|   | 
Details
   web
Records
Author Berdiyorov, G.R.; Savel'ev, S.; Kusmartsev, F.V.; Peeters, F.M.
Title Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current Type A1 Journal article
Year 2015 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 88 Issue 88 Pages 286
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We use the anisotropic time-dependent Ginzburg-Landau theory to investigate the effect of a square array of out-of-plane magnetic dots on the dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting (SNS) Josephson junctions in the presence of external DC and AC currents. Periodic pinning due to the magnetic dots distorts the triangular lattice of fluxons and results in the appearance of commensurability features in the current-voltage characteristics of the system. For the larger values of the magnetization, additional peaks appear in the voltage-time characteristics of the system due to the creation and annihilation of vortex-antivortex pairs. Peculiar changes in the response of the system to the applied current is found resulting in a “superradiant” vortex-flow state at large current values, where a rectangular lattice of moving vortices is formed. Synchronizing the motion of fluxons by adding a small ac component to the biasing dc current is realized. However, we found that synchronization becomes difficult for large magnetization of the dots due to the formation of vortex-antivortex pairs.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Berlin Editor
Language Wos 000363960900002 Publication Date 2015-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 1 Open Access
Notes ; This work was supported by EU Marie Curie (Project No. 253057). ; Approved Most recent IF: 1.461; 2015 IF: 1.345
Call Number UA @ lucian @ c:irua:129509 Serial 4166
Permanent link to this record
 

 
Author Michel, K.H.; Costamagna; Peeters, F.M.
Title Theory of thermal expansion in 2D crystals Type A1 Journal article
Year 2015 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 252 Issue 252 Pages 2433-2437
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The thermal expansion alpha(T) in layered crystals is of fundamental and technological interest. As suggested by I. M. Lifshitz in 1952, in thin solid films (crystalline membranes) a negative contribution to alpha(T) is due to anharmonic couplings between in-plane stretching modes and out-of-plane bending (flexural modes). Genuine in-plane anharmonicities give a positive contribution to alpha(T). The competition between these two effects can lead to a change of sign (crossover) from a negative value of alpha(T) in a temperature (T) range T <= T-alpha to a positive value of alpha(T) for T > T-alpha in layered crystals. Here, we present an analytical lattice dynamical theory of these phenomena for a two-dimensional (2D) hexagonal crystal. We start from a Hamiltonian that comprises anharmonic terms of third and fourth order in the lattice displacements. The in-plane and out-of-plane contributions to the thermal expansion are studied as functions of T for crystals of different sizes. Besides, renormalization of the flexural mode frequencies plays a crucial role in determining the crossover temperature T-alpha. Numerical examples are given for graphene where the anharmonic couplings are determined from experiments. The theory is applicable to other layer crystals wherever the anharmonic couplings are known. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Address
Corporate Author Thesis
Publisher Place of Publication (down) Berlin Editor
Language Wos 000364690400014 Publication Date 2015-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 21 Open Access
Notes ; We thank B. Verberck, D. Lamoen, and A. Dobry for useful comments. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. This work is supported by the Euro GRAPHENE project CONGRAN. ; Approved Most recent IF: 1.674; 2015 IF: 1.489
Call Number UA @ lucian @ c:irua:130281 Serial 4264
Permanent link to this record
 

 
Author Matulis, A.; Zarenia, M.; Peeters, F.M.
Title Wave fronts and packets in 1D models of different meta-materials : graphene, left-handed media and transmission line Type A1 Journal article
Year 2015 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 252 Issue 252 Pages 2330-2338
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A comparative study is made of the propagation of wave packets and fronts in three different meta-media, i.e. graphene, left-handed media (LHM) and transmission lines, using one-dimensional models. It is shown that a potential step in graphene influences only the frequency of the electronic wave, i.e., the particular spectrum branch (electron or hole) to which the wave belongs to, while the envelop function (the wave front or packet form) remains unchanged. Although the model for a vacuum and LHM interface is similar to that of the potential step in graphene, the solutions are quite different due to differences in the chirality of the waves. Comparing the propagation of wave fronts and packets in a standard transmission line and its meta-analog we demonstrate that the propagating packets in the meta-line are much more deformed as compared to the standard one, including broadening, asymmetry and even the appearance of fast moving precursors. This influence is seen not only in the case of packets with steep fronts but in soft Gaussian packets as well.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Berlin Editor
Language Wos 000362722300025 Publication Date 2015-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 1 Open Access
Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the Methusalem foundation of the Flemish government, and the European Social Fund under the Global Grant Measure (Grant No. VP1-3.1-SMM-07-K-02-046). ; Approved Most recent IF: 1.674; 2015 IF: 1.489
Call Number UA @ lucian @ c:irua:128776 Serial 4277
Permanent link to this record
 

 
Author Shestakov, M.V.; Meledina, M.; Turner, S.; Baekelant, W.; Verellen, N.; Chen, X.; Hofkens, J.; Van Tendeloo, G.; Moshchalkov, V.V.
Title Luminescence of fixed site Ag nanoclusters in a simple oxyfluoride glass host and plasmon absorption of amorphous Ag nanoparticles in a complex oxyfluoride glass host Type P1 Proceeding
Year 2015 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – 8th International Conference on Photonics, Devices, and System VI, AUG 27-29, 2014, Prague, CZECH REPUBLIC Abbreviated Journal
Volume Issue Pages Unsp 94501n
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract Ag nanocluster-doped glasses have been prepared by a conventional melt-quenching method. The effect of melt temperature and dwell time on the formation of Ag nanoclusters and Ag nanoparticles in simple host oxyfluoride glasses has been studied. The increase of melt temperature and dwell time results in the dissolution of Ag nanoparticles and substantial red-shift of absorption and photoluminescence spectra of the prepared glasses. The quantum yield of the glasses is similar to 5% and does not depend on melt temperature and dwell time. The prepared glasses may be used as red phosphors or down-conversion layers for solar-cells.
Address
Corporate Author Thesis
Publisher Spie-int soc optical engineering Place of Publication (down) Bellingham Editor
Language Wos 000349404500057 Publication Date 2015-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume 9450 Series Issue Edition
ISSN 978-1-62841-566-7 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:144783 Serial 4668
Permanent link to this record
 

 
Author Zhang, F.; Vanmeensel, K.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Naert, I.; Vleugels, J.
Title Critical influence of alumina content on the low temperature degradation of 2-3 mol% yttria-stabilized TZP for dental restorations Type A1 Journal article
Year 2015 Publication Journal of the European Ceramic Society Abbreviated Journal J Eur Ceram Soc
Volume 35 Issue 35 Pages 741-750
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The influence of 0.25, 2 and 5 wt.% alumina addition on the mechanical properties and low temperature degradation (LTD) of 3, 2.5 and 2 mol% yttria-stabilized TZP ceramics was investigated. The amount of alumina addition was observed to have a crucial impact on the degradation of Y-TZP ceramics. Independent on the yttria stabilizer content, 0.25 wt.% alumina had a higher degradation retarding effect to Y-TZP ceramics than 2 and 5 wt.% of alumina addition, which had a comparable effect. The apparent activation energy for the degradation process was increased by adding alumina, but it was the same for 0.255 wt.% alumina doped 3Y-TZP ceramics. For Y-TZPs containing a small amount of alumina addition, only the segregated Al3+ at the grain boundaries of the zirconia grains was effective to retard the degradation of Y-TZPs. The secondary phase Al2O3 grains increased the degradation kinetics, which might be attributed to the residual stresses.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Barking Editor
Language Wos 000345201700032 Publication Date 2014-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0955-2219; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 37 Open Access
Notes Fwo G043110n Approved Most recent IF: 3.411; 2015 IF: 2.947
Call Number c:irua:121328 Serial 544
Permanent link to this record
 

 
Author Amin-Ahmadi, B.
Title Adanced TEM investigation of the elementary plsticity mechanisms in palladium thin films at the nano scale Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:125236 Serial 56
Permanent link to this record
 

 
Author Zhang, L.
Title Effects of quantum confinement in nanoscale superconductors : from electronic density of states to vortex matter Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:126085 Serial 870
Permanent link to this record
 

 
Author Sivek, J.
Title First-principles characterization and functionalization of graphene-like materials Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:125632 Serial 1204
Permanent link to this record
 

 
Author Govaerts, K.
Title First-principles study of homologous series of layered Bi-Sb-Te-Se and Sn-O structures Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:126206 Serial 1218
Permanent link to this record
 

 
Author Sarmadian, N.
Title Identification of thin-film photovoltaic cell materials based on high-throughput first-principles calculations Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:126078 Serial 1551
Permanent link to this record
 

 
Author Roose, D.
Title Magnetic resonance imaging and electron microscopy of iron oxide particles in the brain Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Universiteit Antwerpen, Faculteit Farmaceutische, Biomedische en Diergeneeskundige Wetenschappen, Departement Biomedische Wetenschappen Place of Publication (down) Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:123897 Serial 1889
Permanent link to this record
 

 
Author de Backer, A.
Title Quantitative atomic resolution electron microscopy using advanced statistical techniques Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:125636 Serial 2747
Permanent link to this record
 

 
Author Martínez Alanis, G.T.
Title Quantitative model-based high angle annular dark field scanning transmission electron microscopy Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT); Engineering Management (ENM)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:122528 Serial 2759
Permanent link to this record
 

 
Author da Costa, D.R.
Title Transport and confinement in monolayer and bilayer graphene nanostructures with different edges, interfaces and potentials Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:125274 Serial 3722
Permanent link to this record
 

 
Author Schoeters, B.
Title An ab initio study of the properties of doped semiconducting nanwires Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:128354 Serial 4133
Permanent link to this record
 

 
Author Somers, W.
Title Atomic scale simulations of the interactions of plasma species on nickel catalyst surfaces Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:127915 Serial 4142
Permanent link to this record
 

 
Author Kurttepeli, M.
Title Carbon based materials and hybrid nanostructures investigated by advanced transmission electron microscopy Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:130502 Serial 4145
Permanent link to this record
 

 
Author Van Boxem, R.
Title Electron vortex beams : an in-depth theoretical study Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:132968 Serial 4168
Permanent link to this record
 

 
Author Guzzinati, G.
Title Exploring electron beam shaping in transmission electron microscopy Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:130499 Serial 4180
Permanent link to this record
 

 
Author Van Havenbergh, K.
Title Influence of silicon nanoparticle coating on the electrolyte decomposition in Li-ion batteries Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:131647 Serial 4196
Permanent link to this record
 

 
Author Altantzis, T.
Title Three-dimensional characterization of atomic clusters, nanoparticles and their assemblies by advanced transmission electron microscopy Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:130493 Serial 4265
Permanent link to this record
 

 
Author Grujić, M.M.
Title Manifestations of intrinsic and induced magnetic properties of graphene nanostructures Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher University of Antwerp, Faculty of Sciences, Department of Physics Place of Publication (down) Antwerp Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:126212 Serial 1939
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Magnus, W.; Sorée, B.
Title An envelope function formalism for lattice-matched heterostructures Type A1 Journal article
Year 2015 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 470-471 Issue 470-471 Pages 69-75
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The envelope function method traditionally employs a single basis set which, in practice, relates to a single material because the k.p matrix elements are generally only known in a particular basis. In this work, we defined a basis function transformation to alleviate this restriction. The transformation is completely described by the known inter-band momentum matrix elements. The resulting envelope function equation can solve the electronic structure in lattice matched heterostructures without resorting to boundary conditions at the interface between materials, while all unit-cell averaged observables can be calculated as with the standard envelope function formalism. In the case of two coupled bands, this heterostructure formalism is equivalent to the standard formalism while taking position dependent matrix elements. (C) 2015 Elsevier B.V. All rights reserved
Address
Corporate Author Thesis
Publisher Place of Publication (down) Amsterdam Editor
Language Wos 000355149600011 Publication Date 2015-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.386 Times cited 5 Open Access
Notes ; ; Approved Most recent IF: 1.386; 2015 IF: 1.319
Call Number c:irua:126397 Serial 95
Permanent link to this record
 

 
Author Akamine, H.; Van den Bos, K.H.W.; Gauquelin, N.; Farjami, S.; Van Aert, S.; Schryvers, D.; Nishida, M.
Title Determination of the atomic width of an APB in ordered CoPt using quantified HAADF-STEM Type A1 Journal article
Year 2015 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 644 Issue 644 Pages 570-574
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Anti-phase boundaries (APBs) in an ordered CoPt alloy are planar defects which disturb the ordered structure in their vicinity and decrease the magnetic properties. However, it has not yet been clarified to what extend the APBs disturb the ordering. In this study, high-resolution HAADF-STEM images are statistically analysed based on the image intensities estimated by the statistical parameter estimation theory. In the procedure, averaging intensities, fitting the intensity profiles to specific functions, and assessment based on a statistical test are performed. As a result, the APBs in the stable CoPt are found to be characterised by two atomic planes, and a contrast transition range as well as the centre of an inclined APB is determined. These results show that the APBs are quite sharp and therefore may have no notable effect on the net magnetic properties due to their small volume fraction. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Amsterdam Editor
Language Wos 000357143900083 Publication Date 2015-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited 12 Open Access
Notes FWO G036815N; G036915N; G037413N; 278510 VORTEX; Hercules; ECASJO_; Approved Most recent IF: 3.133; 2015 IF: 2.999
Call Number c:irua:127008 c:irua:127008 Serial 675
Permanent link to this record
 

 
Author Filippousi, M.; Turner, S.; Katsikini, M.; Pinakidou, F.; Zamboulis, D.; Pavlidou, E.; Van Tendeloo, G.
Title Direct observation and structural characterization of natural and metal ion-exchanged HEU-type zeolites Type A1 Journal article
Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 210 Issue 210 Pages 185-193
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The atomic structure of natural HEU-type zeolite and two ion-exchanged variants of the zeolite, Ag+ (Ag-HEU) and Zn2+ (Zn-HEU) ion exchanged HEU-type zeolites, are investigated using advanced transmission electron microscopy techniques in combination with X-ray powder diffraction and X-ray absorption fine structure measurements. In both ion-exchanged materials, loading of the natural HEU zeolite is confirmed. Using low-voltage, aberration-corrected transmission electron microscopy at low-dose conditions, the local crystal structure of natural HEU-type zeolite is determined and the interaction of the ion-exchanged natural zeolites with the Ag+ and Zn2+ ions is studied. In the case of Ag-HEU, the presence of Ag+ ions and clusters at extra-framework sites as well as Ag nanoparticles has been confirmed. The Ag nanoparticles are preferentially positioned at the zeolite surface. For Zn-HEU, no large Zn(O) nanopartides are present, instead, the HEU channels are evidenced to be decorated by small Zn(O) clusters. (c) 2015 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Amsterdam Editor
Language Wos 000353733300024 Publication Date 2015-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 5 Open Access
Notes 246791 Countatoms; Iap-Pai; Fwo Approved Most recent IF: 3.615; 2015 IF: 3.453
Call Number c:irua:126006 Serial 715
Permanent link to this record
 

 
Author de Backer, A.; Martinez, G.T.; MacArthur, K.E.; Jones, L.; Béché, A.; Nellist, P.D.; Van Aert, S.
Title Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 151 Issue 151 Pages 56-61
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Amsterdam Editor
Language Wos 000351237800008 Publication Date 2014-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 29 Open Access
Notes 312483 Esteem2; 278510 Vortex; Fwo G039311; G006410; G037413; esteem2ta; ECASJO; Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:123927 c:irua:123927 Serial 753
Permanent link to this record
 

 
Author Xie, L.; Brault, P.; Coutanceau, C.; Bauchire, J.-M.; Caillard, A.; Baranton, S.; Berndt, J.; Neyts, E.C.
Title Efficient amorphous platinum catalyst cluster growth on porous carbon : a combined molecular dynamics and experimental study Type A1 Journal article
Year 2015 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 162 Issue 162 Pages 21-26
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Amorphous platinum clusters supported on porous carbon have been envisaged for high-performance fuel cell electrodes. For this application, it is crucial to control the morphology of the Pt layer and the Ptsubstrate interaction to maximize activity and stability. We thus investigate the morphology evolution during Pt cluster growth on a porous carbon substrate employing atomic scale molecular dynamics simulations. The simulations are based on the Pt-C interaction potential using parameters derived from density functional theory and are found to yield a Pt cluster morphology similar to that observed in low loaded fuel cell electrodes prepared by plasma sputtering. Moreover, the simulations show amorphous Pt cluster growth in agreement with X-ray diffraction and transmission electron microscopy experiments on high performance low Pt content (10 μgPt cm−2) loaded fuel cell electrodes and provide a fundamental insight in the cluster growth mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Amsterdam Editor
Language Wos 000343686900003 Publication Date 2014-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 20 Open Access
Notes Approved Most recent IF: 9.446; 2015 IF: 7.435
Call Number c:irua:117949 Serial 874
Permanent link to this record
 

 
Author Bladt, E.; Pelt, D.M.; Bals, S.; Batenburg, K.J.
Title Electron tomography based on highly limited data using a neural network reconstruction technique Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 158 Issue 158 Pages 81-88
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. Their exact shape determines the properties and thereby the possible applications. Electron tomography is therefore often used to examine the three-dimensional (3D) shape of nanoparticles. However, since the acquisition of the experimental tilt series and the 3D reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is based on artificial neural networks. The use of a new reconstruction approach enables us to reduce the number of projection images with a factor of 5 or more. The decrease in acquisition time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Amsterdam Editor
Language Wos 000361574800011 Publication Date 2015-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 25 Open Access OpenAccess
Notes 335078 COLOURATOM; FWO; COST Action MP1207; 312483 ESTEEM2; esteem2jra4; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:126675 c:irua:126675 Serial 988
Permanent link to this record
 

 
Author Angelakeris, M.; Li, Z.A.; Hilgendorff, M.; Simeonidis, K.; Sakellari, D.; Filippousi, M.; Tian, H.; Van Tendeloo, G.; Spasova, M.; Acet, M.; Farle, M.
Title Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles Type A1 Journal article
Year 2015 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater
Volume 381 Issue 381 Pages 179-187
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Biomedical nanomagnetic carriers are getting a higher impact in therapy and diagnosis schemes while their constraints and prerequisites are more and more successfully confronted. Such particles should possess a well-defined size with minimum agglomeration and they should be synthesized in a facile and reproducible high-yield way together with a controllable response to an applied static or dynamic field tailored for the specific application. Here, we attempt to enhance the heating efficiency in magnetic particle hyperthermia treatment through the proper adjustment of the core-shell morphology in ferrite particles, by controlling exchange and dipolar magnetic interactions at the nanoscale. Thus, core-shell nanoparticles with mutual coupling of magnetically hard (CoFe2O4) and soft (MnFe2O4) components are synthesized with facile synthetic controls resulting in uniform size and shell thickness as evidenced by high resolution transmission electron microscopy imaging, excellent crystallinity and size monodispersity. Such a magnetic coupling enables the fine tuning of magnetic anisotropy and magnetic interactions without sparing the good structural, chemical and colloidal stability. Consequently, the magnetic heating efficiency of CoFe2O4. and MnFe2O4 core-shell nanoparticles is distinctively different horn that of their counterparts, even though all these nanocrystals were synthesized under similar conditions. For better understanding of the AC magnetic hyperthermia response and its correlation with magnetic-origin features we study the effect of the volume ratio of magnetic hard and soft phases in the bimagnetic core-shell nanocrystals. Eventually, such particles may be considered as novel heating carriers that under further biomedical functionalization may become adaptable multifunctional heat-triggered nanoplatforms. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Amsterdam Editor
Language Wos 000349361100027 Publication Date 2014-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.63 Times cited 20 Open Access
Notes 312483 Esteem2; Esteem2_ta Approved Most recent IF: 2.63; 2015 IF: 1.970
Call Number c:irua:125284 c:irua:125284 Serial 1049
Permanent link to this record
 

 
Author Krause, F.F.; Ahl, J.P.; Tytko, D.; Choi, P.P.; Egoavil, R.; Schowalter, M.; Mehrtens, T.; Müller-Caspary, K.; Verbeeck, J.; Raabe, D.; Hertkorn, J.; Engl, K.; Rosenauer, A.
Title Homogeneity and composition of AlInGaN : a multiprobe nanostructure study Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 156 Issue 156 Pages 29-36
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electronic properties of quaternary AlInGaN devices significantly depend on the homogeneity of the alloy. The identification of compositional fluctuations or verification of random-alloy distribution is hence of grave importance. Here, a comprehensive multiprobe study of composition and compositional homogeneity is presented, investigating AlInGaN layers with indium concentrations ranging from 0 to 17 at% and aluminium concentrations between 0 and 39 at% employing high-angle annular dark field scanning electron microscopy (HAADF STEM), energy dispersive X-ray spectroscopy (EDX) and atom probe tomography (APT). EDX mappings reveal distributions of local concentrations which are in good agreement with random alloy atomic distributions. This was hence investigated with HAADF STEM by comparison with theoretical random alloy expectations using statistical tests. To validate the performance of these tests, HAADF STEM image simulations were carried out for the case of a random-alloy distribution of atoms and for the case of In-rich clusters with nanometer dimensions. The investigated samples, which were grown by metal-organic vapor phase epitaxy (MOVPE), were thereby found to be homogeneous on this nanometer scale. Analysis of reconstructions obtained from APT measurements yielded matching results. Though HAADF STEM only allows for the reduction of possible combinations of indium and aluminium concentrations to the proximity of isolines in the two-dimensional composition space. The observed ranges of composition are in good agreement with the EDX and APT results within the respective precisions.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Amsterdam Editor
Language Wos 000361001800006 Publication Date 2015-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 11 Open Access
Notes 312483 Esteem2; esteem2_ta Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:126965 c:irua:126965UA @ admin @ c:irua:126965 Serial 1485
Permanent link to this record