|   | 
Details
   web
Record
Author Spanoghe, J.; Vermeir, P.; Vlaeminck, S.E.
Title Microbial food from light, carbon dioxide and hydrogen gas : kinetic, stoichiometric and nutritional potential of three purple bacteria Type A1 Journal article
Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol
Volume 337 Issue Pages 125364
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The urgency for a protein transition towards more sustainable solutions is one of the major societal challenges. Microbial protein is one of the alternative routes, in which land- and fossil-free production should be targeted. The photohydrogenotrophic growth of purple bacteria, which builds on the H2– and CO2-economy, is unexplored for its microbial protein potential. The three tested species (Rhodobacter capsulatus, Rhodobacter sphaeroides and Rhodopseudomonas palustris) obtained promising growth rates (2.3–2.7 d−1 at 28°C) and protein productivities (0.09–0.12 g protein L−1 d−1), rendering them likely faster and more productive than microalgae. The achieved protein yields (2.6–2.9 g protein g−1 H2) transcended the ones of aerobic hydrogen oxidizing bacteria. Furthermore, all species provided full dietary protein matches for humans and their fatty acid content was dominated by vaccenic acid (82–86%). Given its kinetic and nutritional performance we recommend to consider Rhodobacter capsulatus as a high-potential sustainable source of microbial food.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000694862500007 Publication Date (up) 2021-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.651 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.651
Call Number UA @ admin @ c:irua:178752 Serial 8243
Permanent link to this record