Farias, G.A.; Chaves, A.; Milošević, M.V.
Title Latent superconductivity at parallel interfaces in a superlattice dominated by another collective quantum phase Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 106 Issue 1 Pages 014516-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically examine behavior of superconductivity at parallel interfaces separating the domains of another dominant collective excitation, such as charge density waves or spin density waves. Due to their competitive coupling in a two-component Ginzburg-Landau model, suppression of the dominant order parameter at the interfacial planes allows for nucleation of the (hidden) superconducting order parameter at those planes. In such a case, we demonstrate how the number of the parallel interfacial planes and the distance between them are linked to the number and the size of the emerging superconducting gaps in the system, as well as the versatility and temperature evolution of the possible superconducting phases. These findings bear relevance to a broad selection of known layered superconducting materials, as well as to further design of artificial (e.g., oxide) superlattices, where the interplay between competing order parameters paves the way towards otherwise unattainable superconducting states, some with enhanced superconducting critical temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000834346000004 Publication Date (down) 2022-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:189520 Serial 7179
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V.
Title Axion insulator states in a topological insulator proximitized to magnetic insulators : a tight-binding characterization Type A1 Journal article
Year 2022 Publication Physical review materials Abbreviated Journal
Volume 6 Issue 7 Pages 074205-74208
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The recent discovery of axion states in materials such as antiferromagnetic topological insulators has boosted investigations of the magnetoelectric response in topological insulators and their promise towards realizing dissipationless topological electronics. In this paper, we develop a tight-binding methodology to explore the emergence of axion states in Bi2Se3 in proximity to magnetic insulators on the top and bottom surfaces. The topological protection of the surface states is lifted by a time-reversal-breaking perturbation due to the proximity of a magnetic insulator, and a gap is opened on the surfaces, giving rise to half-quantized Hall conductance and a zero Hall plateau-evidencing an axion insulator state. We developed a real-space tight-binding Hamiltonian for Bi2Se3 using first-principles data. Transport properties of the system were obtained within the Landauer-Buttiker formalism, and we discuss the creation of axion states through Hall conductance and a zero Hall plateau at the surfaces, as a function of proximitized magnetization and corresponding potentials at the surfaces, as well as the thickness of the topological insulator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000832387000006 Publication Date (down) 2022-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.4
Call Number UA @ admin @ c:irua:189498 Serial 7130
Permanent link to this record
 

 
Author Achari, A.; Bekaert, J.; Sreepal, V.; Orekhov, A.; Kumaravadivel, P.; Kim, M.; Gauquelin, N.; Pillai, P.B.; Verbeeck, J.; Peeters, F.M.; Geim, A.K.; Milošević, M.V.; Nair, R.R.
Title Alternating superconducting and charge density wave monolayers within bulk 6R-TaS₂ Type A1 Journal article
Year 2022 Publication Nano letters Abbreviated Journal Nano Lett
Volume 22 Issue 15 Pages 6268-6275
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Van der Waals (vdW) heterostructures continue to attract intense interest as a route of designing materials with novel properties that cannot be found in nature. Unfortunately, this approach is currently limited to only a few layers that can be stacked on top of each other. Here, we report a bulk vdW material consisting of superconducting 1H TaS2 monolayers interlayered with 1T TaS2 monolayers displaying charge density waves (CDW). This bulk vdW heterostructure is created by phase transition of 1T-TaS2 to 6R at 800 degrees C in an inert atmosphere. Its superconducting transition (T-c) is found at 2.6 K, exceeding the T-c of the bulk 2H phase. Using first-principles calculations, we argue that the coexistence of superconductivity and CDW within 6R-TaS2 stems from amalgamation of the properties of adjacent 1H and 1T monolayers, where the former dominates the superconducting state and the latter the CDW behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000831832100001 Publication Date (down) 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 8 Open Access OpenAccess
Notes This work was supported by the Royal Society, the Leverhulme Trust (PLP-2018-220), the Engineering and Physical Sciences Research Council (EP/N005082/1), and European Research Council (contract 679689). The authors acknowledge the use of the facilities at the Henry Royce Institute and associated support services. J.B. is a postdoctoral fellow of Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Governmentdepartment EWI. This work was also performed under a transnational access provision funded by the European Union under the Horizon 2020 programme within a contract for Integrating Activities for Advanced Communities No 823717 − ESTEEM3; esteem3reported; esteem3jra Approved Most recent IF: 10.8
Call Number UA @ admin @ c:irua:189495 Serial 7077
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Peeters, F.M.; Hamoudi, H.
Title Effect of halogenation on the electronic transport properties of aromatic and alkanethiolate molecules Type A1 Journal article
Year 2022 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 144 Issue Pages 115428-6
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Quantum transport calculations are conducted using nonequilibrium Green's functional formalism to study the effect of halogenation on the electronic transport properties of aromatic S-(C6H5)(2)X and alkanethiolate S-(CH2)(11)X molecules (with X = H, F, Cl, Br, or I) sandwiched between gold electrodes. In terms of conductance, both molecules show the same dependence on the halogen terminal groups despite their different electronic nature. For example, fluorination results in a reduction of the current by almost an order of magnitude, whereas iodine substitution leads to larger current as compared to the reference system (i.e. hydrogen termination). Regarding the asymmetry in the current-voltage characteristics, halogenation reduces the rectification level for the aromatic molecule with the smallest asymmetry for iodine termination. However, in the case of alkanethiolate molecule, halogen substitution increases the current rectification except for fluorination. A physical explanation of these results is obtained from the analysis of the behavior of the density of states, transmission spectra and transmission eigenstates. These findings are of practical importance in exploring the potential of halogenation for creating functional molecular self-assemblies on metallic substrates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000857051700007 Publication Date (down) 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:191500 Serial 7148
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V.
Title Controlling the hybridization gap and transport in a thin-film topological insulator : effect of strain, and electric and magnetic field Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 106 Issue 3 Pages 035119-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In a thin-film topological insulator (TI), the edge states on two surfaces may couple by quantum tunneling, opening a gap known as the hybridization gap. Controlling the hybridization gap and transport has a variety of potential uses in photodetection and energy-harvesting applications. In this paper, we report the effect of strain, and electric and magnetic field, on the hybridization gap and transport in a thin Bi2Se3 film, investigated within the tight-binding theoretical framework. We demonstrate that vertical compression decreases the hybridization gap, as does tensile in-plane strain. Applying an electric field breaks the inversion symmetry and leads to a Rashba-like spin splitting proportional to the electric field, hence closing and reopening the gap. The influence of a magnetic field on thin-film TI is also discussed, starting from the role of an out-of-plane magnetic field on quantum Hall states. We further demonstrate that the hybridization gap can be controlled by an in-plane magnetic field, and that by applying a sufficiently strong field a quantum phase transition from an insulator to a semimetal can be achieved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000832277500001 Publication Date (down) 2022-07-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:189515 Serial 7140
Permanent link to this record
 

 
Author Zhou, Z.; Tan, Y.; Yang, Q.; Bera, A.; Xiong, Z.; Yagmurcukardes, M.; Kim, M.; Zou, Y.; Wang, G.; Mishchenko, A.; Timokhin, I.; Wang, C.; Wang, H.; Yang, C.; Lu, Y.; Boya, R.; Liao, H.; Haigh, S.; Liu, H.; Peeters, F.M.; Li, Y.; Geim, A.K.; Hu, S.
Title Gas permeation through graphdiyne-based nanoporous membranes Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 4031-4036
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeance. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows. Using isotope and cryogenic temperature measurements, the seemingly conflicting characteristics are explained by a high density of straight-through holes (direct porosity of similar to 0.1%), in which heavy atoms are adsorbed on the walls, partially blocking Knudsen flows. Our work offers important insights into intricate transport mechanisms playing a role at nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000918423100001 Publication Date (down) 2022-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 10 Open Access OpenAccess
Notes Approved Most recent IF: 16.6
Call Number UA @ admin @ c:irua:194402 Serial 7308
Permanent link to this record
 

 
Author Bekaert, J.; Sevik, C.; Milošević, M.V.
Title Enhancing superconductivity in MXenes through hydrogenation Type A1 Journal article
Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 14 Issue 27 Pages 9918-9924
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Two-dimensional transition metal carbides and nitrides (MXenes) are an emerging class of atomically-thin superconductors, whose characteristics are highly prone to tailoring by surface functionalization. Here we explore the use of hydrogen adatoms to enhance phonon-mediated superconductivity in MXenes, based on first-principles calculations combined with Eliashberg theory. We first demonstrate the stability of three different structural models of hydrogenated Mo- and W-based MXenes. Particularly high critical temperatures of over 30 K are obtained for hydrogenated Mo2N and W2N. Several mechanisms responsible for the enhanced electron-phonon coupling are uncovered, namely (i) hydrogen-induced changes in the phonon spectrum of the host MXene, (ii) emerging hydrogen-based phonon modes, and (iii) charge transfer from hydrogen to the MXene layer, boosting the density of states at the Fermi level. Finally, we demonstrate that hydrogen adatoms are moreover able to induce superconductivity in MXenes that are not superconducting in pristine form, such as Nb2C.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000820350600001 Publication Date (down) 2022-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 6.7
Call Number UA @ admin @ c:irua:189580 Serial 7155
Permanent link to this record
 

 
Author Abedi, S.; Sisakht, E.T.; Hashemifar, S.J.; Cherati, N.G.; Sarsari, I.A.; Peeters, F.M.
Title Prediction of novel two-dimensional Dirac nodal line semimetals in Al₂B₂ and AlB₄ monolayers Type A1 Journal article
Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 14 Issue 31 Pages 11270-11283
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Topological semimetal phases in two-dimensional (2D) materials have gained widespread interest due to their potential applications in novel nanoscale devices. Despite the growing number of studies on 2D topological nodal lines (NLs), candidates with significant topological features that combine nontrivial topological semimetal phase with superconductivity are still rare. Herein, we predict Al2B2 and AlB4 monolayers as new 2D nonmagnetic Dirac nodal line semimetals with several novel features. Our extensive electronic structure calculations combined with analytical studies reveal that, in addition to multiple Dirac points, these 2D configurations host various highly dispersed NLs around the Fermi level, all of which are semimetal states protected by time-reversal and in-plane mirror symmetries. The most intriguing NL in Al2B2 encloses the K point and crosses the Fermi level, showing a considerable dispersion and thus providing a fresh playground to explore exotic properties in dispersive Dirac nodal lines. More strikingly, for the AlB4 monolayer, we provide the first evidence for a set of 2D nonmagnetic open type-II NLs coexisting with superconductivity at a rather high transition temperature. The coexistence of superconductivity and nontrivial band topology in AlB4 not only makes it a promising material to exhibit novel topological superconducting phases, but also a rather large energy dispersion of type-II nodal lines in this configuration may offer a platform for the realization of novel topological features in the 2D limit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000831003900001 Publication Date (down) 2022-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.7
Call Number UA @ admin @ c:irua:189505 Serial 7196
Permanent link to this record
 

 
Author Vizarim, N.P.; Souza, J.C.B.; Reichhardt, C.J.O.; Reichhardt, C.; Milošević, M.V.; Venegas, P.A.
Title Soliton motion in skyrmion chains : stabilization and guidance by nanoengineered pinning Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 105 Issue 22 Pages 224409-224412
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a particle-based model we examine the depinning motion of solitons in skyrmion chains in quasi -onedimensional (1D) and two-dimensional (2D) systems containing embedded 1D interfaces. The solitons take the form of a particle or hole in a commensurate chain of skyrmions. Under an applied drive, just above a critical depinning threshold, the soliton moves with a skyrmion Hall angle of zero. For higher drives, the entire chain depins, and in a 2D system we observe that both the solitons and chain move at zero skyrmion Hall angle and then transition to a finite skyrmion Hall angle as the drive increases. In a 2D system with a 1D interface that is at an angle to the driving direction, there can be a reversal of the sign of the skyrmion Hall angle from positive to negative. Our results suggest that solitons in skyrmion systems could be used as information carriers in racetrack geometries that would avoid the drawbacks of finite skyrmion Hall angles. The soliton states become mobile at significantly lower drives than the depinning transition of the skyrmion chains themselves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000823038900004 Publication Date (down) 2022-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:189671 Serial 7209
Permanent link to this record
 

 
Author Chaves, A.; Covaci, L.; Peeters, F.M.; Milošević, M.V.
Title Topologically protected moiré exciton at a twist-boundary in a van der Waals heterostructure Type A1 Journal article
Year 2022 Publication 2D materials Abbreviated Journal 2D Mater
Volume 9 Issue 2 Pages 025012
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract A twin boundary in one of the layers of a twisted van der Waals heterostructure separates regions with near opposite inter-layer twist angles. In a MoS<sub>2</sub>/WSe<sub>2</sub>bilayer, the regions with<inline-formula><tex-math><?CDATA $Rh^h$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>h</mi></msubsup></math><inline-graphic href=“tdmac529dieqn1.gif” type=“simple” /></inline-formula>and<inline-formula><tex-math><?CDATA $Rh^X$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>X</mi></msubsup></math><inline-graphic href=“tdmac529dieqn2.gif” type=“simple” /></inline-formula>stacking registry that defined the sub-lattices of the moiré honeycomb pattern would be mirror-reflected across such a twist boundary. In that case, we demonstrate that topologically protected chiral moiré exciton states are confined at the twist boundary. These are one-dimensional and uni-directional excitons with opposite velocities for excitons composed by electronic states with opposite valley/spin character, enabling intrinsic, guided, and far reaching valley-polarized exciton currents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000760518100001 Publication Date (down) 2022-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek; Conselho Nacional de Desenvolvimento Científico e Tecnológico, PQ ; Approved Most recent IF: 5.5
Call Number CMT @ cmt @c:irua:187124 Serial 7046
Permanent link to this record
 

 
Author Menezes, R.M.; Šabani, D.; Bacaksiz, C.; de Souza Silva, C.C.; Milošević, M.V.
Title Tailoring high-frequency magnonics in monolayer chromium trihalides Type A1 Journal article
Year 2022 Publication 2D materials Abbreviated Journal 2D Mater
Volume 9 Issue 2 Pages 025021
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Monolayer chromium-trihalides, the archetypal two-dimensional (2D) magnetic materials, are readily suggested as a promising platform for high-frequency magnonics. Here we detail the spin-wave properties of monolayer CrBr<sub>3</sub>and CrI<sub>3</sub>, using spin-dynamics simulations parametrized from the first principles. We reveal that spin-wave dispersion can be tuned in a broad range of frequencies by strain, paving the way towards flexo-magnonic applications. We further show that ever-present halide vacancies in these monolayers host sufficiently strong Dzyaloshinskii-Moriya interaction to scatter spin-waves, which promotes design of spin-wave guides by defect engineering. Finally we discuss the spectra of spin-waves propagating across a moiré-periodic modulation of magnetic parameters in a van der Waals heterobilayer, and show that the nanoscale moiré periodicities in such samples are ideal for realization of a magnonic crystal in the terahertz frequency range. Recalling the additional tunability of magnetic 2D materials by electronic gating, our results situate these systems among the front-runners for prospective high-frequency magnonic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000771735500001 Publication Date (down) 2022-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited Open Access OpenAccess
Notes Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco; Special Research Funds of the University of Antwerp; Conselho Nacional de Desenvolvimento Científico e Tecnológico; Fonds Wetenschappelijk Onderzoek; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Approved Most recent IF: 5.5
Call Number CMT @ cmt @c:irua:187125 Serial 7048
Permanent link to this record
 

 
Author Cunha, S.M.; da Costa, D.R.; Pereira, J.M., Jr.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M.
Title Tunneling properties in α-T₃ lattices : effects of symmetry-breaking terms Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 105 Issue 16 Pages 165402-165414
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The alpha-T3 lattice model interpolates a honeycomb (graphene-like) lattice and a T3 (also known as dice) lattice via the parameter alpha. These lattices are made up of three atoms per unit cell. This gives rise to an additional dispersionless flat band touching the conduction and valence bands. Electrons in this model are analogous to Dirac fermions with an enlarged pseudospin, which provides unusual tunneling features like omnidirectional Klein tunneling, also called super-Klein tunneling (SKT). However, it is unknown how small deviations in the equivalence between the atomic sites, i.e., variations in the alpha parameter, and the number of tunnel barriers changes the transmission properties. Moreover, it is interesting to learn how tunneling occurs through regions where the energy spectrum changes from linear with a middle flat band to a hyperbolic dispersion. In this paper we investigate these properties, its dependence on the number of square barriers and the alpha parameter for either gapped and gapless cases. Furthermore, we compare these results to the case where electrons tunnel from a region with linear dispersion to a region with a bandgap. In the latter case, contrary to tunneling through a potential barrier, the SKT is no longer observed. Finally, we find specific cases where transmission is allowed due to a symmetry breaking of sublattice equivalence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000805195200001 Publication Date (down) 2022-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:188614 Serial 7222
Permanent link to this record