|   | 
Details
   web
Records
Author Lamas, J.S.; Leroy, W.P.; Lu, Y.-G.; Verbeeck, J.; Van Tendeloo, G.; Depla, D.
Title Using the macroscopic scale to predict the nano-scale behavior of YSZ thin films Type A1 Journal article
Year 2014 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech
Volume 238 Issue Pages 45-50
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this work, Yttria-stabilized zirconia (YSZ) thin films were deposited using dual reactive magnetron sputtering. By varying the deposition conditions, the film morphology and texture of the thin films are tuned and biaxial alignment is obtained. Studying the crystallographic and microstructural properties of the YSZ thin films, a tilted columnar growth was identified. This tilt is shown to be dependent on the compositional gradient of the sample. The variation of composition within a single YSZ column measured via STEM-EDX is demonstrated to be equal to the macroscopic variation on a full YSZ sample when deposited under the same deposition parameters. A simple stress model was developed to predict the tilt of the growing columns. The results indicate that this model not only determines the column bending of the growing film but also confirms that a macroscopic approach is sufficient to determine the compositional gradient in a single column of the YSZ thin films. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000331028200005 Publication Date (up) 2013-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.589 Times cited 8 Open Access
Notes 246791 Countatoms; 278510 Vortex;Nmp3-La-2010-246102 Ifox; 312483 Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.589; 2014 IF: 1.998
Call Number UA @ lucian @ c:irua:115765 Serial 3827
Permanent link to this record
 

 
Author Martinez, G.T.; Rosenauer, A.; de Backer, A.; Verbeeck, J.; Van Aert, S.
Title Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 137 Issue Pages 12-19
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000331092200003 Publication Date (up) 2013-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 74 Open Access
Notes FWO; FP7; ERC Countatoms; ESTEEM2; esteem2_ta Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:111579UA @ admin @ c:irua:111579 Serial 2749
Permanent link to this record
 

 
Author da Pieve, F.; Hogan, C.; Lamoen, D.; Verbeeck, J.; Vanmeert, F.; Radepont, M.; Cotte, M.; Janssens, K.; Gonze, X.; Van Tendeloo, G.
Title Casting light on the darkening of colors in historical paintings Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 20 Pages 208302-208305
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The degradation of colors in historical paintings affects our cultural heritage in both museums and archeological sites. Despite intensive experimental studies, the origin of darkening of one of the most ancient pigments known to humankind, vermilion (α-HgS), remains unexplained. Here, by combining many-body theoretical spectroscopy and high-resolution microscopic x-ray diffraction, we clarify the composition of the damaged paint work and demonstrate possible physicochemical processes, induced by illumination and exposure to humidity and air, that cause photoactivation of the original pigment and the degradation of the secondary minerals. The results suggest a new path for the darkening process which was never considered by previous studies and prompt a critical examination of their findings.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000327244500003 Publication Date (up) 2013-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 30 Open Access
Notes Vortex; ERC FP7; COUNTATOMS; ECASJO_; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:111396UA @ admin @ c:irua:111396 Serial 287
Permanent link to this record
 

 
Author Béché, A.; Van Boxem, R.; Van Tendeloo, G.; Verbeeck, J.
Title Magnetic monopole field exposed by electrons Type A1 Journal article
Year 2014 Publication Nature physics Abbreviated Journal Nat Phys
Volume 10 Issue 1 Pages 26-29
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The experimental search for magnetic monopole particles(1-3) has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study(4-10). Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle(11). We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole(3,11-18). This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328940100012 Publication Date (up) 2013-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 22.806 Times cited 131 Open Access
Notes Vortex; Countatoms; Fwo ECASJO_; Approved Most recent IF: 22.806; 2014 IF: 20.147
Call Number UA @ lucian @ c:irua:113740UA @ admin @ c:irua:113740 Serial 1885
Permanent link to this record
 

 
Author Martinez, G.T.; de Backer, A.; Rosenauer, A.; Verbeeck, J.; Van Aert, S.
Title The effect of probe inaccuracies on the quantitative model-based analysis of high angle annular dark field scanning transmission electron microscopy images Type A1 Journal article
Year 2014 Publication Micron Abbreviated Journal Micron
Volume 63 Issue Pages 57-63
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract Quantitative structural and chemical information can be obtained from high angle annular dark field scanning transmission electron microscopy (HAADF STEM) images when using statistical parameter estimation theory. In this approach, we assume an empirical parameterized imaging model for which the total scattered intensities of the atomic columns are estimated. These intensities can be related to the material structure or composition. Since the experimental probe profile is assumed to be known in the description of the imaging model, we will explore how the uncertainties in the probe profile affect the estimation of the total scattered intensities. Using multislice image simulations, we analyze this effect for Cs corrected and non-Cs corrected microscopes as a function of inaccuracies in cylindrically symmetric aberrations, such as defocus and spherical aberration of third and fifth order, and non-cylindrically symmetric aberrations, such as 2-fold and 3-fold astigmatism and coma.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000338402500011 Publication Date (up) 2014-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 25 Open Access
Notes FWO (G.0393.11; G.0064.10; G.0374.13; G.0044.13); European Research Council under the 7th Framework Program (FP7); ERC GrantNo. 246791-COUNTATOMS and ERC Starting Grant No. 278510-VORTEX. A.R. thanks the DFG under contract number RO2057/8-1.The research leading to these results has received funding fromthe European Union 7th Framework Programme [FP7/2007-2013]under grant agreement no. 312483 (ESTEEM2).; esteem2ta ECASJO; Approved Most recent IF: 1.98; 2014 IF: 1.988
Call Number UA @ lucian @ c:irua:113857UA @ admin @ c:irua:113857 Serial 831
Permanent link to this record
 

 
Author Samal, D.; Tan, H.; Takamura, Y.; Siemons, W.; Verbeeck, J.; Van Tendeloo, G.; Arenholz, E.; Jenkins, C.A.; Rijnders, G.; Koster, G.
Title Direct structural and spectroscopic investigation of ultrathin films of tetragonal CuO: Six-fold coordinated copper Type A1 Journal article
Year 2014 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 105 Issue 1 Pages 17003-17005
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Unlike other 3d transition metal monoxides (MnO, FeO, CoO, and NiO), CuO is found in a low-symmetry distorted monoclinic structure rather than the rocksalt structure. We report here of the growth of ultrathin CuO films on SrTiO3 substrates; scanning transmission electron microscopy was used to show the stabilization of a tetragonal rocksalt structure with an elongated c-axis such that c/a similar to 1.34 and the Cu-O-Cu bond angle similar to 180 degrees, pointing to metastable six-fold coordinated Cu. X-ray absorption spectroscopy demonstrates that the hole at the Cu site for the CuO is localized in 3d(x2-y2) orbital unlike the well-studied monoclinic CuO phase. The experimental confirmation of the tetragonal structure of CuO opens up new avenues to explore electronic and magnetic properties of six-fold coordinated Cu. Copyright (C) EPLA, 2014
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000331197100015 Publication Date (up) 2014-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 15 Open Access
Notes This work was carried out with financial support from the AFOSR and EOARD projects (project No.: FA8655-10-1-3077) and also supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No. 246791 – COUNTATOMS, ERC Starting Grant 278510 VORTEX, Grant No. NMP3-LA-2010-246102 IFOX and an Integrated Infrastructure Initiative, reference No. 312483-ESTEEM2. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. Advanced Light Source is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. YT acknowledges support from the National Science Foundation (DMR-0747896). WS was supported by the US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division. ECASJO_; Approved Most recent IF: 1.957; 2014 IF: 2.095
Call Number UA @ lucian @ c:irua:115806UA @ admin @ c:irua:115806 Serial 722
Permanent link to this record
 

 
Author Verbeeck, J.; Guzzinati, G.; Clark, L.; Juchtmans, R.; Van Boxem, R.; Tian, H.; Béché, A.; Lubk, A.; Van Tendeloo, G.
Title Shaping electron beams for the generation of innovative measurements in the (S)TEM Type A1 Journal article
Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys
Volume 15 Issue 2-3 Pages 190-199
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In TEM, a typical goal consists of making a small electron probe in the sample plane in order to obtain high spatial resolution in scanning transmission electron microscopy. In order to do so, the phase of the electron wave is corrected to resemble a spherical wave compensating for aberrations in the magnetic lenses. In this contribution, we discuss the advantage of changing the phase of an electron wave in a specific way in order to obtain fundamentally different electron probes opening up new applications in the (S)TEM. We focus on electron vortex states as a specific family of waves with an azimuthal phase signature and discuss their properties, production and applications. The concepts presented here are rather general and also different classes of probes can be obtained in a similar fashion, showing that electron probes can be tuned to optimize a specific measurement or interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000334013600009 Publication Date (up) 2014-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.048 Times cited 22 Open Access
Notes Vortex ECASJO_; Approved Most recent IF: 2.048; 2014 IF: 2.035
Call Number UA @ lucian @ c:irua:116946UA @ admin @ c:irua:116946 Serial 2992
Permanent link to this record
 

 
Author Guzzinati, G.; Clark, L.; Béché, A.; Verbeeck, J.
Title Measuring the orbital angular momentum of electron beams Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue Pages 025803
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, and diffraction from a knife edge and the application of an astigmatic lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting numerical simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000332224100014 Publication Date (up) 2014-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 42 Open Access
Notes Vortex; FP7; Countatoms; ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:114577UA @ admin @ c:irua:114577 Serial 1972
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J.
Title Rutherford scattering of electron vortices Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue 3 Pages 032715-32719
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract By considering a cylindrically symmetric generalization of a plane wave, the first-order Born approximation of screened Coulomb scattering unfolds two new dimensions in the scattering problem: transverse momentum and orbital angular momentum of the incoming beam. In this paper, the elastic Coulomb scattering amplitude is calculated analytically for incoming Bessel beams. This reveals novel features occurring for wide-angle scattering and quantitative insights for small-angle vortex scattering. The result successfully generalizes the well-known Rutherford formula, incorporating transverse and orbital angular momentum into the formalism.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000333690500008 Publication Date (up) 2014-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 34 Open Access
Notes 312483-Esteem2; N246791 – Countatoms; 278510 Vortex; esteem2jra1; esteem2jra3 ECASJO_; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:115562UA @ admin @ c:irua:115562 Serial 2936
Permanent link to this record
 

 
Author Heyer, S.; Janssen, W.; Turner, S.; Lu, Y.-G.; Yeap, W.S.; Verbeeck, J.; Haenen, K.; Krueger, A.
Title Toward deep blue nano hope diamonds : heavily boron-doped diamond nanoparticles Type A1 Journal article
Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue 6 Pages 5757-5764
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 1060 nm with a boron content of approximately 2.3 × 1021 cm3. Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000338089200039 Publication Date (up) 2014-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 71 Open Access
Notes the Research Foundation Flanders (FWO-Vlaanderen) (G.0555.10N;G.0568.10N; G.0456.12; G0044.13N and a postdoctoral scholarship for S.T.); EU FP7 through Marie Curie ITN “MATCON” (PITNGA-127 2009-238201)the Collaborative Project “DINAMO” (No. 245122) Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2.; esteem2_jra3 Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:117599 Serial 3683
Permanent link to this record
 

 
Author Morozov, V.A.; Lazoryak, B.I.; Shmurak, S.Z.; Kiselev, A.P.; Lebedev, O.I.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Van Tendeloo, G.
Title Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 10 Pages 3238-3248
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Scheelite related compounds (A',A '')(n)[(B',B '')O-4](m) with B', B '' = W and/or Mo are promising new materials for red phosphors in pc-WLEDs (phosphor-converted white-light-emitting-diode) and solid-state lasers. Cation substitution in CaMoO4 of Ca2+ by the combination of Na+ and Eu3+, with the creation of A cation vacancies, has been investigated as a factor for controlling the scheelite-type structure and the luminescent properties. Na5Eu(MoO4)(4) and NaxEu(2-x)/33+square(2-x)/3MoO4 (0.138 <= x <= 0.5) phases with a scheelite-type structure were synthesized by the solid state method; their structural characteristics were investigated using transmission electron microscopy. Contrary to powder synchrotron X-ray diffraction before, the study by electron diffraction and high resolution transmission electron microscopy in this paper revealed that Na0.286Eu0.571MoO4 has a (3 + 2)D incommensurately modulated structure and that (3 + 2)D incommensurately modulated domains are present in Na0.200Eu0.600MoO4. It also confirmed the (3 + 1)D incommensurately modulated character of Na(0.138)Eu(0.621)Mo04. The luminescent properties of all phases under near-ultraviolet (n-UV) light have been investigated. The excitation spectra of these phosphors show the strongest absorption at about 395 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. The emission spectra indicate an intense red emission due to the D-5(0) -> F-7(2) transition of Eu3+, with local minima in the intensity at Na0.286Eu0.571MoO4 and Na0.200Eu0.600MoO4 for similar to 613 nm and similar to 616 nm bands. The phosphor Na5Eu(MoO4)(4) shows the brightest red light emission among the phosphors in the Na2MoO4-Eu2/3MoO4 system and the maximum luminescence intensity of Na5Eu(MoO4)(4) (lambda(ex) = 395 nm) in the D-5(0) -> F-7(2) transition region is close to that of the commercially used red phosphor YVO4:Eu3+ (lambda(ex) = 326 nm). Electron energy loss spectroscopy measurements revealed the influence of the structure and Na/Eu cation distribution on the number and positions of bands in the UV-optical-infrared regions of the EELS spectrum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336637000028 Publication Date (up) 2014-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 53 Open Access
Notes Fwo G039211n; Fwo G004413n; 278510 Vortex ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:117765UA @ admin @ c:irua:117765 Serial 1652
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Verbeeck, J.
Title Quantitative measurement of orbital angular momentum in electron microscopy Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue 5 Pages 053818
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron vortex beams have been predicted to enable atomic scale magnetic information measurement, via transfer of orbital angular momentum. Research so far has focused on developing production techniques and applications of these beams. However, methods to measure the outgoing orbital angular momentum distribution are also a crucial requirement towards this goal. Here, we use a method to obtain the orbital angular momentum decomposition of an electron beam, using a multipinhole interferometer. We demonstrate both its ability to accurately measure orbital angular momentum distribution, and its experimental limitations when used in a transmission electron microscope.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000335826300012 Publication Date (up) 2014-05-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 23 Open Access
Notes 7th Framework Program (FP7); ERC Starting Grant No. 278510- VORTEX 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). 7th Framework Program (FP7), ERC Grant No. 246791- COUNTATOMS. SP – 053818-1; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:117093UA @ admin @ c:irua:117093 Serial 2758
Permanent link to this record
 

 
Author Egoavil, R.; Gauquelin, N.; Martinez, G.T.; Van Aert, S.; Van Tendeloo, G.; Verbeeck, J.
Title Atomic resolution mapping of phonon excitations in STEM-EELS experiments Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 147 Issue Pages 1-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Atomically resolved electron energy-loss spectroscopy experiments are commonplace in modern aberration-corrected transmission electron microscopes. Energy resolution has also been increasing steadily with the continuous improvement of electron monochromators. Electronic excitations however are known to be delocalized due to the long range interaction of the charged accelerated electrons with the electrons in a sample. This has made several scientists question the value of combined high spatial and energy resolution for mapping interband transitions and possibly phonon excitation in crystals. In this paper we demonstrate experimentally that atomic resolution information is indeed available at very low energy losses around 100 meV expressed as a modulation of the broadening of the zero loss peak. Careful data analysis allows us to get a glimpse of what are likely phonon excitations with both an energy loss and gain part. These experiments confirm recent theoretical predictions on the strong localization of phonon excitations as opposed to electronic excitations and show that a combination of atomic resolution and recent developments in increased energy resolution will offer great benefit for mapping phonon modes in real space.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000343157400001 Publication Date (up) 2014-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 22 Open Access
Notes 246102 IFOX; 278510 VORTEX; 246791 COUNTATOMS; Hercules; 312483 ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:118332UA @ admin @ c:irua:118332 Serial 177
Permanent link to this record
 

 
Author Janssen, W.; Turner, S.; Sakr, G.; Jomard, F.; Barjon, J.; Degutis, G.; Lu, Y.G.; D'Haen, J.; Hardy, A.; Bael, M.V.; Verbeeck, J.; Van Tendeloo, G.; Haenen, K.
Title Substitutional phosphorus incorporation in nanocrystalline CVD diamond thin films Type A1 Journal article
Year 2014 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R
Volume 8 Issue 8 Pages 705-709
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline diamond (NCD) thin films were produced by chemical vapor deposition (CVD) and doped by the addition of phosphine to the gas mixture. The characterization of the films focused on probing the incorporation and distribution of the phosphorus (P) dopants. Electron microscopy evaluated the overall film morphology and revealed the interior structure of the nanosized grains. The homogeneous films with distinct diamond grains featured a notably low sp(2):sp(3)-ratio as confirmed by Raman spectroscopy. High resolution spectroscopy methods demonstrated a homogeneous P-incorporation, both in-depth and in-plane. The P concentration in the films was determined to be in the order of 10(19) cm(-3) with a significant fraction integrated at substitutional donor sites. (C) 2014 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000340484100007 Publication Date (up) 2014-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6254; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.032 Times cited 20 Open Access
Notes Fwo G055510n; G056810n; G.045612; 246791 Countatoms; 312483 Esteem2; esteem2_jra3 Approved Most recent IF: 3.032; 2014 IF: 2.142
Call Number UA @ lucian @ c:irua:119220 Serial 3346
Permanent link to this record
 

 
Author Goris, B.; Guzzinati, G.; Fernández-López, C.; Pérez-Juste, J.; Liz-Marzán, L.M.; Trügler, A.; Hohenester, U.; Verbeeck, J.; Bals, S.; Van Tendeloo, G.
Title Plasmon mapping in Au@Ag nanocube assemblies Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 28 Pages 15356-15362
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag coreshell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000339368700031 Publication Date (up) 2014-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 41 Open Access OpenAccess
Notes Fwo; 246791 Countatoms; 278510 Vortex; 335078 Colouratom; 262348 Esmi ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:118099UA @ admin @ c:irua:118099 Serial 2644
Permanent link to this record
 

 
Author Abakumov, A.M.; Morozov, V.A.; Tsirlin, A.A.; Verbeeck, J.; Hadermann, J.
Title Cation ordering and flexibility of the BO42- tetrahedra in incommensurately modulated CaEu2(BO4)4 (B = Mo, W) scheelites Type A1 Journal article
Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 53 Issue 17 Pages 9407-9415
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The factors mediating cation ordering in the scheelite-based molybdates and tungstates are discussed on the basis of the incommensurately modulated crystal structures of the CaEu2(BO4)(4) (B = Mo, W) red phosphors solved from high-resolution synchrotron powder X-ray diffraction data. Monoclinic CaEu2(WO4)(4) adopts a (3 + 1)-dimensionally modulated structure [superspace group I2/b(alpha beta 0)00, a = 5.238 73(1)A, b = 5.266 35(1) A, c = 11.463 19(9) A, gamma = 91.1511(2)degrees, q = 0.56153(6)a* + 0.7708(9)b*, R-F = 0.050, R-p = 0.069], whereas tetragonal CaEu2(MoO4)(4) is (3 + 2)-dimensionally modulated [superspace group I4(1)/ a(alpha beta 0)00(-beta alpha 0)00, a = 5.238 672(7) A, c = 11.548 43(2) A, q(1) = 035331(8)a* + 0.82068(9)b*, q(2) = -0.82068(9)a* + 0.55331(8)b*, R-F = 0.061, R-p = 0.082]. In both cases the modulation arises from the ordering of the Ca/Eu cations and the cation vacancies at the A-sublattice of the parent scheelite ABO(4) structure. The cation ordering is incomplete and better described with harmonic rather than with steplike occupational modulation functions. The structures respond to the variation of the effective charge and cation size at the A-position through the flexible geometry of the MoO42- and WO42- tetrahedra demonstrating an alternation of stretching the B-O bond lengths and bending the O-B-O bond angles. The tendency towards A-site cation ordering in scheelites is rationalized using the difference in ionic radii and concentration of the A-site vacancies as parameters and presented in the form of a structure map.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000341229600068 Publication Date (up) 2014-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 48 Open Access
Notes Fwo G039211n Approved Most recent IF: 4.857; 2014 IF: 4.762
Call Number UA @ lucian @ c:irua:119292UA @ admin @ c:irua:119292 Serial 297
Permanent link to this record
 

 
Author Kurttepeli, M.; Deng, S.; Verbruggen, S.W.; Guzzinati, G.; Cott, D.J.; Lenaerts, S.; Verbeeck, J.; Van Tendeloo, G.; Detavernier, C.; Bals, S.
Title Synthesis and characterization of photoreactive TiO2carbon nanosheet composites Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 36 Pages 21031-21037
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract We report the atomic layer deposition of titanium dioxide on carbon nanosheet templates and investigate the effects of postdeposition annealing in a helium environment using different characterization techniques. The crystallization of the titanium dioxide coating upon annealing is observed using in situ X-ray diffraction. The (micro)structural characterization of the films is carried out by scanning electron microscopy and advanced transmission electron microscopy techniques. Our study shows that the annealing of the atomic layer deposition processed and carbon nanosheets templated titanium dioxide layers in helium environment resulting in the formation of a porous, nanocrystalline and photocatalytically active titanium dioxide-carbon nanosheet composite film. Such composites are suitable for photocatalysis and dye-sensitized solar cells applications.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000341619500034 Publication Date (up) 2014-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 9 Open Access OpenAccess
Notes This research was funded by the Flemish research foundation FWO-Vlaanderen, by the European Research Council (Starting Grant No. 239865) and by the Special Research Fund BOF of Ghent University (GOA-01G01513). G.G, M.K., J.V., S.B., and G.V.T. acknowledge funding from the European Research Council under the seventh Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX and No. 335078 COLOURATOMS. ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:119085 Serial 3416
Permanent link to this record
 

 
Author Guzzinati, G.; Clark, L.; Béché, A.; Juchtmans, R.; Van Boxem, R.; Mazilu, M.; Verbeeck, J.
Title Prospects for versatile phase manipulation in the TEM : beyond aberration correction Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 151 Issue 151 Pages 85-93
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper we explore the desirability of a transmission electron microscope in which the phase of the electron wave can be freely controlled. We discuss different existing methods to manipulate the phase of the electron wave and their limitations. We show how with the help of current techniques the electron wave can already be crafted into specific classes of waves each having their own peculiar properties. Assuming a versatile phase modulation device is feasible, we explore possible benefits and methods that could come into existence borrowing from light optics where the so-called spatial light modulators provide programmable phase plates for quite some time now. We demonstrate that a fully controllable phase plate building on Harald Rose׳s legacy in aberration correction and electron optics in general would open an exciting field of research and applications.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000351237800012 Publication Date (up) 2014-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 19 Open Access
Notes 278510 Vortex; Fwo; 312483 Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:121405 c:irua:121405UA @ admin @ c:irua:121405 Serial 2731
Permanent link to this record
 

 
Author Morozov, V.A.; Raskina, M.V.; Lazoryak, B.I.; Meert, K.W.; Korthout, K.; Smet, P.F.; Poelman, D.; Gauquelin, N.; Verbeeck, J.; Abakumov, A.M.; Hadermann, J.;
Title Crystal Structure and Luminescent Properties of R2-xEux(MoO4)(3) (R = Gd, Sm) Red Phosphors Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 24 Pages 7124-7136
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The R-2(MoO4)(3) (R = rare earth elements) molybdates doped with Eu3+ cations are interesting red-emitting materials for display and solid-state lighting applications. The structure and luminescent properties of the R2-xEux(MoO4)(3) (R = Gd, Sm) solid solutions have been investigated as a function of chemical composition and preparation conditions. Monoclinic (alpha) and orthorhombic (beta') R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) modifications were prepared by solid-state reaction, and their structures were investigated using synchrotron powder X-ray diffraction and transmission electron microscopy. The pure orthorhombic beta'-phases could be synthesized only by quenching from high temperature to room temperature for Gd2-xEux(MoO4)(3) in the Eu3+-rich part (x > 1) and for all Sm2-xEux(MoO4)(3) solid solutions. The transformation from the alpha-phase to the beta'-phase results in a notable increase (similar to 24%) of the unit cell volume for all R2-xEux(MoO4)(3) (R = Sm, Gd) solid solutions. The luminescent properties of all R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) solid solutions were measured, and their optical properties were related to their structural properties. All R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) phosphors emit intense red light dominated by the D-5(0)-> F-7(2) transition at similar to 616 nm. However, a change in the multiplet splitting is observed when switching from the monoclinic to the orthorhombic structure, as a consequence of the change in coordination polyhedron of the luminescent ion from RO8 to RO7 for the alpha- and beta'-modification, respectively. The Gd2-xEux(MoO4)(3) solid solutions are the most efficient emitters in the range of 0 < x < 1.5, but their emission intensity is comparable to or even significantly lower than that of Sm2-xEux(MoO4)(3) for higher Eu3+ concentrations (1.5 <= x <= 1.75). Electron energy loss spectroscopy (EELS) measurements revealed the influence of the structure and element content on the number and positions of bands in the ultraviolet-visible-infrared regions of the EELS spectrum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347139700027 Publication Date (up) 2014-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 24 Open Access
Notes Fwo G039211n; G004413n; 278510 Vortex ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:122829UA @ admin @ c:irua:122829 Serial 558
Permanent link to this record
 

 
Author Mueller, K.; Krause, F.F.; Béché, A.; Schowalter, M.; Galioit, V.; Loeffler, S.; Verbeeck, J.; Zweck, J.; Schattschneider, P.; Rosenauer, A.
Title Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction Type A1 Journal article
Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
Volume 5 Issue Pages 5653
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field- induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright- field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347227700003 Publication Date (up) 2014-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 197 Open Access
Notes 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; esteem2ta; ECASJO; Approved Most recent IF: 12.124; 2014 IF: 11.470
Call Number UA @ lucian @ c:irua:122835UA @ admin @ c:irua:122835 Serial 166
Permanent link to this record
 

 
Author Jungbauer, M.; Huehn, S.; Egoavil, R.; Tan, H.; Verbeeck, J.; Van Tendeloo, G.; Moshnyaga, V.
Title Atomic layer epitaxy of Ruddlesden-Popper SrO(SrTiO3)n films by means of metalorganic aerosol deposition Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 105 Issue 25 Pages 251603
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report an atomic layer epitaxial growth of Ruddlesden-Popper (RP) thin films of SrO(SrTiO3)(n) (n = infinity, 2, 3, 4) by means of metalorganic aerosol deposition (MAD). The films are grown on SrTiO3(001) substrates by means of a sequential deposition of Sr-O/Ti-O-2 atomic monolayers, monitored in-situ by optical ellipsometry. X-ray diffraction and transmission electron microscopy (TEM) reveal the RP structure with n = 2-4 in accordance with the growth recipe. RP defects, observed by TEM in a good correlation with the in-situ ellipsometry, mainly result from the excess of SrO. Being maximal at the film/substrate interface, the SrO excess rapidly decreases and saturates after 5-6 repetitions of the SrO(SrTiO3)(4) block at the level of 2.4%. This identifies the SrTiO3 substrate surface as a source of RP defects under oxidizing conditions within MAD. Advantages and limitations of MAD as a solution-based and vacuum-free chemical deposition route were discussed in comparison with molecular beam epitaxy. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000346914000007 Publication Date (up) 2014-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 32 Open Access
Notes 246102 IFOX; 278510 VORTEX; 246791 COUNTATOMS; Hercules; 312483 ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:122830UA @ admin @ c:irua:122830 Serial 172
Permanent link to this record
 

 
Author Huijben, M.; Liu, Y.; Boschker, H.; Lauter, V.; Egoavil, R.; Verbeeck, J.; te Velthuis, S.G.E.; Rijnders, G.; Koster, G.
Title Enhanced local magnetization by interface engineering in perovskite-type correlated oxide heterostructures Type A1 Journal article
Year 2015 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 2 Issue 2 Pages 1400416
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000349916000001 Publication Date (up) 2015-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 30 Open Access
Notes Hercules; 246791 COUNTATOMS; 278510 VORTEX; 246102 IFOX; 312483 ESTEEM2; FWO G004413N; esteem2jra3 ECASJO; Approved Most recent IF: 4.279; 2015 IF: NA
Call Number c:irua:125333 c:irua:125333UA @ admin @ c:irua:125333 Serial 1052
Permanent link to this record
 

 
Author Lu, Y.-G.; Turner, S.; Ekimov, E.A.; Verbeeck, J.; Van Tendeloo, G.
Title Boron-rich inclusions and boron distribution in HPHT polycrystalline superconducting diamond Type A1 Journal article
Year 2015 Publication Carbon Abbreviated Journal Carbon
Volume 86 Issue 86 Pages 156-162
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline boron-doped superconducting diamond, synthesized at high pressure and high temperature (HPHT) via a reaction of a single piece of crystalline boron with monolithic graphite, has been investigated by analytical transmission electron microscopy. The local boron distribution and boron environment have been studied by a combination of (scanning) transmission electron microscopy ((S)TEM) and spatially resolved electron energy-loss spectroscopy (EELS). High resolution TEM imaging and EELS elemental mapping have established, for the first time, the presence of largely crystalline diamond-diamond grain boundaries within the material and have evidenced the presence of substitutional boron dopants within individual diamond grains. Confirmation of the presence of substitutional B dopants has been obtained through comparison of acquired boron K-edge EELS fine structures with known references. This confirmation is important to understand the origin of superconductivity in polycrystalline B-doped diamond. In addition to the substitutional boron doping, boron-rich inclusions and triple-points, both amorphous and crystalline, with chemical compositions close to boron carbide B4C, are evidenced. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000352922700019 Publication Date (up) 2015-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 20 Open Access
Notes FWO; 246791 COUNTATOMS; 278510 VORTEX; Hercules ECASJO_; Approved Most recent IF: 6.337; 2015 IF: 6.196
Call Number c:irua:125994UA @ admin @ c:irua:125994 Serial 250
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J.
Title Inelastic electron-vortex-beam scattering Type A1 Journal article
Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 91 Issue 91 Pages 032703
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Recent theoretical and experimental developments in the field of electron-vortex-beam physics have raised questions about what exactly this novelty in the field of electron microscopy (and other fields, such as particle physics) really provides. An important part of the answer to these questions lies in scattering theory. The present investigation explores various aspects of inelastic quantum scattering theory for cylindrically symmetric beams with orbital angular momentum. The model system of Coulomb scattering on a hydrogen atom provides the setting to address various open questions: How is momentum transferred? Do vortex beams selectively excite atoms, and how can one employ vortex beams to detect magnetic transitions? The analytical approach presented here provides answers to these questions. OAM transfer is possible, but not through selective excitation; rather, by pre- and postselection one can filter out the relevant contributions to a specific signal.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000351035000004 Publication Date (up) 2015-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 31 Open Access
Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2015 IF: 2.808
Call Number c:irua:123925 c:irua:123925UA @ admin @ c:irua:123925 Serial 1607
Permanent link to this record
 

 
Author Juchtmans, R.; Béché, A.; Abakumov, A.; Batuk, M.; Verbeeck, J.
Title Using electron vortex beams to determine chirality of crystals in transmission electron microscopy Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 094112
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We investigate electron vortex beams elastically scattered on chiral crystals. After deriving a general expression for the scattering amplitude of a vortex electron, we study its diffraction on point scatterers arranged on a helix. We derive a relation between the handedness of the helix and the topological charge of the electron vortex on one hand and the symmetry of the higher-order Laue zones in the diffraction pattern on the other for kinematically and dynamically scattered electrons. We then extend this to atoms arranged on a helix as found in crystals which belong to chiral space groups and propose a method to determine the handedness of such crystals by looking at the symmetry of the diffraction pattern. In contrast to alternative methods, our technique does not require multiple scattering, which makes it possible to also investigate extremely thin samples in which multiple scattering is suppressed. In order to verify the model, elastic scattering simulations are performed, and an experimental demonstration on Mn2Sb2O7 is given in which we find the sample to belong to the right-handed variant of its enantiomorphic pair. This demonstrates the usefulness of electron vortex beams to reveal the chirality of crystals in a transmission electron microscope and provides the required theoretical basis for further developments in this field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352017000002 Publication Date (up) 2015-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 54 Open Access
Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra1; esteem2jra2 ECASJO_; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:125512 c:irua:125512 Serial 3825
Permanent link to this record
 

 
Author Krause, F.F.; Ahl, J.P.; Tytko, D.; Choi, P.P.; Egoavil, R.; Schowalter, M.; Mehrtens, T.; Müller-Caspary, K.; Verbeeck, J.; Raabe, D.; Hertkorn, J.; Engl, K.; Rosenauer, A.
Title Homogeneity and composition of AlInGaN : a multiprobe nanostructure study Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 156 Issue 156 Pages 29-36
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electronic properties of quaternary AlInGaN devices significantly depend on the homogeneity of the alloy. The identification of compositional fluctuations or verification of random-alloy distribution is hence of grave importance. Here, a comprehensive multiprobe study of composition and compositional homogeneity is presented, investigating AlInGaN layers with indium concentrations ranging from 0 to 17 at% and aluminium concentrations between 0 and 39 at% employing high-angle annular dark field scanning electron microscopy (HAADF STEM), energy dispersive X-ray spectroscopy (EDX) and atom probe tomography (APT). EDX mappings reveal distributions of local concentrations which are in good agreement with random alloy atomic distributions. This was hence investigated with HAADF STEM by comparison with theoretical random alloy expectations using statistical tests. To validate the performance of these tests, HAADF STEM image simulations were carried out for the case of a random-alloy distribution of atoms and for the case of In-rich clusters with nanometer dimensions. The investigated samples, which were grown by metal-organic vapor phase epitaxy (MOVPE), were thereby found to be homogeneous on this nanometer scale. Analysis of reconstructions obtained from APT measurements yielded matching results. Though HAADF STEM only allows for the reduction of possible combinations of indium and aluminium concentrations to the proximity of isolines in the two-dimensional composition space. The observed ranges of composition are in good agreement with the EDX and APT results within the respective precisions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000361001800006 Publication Date (up) 2015-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 11 Open Access
Notes 312483 Esteem2; esteem2_ta Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:126965 c:irua:126965UA @ admin @ c:irua:126965 Serial 1485
Permanent link to this record
 

 
Author Egoavil, R.; Huehn, S.; Jungbauer, M.; Gauquelin, N.; Béché, A.; Van Tendeloo, G.; Verbeeck; Moshnyaga, V.
Title Phase problem in the B-site ordering of La2CoMnO6 : impact on structure and magnetism Type A1 Journal article
Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 7 Issue 7 Pages 9835-9843
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Epitaxial double perovskite La2CoMnO6 (LCMO) films were grown by metalorganic aerosol deposition on SrTiO3(111) substrates. A high Curie temperature, T-C = 226 K, and large magnetization close to saturation, M-S(5 K) = 5.8 mu(B)/f.u., indicate a 97% degree of B-site (Co,Mn) ordering within the film. The Co/Mn ordering was directly imaged at the atomic scale by scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDX). Local electron-energy-loss spectroscopy (EELS) measurements reveal that the B-sites are predominantly occupied by Co2+ and Mn4+ ions in quantitative agreement with magnetic data. Relatively small values of the (1/2 1/2 1/2) superstructure peak intensity, obtained by X-ray diffraction (XRD), point out the existence of ordered domains with an arbitrary phase relationship across the domain boundary. The size of these domains is estimated to be in the range 35-170 nm according to TEM observations and modelling the magnetization data. These observations provide important information towards the complexity of the cation ordering phenomenon and its implications on magnetism in double perovskites, and similar materials.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000354983100060 Publication Date (up) 2015-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 37 Open Access
Notes 312483 ESTEEM2; FWO G004413N; 246102 IFOX; Hercules; esteem2_jra3 Approved Most recent IF: 7.367; 2015 IF: 7.394
Call Number c:irua:126423 c:irua:126423 Serial 2586
Permanent link to this record
 

 
Author Chen, Y.Z.; Trier, F.; Wijnands, T.; Green, R.J.; Gauquelin, N.; Egoavil, R.; Christensen, D.V.; Koster, G.; Huijben, M.; Bovet, N.; Macke, S.; He, F.; Sutarto, R.; Andersen, N.H.; Sulpizio, J.A.; Honig, M.; Prawiroatmodjo, G.E.D.K.; Jespersen, T.S.; Linderoth, S.; Ilani, S.; Verbeeck, J.; Van Tendeloo, G.; Rijnders, G.; Sawatzky, G.A.; Pryds, N.
Title Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping Type A1 Journal article
Year 2015 Publication Nature materials Abbreviated Journal Nat Mater
Volume 14 Issue 14 Pages 801-806
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Two-dimensional electron gases (2DEGs) formed at the interface of insulating complex oxides promise the development of all-oxide electronic devices. These 2DEGs involve many-body interactions that give rise to a variety of physical phenomena such as superconductivity, magnetism, tunable metalinsulator transitions and phase separation. Increasing the mobility of the 2DEG, however, remains a major challenge. Here, we show that the electron mobility is enhanced by more than two orders of magnitude by inserting a single-unit-cell insulating layer of polar La1−xSrxMnO3 (x = 0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 produced at room temperature. Resonant X-ray spectroscopy and transmission electron microscopy show that the manganite layer undergoes unambiguous electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits Shubnikovde Haas oscillations and fingerprints of the quantum Hall effect, demonstrating unprecedented high mobility and low electron density.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000358530100022 Publication Date (up) 2015-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 170 Open Access
Notes 246102 IFOX; 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; FWO G004413N; esteem2jra3 ECASJO; Approved Most recent IF: 39.737; 2015 IF: 36.503
Call Number c:irua:127184 c:irua:127184UA @ admin @ c:irua:127184 Serial 1163
Permanent link to this record
 

 
Author Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; Angelis, F.D.; Boyen, H.G.;
Title Intrinsic thermal instability of methylammonium lead trihalide perovskite Type A1 Journal article
Year 2015 Publication Laser physics review Abbreviated Journal Adv Energy Mater
Volume 5 Issue 5 Pages 1500477
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Organolead halide perovskites currently are the new front-runners as light absorbers in hybrid solar cells, as they combine efficiencies passing already 20% with deposition temperatures below 100 °C and cheap solution-based fabrication routes. Long-term stability remains a major obstacle for application on an industrial scale. Here, it is demonstrated that significant decomposition effects already occur during annealing of a methylammonium lead triiode perovskite at 85 °C even in inert atmosphere thus violating international standards. The observed behavior supports the view of currently used perovskite materials as soft matter systems with low formation energies, thus representing a major bottleneck for their application, especially in countries with high average temperatures. This result can trigger a broader search for new perovskite families with improved thermal stability.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000359374900005 Publication Date (up) 2015-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.721 Times cited 1691 Open Access
Notes FWO G004413N; GOA Solarpaint Approved Most recent IF: 16.721; 2015 IF: 16.146
Call Number c:irua:127298UA @ admin @ c:irua:127298 Serial 1719
Permanent link to this record
 

 
Author Morozov, V.A.; Arakcheeva, A.V.; Pattison, P.; Meert, K.W.; Smet, P.F.; Poelman, D.; Gauquelin, N.; Verbeeck, J.; Abakumov, A.M.; Hadermann, J.
Title KEu(MoO4)2 : polymorphism, structures, and luminescent properties Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 5519-5530
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper, with the example of two different polymorphs of KEu(MoO4)2, the influence of the ordering of the A-cations on the luminescent properties in scheelite related compounds (A′,A″)n[(B′,B″)O4]m is investigated. The polymorphs were synthesized using a solid state method. The study confirmed the existence of only two polymorphic forms at annealing temperature range 9231203 K and ambient pressure: a low temperature anorthic α-phase and a monoclinic high temperature β-phase with an incommensurately modulated structure. The structures of both polymorphs were solved using transmission electron microscopy and refined from synchrotron powder X-ray diffraction data. The monoclinic β-KEu(MoO4)2 has a (3+1)-dimensional incommensurately modulated structure (superspace group I2/b(αβ0)00, a = 5.52645(4) Å, b = 5.28277(4) Å, c = 11.73797(8) Å, γ = 91.2189(4)o, q = 0.56821(2)a*0.12388(3)b*), whereas the anorthic α-phase is (3+1)-dimensional commensurately modulated (superspace group I1̅(αβγ)0, a = 5.58727(22) Å, b = 5.29188(18)Å, c = 11.7120(4) Å, α = 90.485(3)o, β = 88.074(3)o, γ = 91.0270(23)o, q = 1/2a* + 1/2c*). In both cases the modulation arises due to Eu/K cation ordering at the A site: the formation of a 2-dimensional Eu3+ network is characteristic for the α-phase, while a 3-dimensional Eu3+-framework is observed for the β-phase structure. The luminescent properties of KEu(MoO4)2 samples prepared under different annealing conditions were measured, and the relation between their optical properties and their structures is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000360323700011 Publication Date (up) 2015-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 26 Open Access
Notes 278510 Vortex; Fwo G039211n; G004413n ECASJO_; Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:127244 Serial 3537
Permanent link to this record