toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Pinheiro, C.B.; Abakumov, A.M.
  Title Superspace crystallography : a key to the chemistry and properties Type A1 Journal article
  Year 2015 Publication IUCrJ Abbreviated Journal Iucrj
  Volume 2 Issue 2 Pages 137-154
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract An overview is given of the recent advances in the field of modulated molecular and inorganic crystals with an emphasis on the links between incommensurability, intermolecular and interatomic interactions and, wherever possible, the properties of the materials. The importance of detailed knowledge on the modulated structure for understanding the crystal chemistry and the functional properties of modulated phases is shown using selected examples of incommensurate modulations in organic molecular compounds and inorganic complex oxides.
  Address
  Corporate Author Thesis
  Publisher Int union crystallography Place of Publication (down) Chester Editor
  Language Wos 000356865900016 Publication Date 2014-12-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2052-2525; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.793 Times cited 15 Open Access
  Notes Approved Most recent IF: 5.793; 2015 IF: NA
  Call Number c:irua:127058 Serial 3382
Permanent link to this record
 

 
Author Gjorgievska, E.; Van Tendeloo, G.; Nicholson, J.W.; Coleman, N.J.; Slipper, I.J.; Booth, S.
  Title The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements Type A1 Journal article
  Year 2015 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
  Volume 21 Issue 21 Pages 392-406
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Conventional glass-ionomer cements (GICs) are popular restorative materials, but their use is limited by their relatively low mechanical strength. This paper reports an attempt to improve these materials by incorporation of 10 wt% of three different types of nanoparticles, aluminum oxide, zirconium oxide, and titanium dioxide, into two commercial GICs (ChemFil((R)) Rock and EQUIA (TM) Fil). The results indicate that the nanoparticles readily dispersed into the cement matrix by hand mixing and reduced the porosity of set cements by filling the empty spaces between the glass particles. Both cements showed no significant difference in compressive strength with added alumina, and ChemFil((R)) Rock also showed no significant difference with zirconia. By contrast, ChemFil((R)) Rock showed significantly higher compressive strength with added titania, and EQUIA (TM) Fil showed significantly higher compressive strength with both zirconia and titania. Fewer air voids were observed in all nanoparticle-containing cements and this, in turn, reduced the development of cracks within the matrix of the cements. These changes in microstructure provide a likely reason for the observed increases in compressive strength, and overall the addition of nanoparticles appears to be a promising strategy for improving the physical properties of GICs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge, Mass. Editor
  Language Wos 000353514700014 Publication Date 2015-02-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.891 Times cited 15 Open Access
  Notes Approved Most recent IF: 1.891; 2015 IF: 1.877
  Call Number UA @ lucian @ c:irua:132523 Serial 4194
Permanent link to this record
 

 
Author Mourdikoudis, S.; Chirea, M.; Zanaga, D.; Altantzis, T.; Mitrakas, M.; Bals, S.; Marzán, L.M.; Pérez-Juste, J.; Pastoriza-Santos, I.
  Title Governing the morphology of PtAu heteronanocrystals with improved electrocatalytic performance Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 7 Issue 7 Pages 8739-8747
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Platinumgold heteronanostructures comprising either dimer (PtAu) or coresatellite (Pt@Au) configurations were synthesized by means of a seeded growth procedure using platinum nanodendrites as seeds. Careful control of the reduction kinetics of the gold precursor can be used to direct the nucleation and growth of gold nanoparticles on either one or multiple surface sites simultaneously, leading to the formation of either dimers or coresatellite nanoparticles, respectively, in high yields. Characterization by electron tomography and high resolution electron microscopy provided a better understanding of the actual three-dimensional particle morphology, as well as the AuPt interface, revealing quasi-epitaxial growth of Au on Pt. The prepared PtAu bimetallic nanostructures are highly efficient catalysts for ethanol oxidation in alkaline solution, showing accurate selectivity, high sensitivity, and improved efficiency by generating higher current densities than their monometallic counterparts.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000354204400011 Publication Date 2015-03-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 41 Open Access OpenAccess
  Notes 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2015 IF: 7.394
  Call Number c:irua:126354 Serial 1360
Permanent link to this record
 

 
Author Meledina, M.; Turner, S.; Galvita, V.V.; Poelman, H.; Marin, G.B.; Van Tendeloo, G.
  Title Local environment of Fe dopants in nanoscale Fe : CeO2-x oxygen storage material Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 7 Issue 7 Pages 3196-3204
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Nanoscale Fe : CeO2-x oxygen storage material for the process of chemical looping has been investigated by advanced transmission electron microscopy and electron energy-loss spectroscopy before and after a model looping procedure, consisting of redox cycles at heightened temperature. Separately, the activity of the nanomaterial has been tested in a toluene total oxidation reaction. The results show that the material consists of ceria nanoparticles, doped with single Fe atoms and small FeOx clusters. The iron ion is partially present as Fe3+ in a solid solution within the ceria lattice. Furthermore, enrichment of reduced Fe2+ species is observed in nanovoids present in the ceria nanoparticles, as well as at the ceria surface. After chemical looping, agglomeration occurs and reduced nanoclusters appear at ceria grain boundaries formed by sintering. These clusters originate from surface Fe2+ aggregation, and from bulk Fe3+, which “leaks out” in reduced state after cycling to a slightly more agglomerated form. The activity of Fe : CeO2 during the toluene total oxidation part of the chemical looping cycle is ensured by the dopant Fe in the Fe1-xCexO2 solid solution, and by surface Fe species. These measurements on a model Fe : CeO2-x oxygen storage material give a unique insight into the behavior of dopants within a nanosized ceria host, and allow to interpret a plethora of (doped) cerium oxide-based reactions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000349473200046 Publication Date 2015-01-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 17 Open Access
  Notes Approved Most recent IF: 7.367; 2015 IF: 7.394
  Call Number c:irua:125299 Serial 1828
Permanent link to this record
 

 
Author Chen, J.-J.; Ke, X.; Van Tendeloo, G.; Meng, J.; Zhou, Y.-B.; Liao, Z.-M.; Yu, D.-P.
  Title Magnetotransport across the metal-graphene hybrid interface and its modulation by gate voltage Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 7 Issue 7 Pages 5516-5524
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The graphene-metal contact is very important for optimizing the performance of graphene based electronic devices. However, it is difficult to probe the properties of the graphene/metal interface directly via transport measurements in traditional graphene lateral devices, because the dominated transport channel is graphene, not the interface. Here, we employ the Au/graphene/Au vertical and lateral hybrid structure to unveil the metal-graphene interface properties, where the transport is dominated by the charge carriers across the interface. The magnetoresistance (MR) of Au/monolayer graphene/Au and Au/stacked two-layered graphene/Au devices is measured and modulated by gate voltage, demonstrating that the interface is a device. The gate-tunable MR is identified from the graphene lying on the SiO2 substrate and underneath the top metal electrode. Our unique structures couple the in-plane and out-of-plane transport and display linear MR with small amplitude oscillations at low temperatures. Under a magnetic field, the electronic coupling between the graphene edge states and the electrode leads to the appearance of quantum oscillations. Our results not only provide a new pathway to explore the intrinsic transport mechanism at the graphene/metal interface but also open up new vistas of magnetoelectronics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000351372400050 Publication Date 2015-02-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 3 Open Access
  Notes 246791 Countatoms Approved Most recent IF: 7.367; 2015 IF: 7.394
  Call Number c:irua:125533 Serial 1931
Permanent link to this record
 

 
Author Lieberman, C.M.; Filatov, A.S.; Wei, Z.; Rogachev, A.Y.; Abakumov, A.M.; Dikarev, E.V.
  Title Mixed-valent, heteroleptic homometallic diketonates as templates for the design of volatile heterometallic precursors Type A1 Journal article
  Year 2015 Publication Chemical science Abbreviated Journal Chem Sci
  Volume 6 Issue 6 Pages 2835-2842
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A novel series of mixed-valent, heteroleptic transition metal diketonates that can be utilized as prospective single-source precursors for the low-temperature preparation of oxide materials are reported. The first mixed-valent iron beta-diketonates with different Fe-III/Fe-II ratios have been synthesized by applying the mixed-ligand approach. Based on nearly quantitative reaction yields and analysis of iron-oxygen bonds, these compounds were formulated as [Fe-III(acac)(3)][Fe-II(hfac)(2)] (1) and [Fe-II(hfac)(2)][Fe-III(acac)(3)][Fe-II(hfac)(2)] (2). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated Fe-II centers chelated by two hfac (hexafluoroacetylacetonate) ligands with electron-withdrawing substituents maintain bridging interactions with oxygen atoms of electron-donating acac (acetylacetonate) groups that chelate the neighboring Fe-III atoms. Switching the ligands on Fe-III and Fe-II atoms in starting reagents resulted in the instant ligand exchange between iron centers and in yet another polynuclear homometallic diketonate [Fe-II(hfac)(2)][Fe-III(acac)(2)(hfac)][Fe-II(hfac)(2)] (3) that adheres to the same bonding pattern as in complexes 1 and 2. The proposed synthetic methodology has been extended to design heterometallic diketonates with different M : M' ratios. Homometallic parent molecules have been used as templates to obtain heterometallic mixed-valent [Fe-III(acac)(3)][Mn-II(hfac)(2)] (4) and [Ni-II(hfac)(2)] – [Fe-III(acac)(3)][Ni-II(hfac)(2)] (5) complexes. The combination of two different diketonate ligands with electron-donating and electron-withdrawing substituents was found to be crucial for maintaining the above mixed-valent heterometallic assemblies. Theoretical investigation of two possible “isomers”, [Fe-III(acac)(3)][Mn-II(hfac)(2)] (4) and [Mn-III(acac)(3)][Fe-II(hfac)(2)] (40) provided an additional support for the metal site assignment giving a preference of 9.78 kcal mol(-1) for the molecule 4. Heterometallic complexes obtained in the course of this study have been found to act as effective single-source precursors for the synthesis of mixed-transition metal oxide materials MxM2-xO3 and MxMi-xO. The title highly volatile precursors can be used for the low-temperature preparation of both amorphous and crystalline heterometallic oxides in the form of thin films or nanosized particles that are known to operate as efficient catalysts in oxygen evolution reaction.
  Address
  Corporate Author Thesis
  Publisher Royal Society of Chemistry Place of Publication (down) Cambridge Editor
  Language Wos 000353223100021 Publication Date 2015-02-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.668 Times cited 13 Open Access
  Notes Approved Most recent IF: 8.668; 2015 IF: 9.211
  Call Number c:irua:126031 Serial 2092
Permanent link to this record
 

 
Author Filippousi, M.; Siafaka, P.I.; Amanatiadou, E.P.; Nanaki, S.G.; Nerantzaki, M.; Bikiaris, D.N.; Vizirianakis, I.S.; Van Tendeloo, G.
  Title Modified chitosan coated mesoporous strontium hydroxyapatite nanorods as drug carriers Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry B : materials for biology and medicine Abbreviated Journal J Mater Chem B
  Volume 3 Issue 3 Pages 5991-6000
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Mesoporous strontium hydroxyapatite (SrHAp) nanorods (NRs) have been successfully synthesized using a simple and efficient chemical route, i.e. the hydrothermal method. Structural and morphological characterization of the as-synthesized SrHAp NRs have been performed by transmission electron microscopy (TEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). TEM and HAADF-STEM measurements of the NRs reveal the coexistence of longer and shorter particles with the length ranging from 50 nm to 400 nm and a diameter of about 20-40 nm. Electron tomography measurements of the NRs allow us to better visualize the mesopores and their facets. Two model drugs, hydrophobic risperidone and hydrophilic pramipexole, were loaded into the SrHAp NRs. These nanorods were coated using a modified chitosan (CS) with poly(2-hydroxyethyl methacrylate) (PHEMA), in order to encapsulate the drug-loaded SrHAp nanoparticles and reduce the cytotoxicity of the loaded materials. The drug release from neat and encapsulated SrHAp NRs mainly depends on the drug hydrophilicity. Importantly, although neat SrHAp nanorods exhibit some cytotoxicity against Caco-2 cells, the Cs-g-PHEMA-SrHAp drug-loaded nanorods show an acceptable cytocompatibility.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000358065100009 Publication Date 2015-06-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-750X;2050-7518; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.543 Times cited 24 Open Access
  Notes Approved Most recent IF: 4.543; 2015 IF: 4.726
  Call Number c:irua:127131 Serial 2161
Permanent link to this record
 

 
Author Egoavil, R.; Huehn, S.; Jungbauer, M.; Gauquelin, N.; Béché, A.; Van Tendeloo, G.; Verbeeck; Moshnyaga, V.
  Title Phase problem in the B-site ordering of La2CoMnO6 : impact on structure and magnetism Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 7 Issue 7 Pages 9835-9843
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Epitaxial double perovskite La2CoMnO6 (LCMO) films were grown by metalorganic aerosol deposition on SrTiO3(111) substrates. A high Curie temperature, T-C = 226 K, and large magnetization close to saturation, M-S(5 K) = 5.8 mu(B)/f.u., indicate a 97% degree of B-site (Co,Mn) ordering within the film. The Co/Mn ordering was directly imaged at the atomic scale by scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDX). Local electron-energy-loss spectroscopy (EELS) measurements reveal that the B-sites are predominantly occupied by Co2+ and Mn4+ ions in quantitative agreement with magnetic data. Relatively small values of the (1/2 1/2 1/2) superstructure peak intensity, obtained by X-ray diffraction (XRD), point out the existence of ordered domains with an arbitrary phase relationship across the domain boundary. The size of these domains is estimated to be in the range 35-170 nm according to TEM observations and modelling the magnetization data. These observations provide important information towards the complexity of the cation ordering phenomenon and its implications on magnetism in double perovskites, and similar materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000354983100060 Publication Date 2015-05-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 37 Open Access
  Notes 312483 ESTEEM2; FWO G004413N; 246102 IFOX; Hercules; esteem2_jra3 Approved Most recent IF: 7.367; 2015 IF: 7.394
  Call Number c:irua:126423 c:irua:126423 Serial 2586
Permanent link to this record
 

 
Author Deng, S.; Kurttepeli, M.; Cott, D.J.; Bals, S.; Detavernier, C.
  Title Porous nanostructured metal oxides synthesized through atomic layer deposition on a carbonaceous template followed by calcination Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
  Volume 3 Issue 3 Pages 2642-2649
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Porous metal oxides with nano-sized features attracted intensive interest in recent decades due to their high surface area which is essential for many applications, e.g. Li ion batteries, photocatalysts, fuel cells and dye-sensitized solar cells. Various approaches have so far been investigated to synthesize porous nanostructured metal oxides, including self-assembly and template-assisted synthesis. For the latter approach, forests of carbon nanotubes are considered as particularly promising templates, with respect to their one-dimensional nature and the resulting high surface area. In this work, we systematically investigate the formation of porous metal oxides (Al2O3, TiO2, V2O5 and ZnO) with different morphologies using atomic layer deposition on multi-walled carbon nanotubes followed by post-deposition calcination. X-ray diffraction, scanning electron microscopy accompanied by X-ray energy dispersive spectroscopy and transmission electron microscopy were used for the investigation of morphological and structural transitions at the micro- and nano-scale during the calcination process. The crystallization temperature and the surface coverage of the metal oxides and the oxidation temperature of the carbon nanotubes were found to produce significant influence on the final morphology.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000348990500019 Publication Date 2014-12-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.867 Times cited 23 Open Access OpenAccess
  Notes Fwo; 239865 Cocoon; 335078 Colouratoms; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.867; 2015 IF: 7.443
  Call Number c:irua:125298 Serial 2673
Permanent link to this record
 

 
Author Çakir, D.; Kecik, D.; Sahin, H.; Durgun, E.; Peeters, F.M.
  Title Realization of a p-n junction in a single layer boron-phosphide Type A1 Journal article
  Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 17 Issue 17 Pages 13013-13020
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Two-dimensional (2D) materials have attracted growing interest due to their potential use in the next generation of nanoelectronic and optoelectronic applications. On the basis of first-principles calculations based on density functional theory, we first investigate the electronic and mechanical properties of single layer boron phosphide (h-BP). Our calculations show that h-BP is a mechanically stable 2D material with a direct band gap of 0.9 eV at the K-point, promising for both electronic and optoelectronic applications. We next investigate the electron transport properties of a p-n junction constructed from single layer boron phosphide (h-BP) using the non-equilibrium Green's function formalism. The n-and p-type doping of BP are achieved by substitutional doping of B with C and P with Si, respectively. C(Si) substitutional doping creates donor (acceptor) states close to the conduction (valence) band edge of BP, which are essential to construct an efficient p-n junction. By modifying the structure and doping concentration, it is possible to tune the electronic and transport properties of the p-n junction which exhibits not only diode characteristics with a large current rectification but also negative differential resistance (NDR). The degree of NDR can be easily tuned via device engineering.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000354195300065 Publication Date 2015-04-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 104 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem foundation of the Flemish government and the Bilateral program FWO-TUBITAK (under the Project No. 113T050) between Flanders and Turkey. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship. E.D. acknowledges support from Bilim Akademisi – The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 4.123; 2015 IF: 4.493
  Call Number c:irua:126394 Serial 2835
Permanent link to this record
 

 
Author Amini, M.N.; Saniz, R.; Lamoen, D.; Partoens, B.
  Title The role of the VZn-NO-H complex in the p-type conductivity in ZnO Type A1 Journal article
  Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 17 Issue 17 Pages 5485-5489
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract Past research efforts aiming at obtaining stable p-type ZnO have been based on complexes involving nitrogen doping. A recent experiment by (J. G. Reynolds et al., Appl. Phys. Lett., 2013, 102, 152114) demonstrated a significant ([similar]1018 cm−3) p-type behavior in N-doped ZnO films after appropriate annealing. The p-type conductivity was attributed to a VZnNOH shallow acceptor complex, formed by a Zn vacancy (VZn), N substituting O (NO), and H interstitial (Hi). We present here a first-principles hybrid functional study of this complex compared to the one without hydrogen. Our results confirm that the VZnNOH complex acts as an acceptor in ZnO. We find that H plays an important role, because it lowers the formation energy of the complex with respect to VZnNO, a complex known to exhibit (unstable) p-type behavior. However, this additional H atom also occupies the hole level at the origin of the shallow behavior of VZnNO, leaving only two states empty higher in the band gap and making the VZnNOH complex a deep acceptor. Therefore, we conclude that the cause of the observed p-type conductivity in experiment is not the presence of the VZnNOH complex, but probably the formation of the VZnNO complex during the annealing process.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000349616400080 Publication Date 2015-01-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 20 Open Access
  Notes FWO G021614N; FWO G015013; FWO G018914N; GOA; Hercules Approved Most recent IF: 4.123; 2015 IF: 4.493
  Call Number c:irua:123218 Serial 3592
Permanent link to this record
 

 
Author Meng, X.; Pant, A.; Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Wu, K.; Yang, S.; Suslu, A.; Peeters, F.M.; Tongay, S.;
  Title Engineering excitonic dynamics and environmental stability of post-transition metal chalcogenides by pyridine functionalization technique Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 7 Issue 7 Pages 17109-17115
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf Publication Date 2015-09-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364 ISBN Additional Links UA library record; http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 11 Open Access
  Notes ; ; Approved Most recent IF: 7.367; 2015 IF: 7.394
  Call Number UA @ lucian @ c:irua:129434 Serial 4175
Permanent link to this record
 

 
Author Çakir, D.; Peeters, F.M.
  Title Fluorographane : a promising material for bipolar doping of MoS2 Type A1 Journal article
  Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 17 Issue 17 Pages 27636-27641
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using first principles calculations we investigate the structural and electronic properties of interfaces between fluorographane and MoS2. Unsymmetrical functionalization of graphene with H and F results in an intrinsic dipole moment perpendicular to the plane of the buckled graphene skeleton. Depending on the orientation of this dipole moment, the electronic properties of a physically absorbed MoS2 monolayer can be switched from n-to p-type or vice versa. We show that one can realize vanishing n-type/p-type Schottky barrier heights when contacting MoS2 to fluorographane. By applying a perpendicular electric field, the size of the Schottky barrier and the degree of doping can be tuned. Our calculations indicate that a fluorographane monolayer is a promising candidate for bipolar doping of MoS2, which is vital in the design of novel technological applications based on two-dimensional materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000363193800043 Publication Date 2015-09-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 7 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 4.123; 2015 IF: 4.493
  Call Number UA @ lucian @ c:irua:129477 Serial 4182
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Peeters, F.M.
  Title Mechanical properties of monolayer sulphides : a comparative study between MoS2, HfS2 and TiS3 Type A1 Journal article
  Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 17 Issue 17 Pages 27742-27749
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The in-plane stiffness (C), Poisson's ratio (nu), Young's modulus and ultimate strength (sigma) along two different crystallographic orientations are calculated for the single layer crystals: MoS2, HfS2 and TiS3 in 1H, 1T and monoclinic phases. We find that MoS2 and HfS2 have isotropic in-plane stiffnesses of 124.24 N m(-1) and 79.86 N m(-1), respectively. While for TiS3 the in-plane stiffness is highly anisotropic due to its monoclinic structure, with C-x = 83.33 N m(-1) and C-y = 133.56 N m(-1) (x and y are parallel to its longer and shorter in-plane lattice vectors.). HfS2 which is in the 1T phase has the smallest anisotropy in its ultimate strength, whereas TiS3 in the monoclinic phase has the largest. Along the armchair direction MoS2 has the largest sigma of 23.48 GPa, whereas along y TiS3 has the largest sigma of 18.32 GPa. We have further analyzed the band gap response of these materials under uniaxial tensile strain, and find that they exhibit different behavior. Along both armchair and zigzag directions, the band gap of MoS2 (HfS2) decreases (increases) as strain increases, and the response is almost isotropic. For TiS3, the band gap decreases when strain is along x, while if strain is along y, the band gap increases first and then decreases beyond a threshold strain value. The different characteristics observed in these sulphides with different structures shed light on the relationship between the structure and properties, which is useful for applications in nanotechnology.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000363193800055 Publication Date 2015-09-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 83 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Super-computer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2015 IF: 4.493
  Call Number UA @ lucian @ c:irua:129478 Serial 4204
Permanent link to this record
 

 
Author Lander, L.; Rousse, G.; Abakumov, A.M.; Sougrati, M.; Van Tendeloo, G.; Tarascon, J.-M.
  Title Structural, electrochemical and magnetic properties of a novel KFeSO4F polymorph Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
  Volume 3 Issue 3 Pages 19754-19764
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract In the quest for sustainable and low-cost positive electrode materials for Li-ion batteries, we discovered, as reported herein, a new low temperature polymorph of KFeSO4F. Contrary to the high temperature phase crystallizing in a KTiOPO4-like structure, this new phase adopts a complex layer-like structure built on FeO4F2 octahedra and SO4 tetrahedra, with potassium cations located in between the layers, as solved using neutron and synchrotron diffraction experiments coupled with electron diffraction. The detailed analysis of the structure reveals an alternation of edge-and corner-shared FeO4F2 octahedra leading to a large monoclinic cell of 1771.774(7) angstrom(3). The potassium atoms are mobile within the structure as deduced by ionic conductivity measurements and confirmed by the bond valence energy landscape approach thus enabling a partial electrochemical removal of K+ and uptake of Li+ at an average potential of 3.7 V vs. Li+/Li-0. Finally, neutron diffraction experiments coupled with SQUID measurements reveal a long range antiferromagnetic ordering of the Fe2+ magnetic moments below 22 K with a possible magnetoelectric behavior.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000362041300018 Publication Date 2015-08-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.867 Times cited 11 Open Access
  Notes Approved Most recent IF: 8.867; 2015 IF: 7.443
  Call Number UA @ lucian @ c:irua:132566 Serial 4253
Permanent link to this record
 

 
Author Nerantzaki, M.; Filippousi, M.; Van Tendeloo, G.; Terzopoulou, Z.; Bikiaris, D.; Goudouri, O.M.; Detsch, R.; Grueenewald, A.; Boccaccini, A.R.
  Title Novel poly(butylene succinate) nanocomposites containing strontium hydroxyapatite nanorods with enhanced osteoconductivity for tissue engineering applications Type A1 Journal article
  Year 2015 Publication Express polymer letters Abbreviated Journal Express Polym Lett
  Volume 9 Issue 9 Pages 773-789
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Three series of poly(butylene succinate) (PBSu) nanocomposites containing 0.5, 1 and 2.5 wt% strontium hydroxyapatite [Sr-5(PO4)(3)OH] nanorods (SrHAp nrds) were prepared by in situ polymerisation. The structural effects of Sr-5(PO4)(3)OH nanorods, for the different concentrations, inside the polymeric matrix (PBSu), were studied through high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). HAADF-STEM measurements revealed that the SrHAp nanorods at low concentrations are dispersed inside the polymeric PBSu matrix while in 1 wt% some aggregates are formed. These aggregations affect the mechanical properties giving an enhancement for the concentration of 0.5 wt% SrHAp nrds in tensile strength, while a reduction is recorded for higher loadings of the nanofiller. Studies on enzymatic hydrolysis revealed that all nanocomposites present higher hydrolysis rates than neat PBSu, indicating that nanorods accelerate the hydrolysis degradation process. In vitro bioactivity tests prove that SrHAp nrds promote the formation of hydroxyapatite on the PBSu surface. All nanocomposites were tested also in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility showing SrHAp nanorods support cell attachment.
  Address
  Corporate Author Thesis
  Publisher Budapest University of Technology and Economics Department of Polymer Engineering Place of Publication (down) Budapest, Hungary Editor
  Language Wos 000357287800004 Publication Date 2015-06-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1788-618X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.983 Times cited 21 Open Access
  Notes 262348 Esmi Approved Most recent IF: 2.983; 2015 IF: 2.761
  Call Number c:irua:127009 Serial 2382
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A.
  Title A 2D model for a gliding arc discharge Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
  Volume 24 Issue 24 Pages 015025
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this study we report on a 2D fluid model of a gliding arc discharge in argon. Despite the 3D nature of the discharge, 2D models are found to be capable of providing very useful information about the operation of the discharge. We employ two modelsan axisymmetric and a Cartesian one. We show that for the considered experiment and the conditions of a low current arc (around 30 mA) in argon, there is no significant heating of the cathode surface and the discharge is sustained by field electron emission from the cathode accompanied by the formation of a cathode spot. The obtained discharge power and voltage are relatively sensitive to the surface properties and particularly to the surface roughness, causing effectively an amplification of the normal electric field. The arc body and anode region are not influenced by this and depend mainly on the current value. The gliding of the arc is modelled by means of a 2D Cartesian model. The arcelectrode contact points are analysed and the gliding mechanism along the electrode surface is discussed. Following experimental observations, the cathode spot is simulated as jumping from one point to another. A complete arc cycle is modelled from initial ignition to arc decay. The results show that there is no interaction between the successive gliding arcs.
  Address
  Corporate Author Thesis
  Publisher Institute of Physics Place of Publication (down) Bristol Editor
  Language Wos 000348298200026 Publication Date 2014-12-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.302 Times cited 34 Open Access
  Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
  Call Number c:irua:122538 c:irua:122538 c:irua:122538 c:irua:122538 Serial 3
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.
  Title Current fluctuations in boundary driven diffusive systems in different dimensions : a numerical study Type A1 Journal article
  Year 2015 Publication New journal of physics Abbreviated Journal New J Phys
  Volume 17 Issue 17 Pages 055023
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We use kinetic Monte Carlo simulations to investigate current fluctuations in boundary driven generalized exclusion processes, in different dimensions. Simulation results are in full agreement with predictions based on the additivity principle and the macroscopic fluctuation theory. The current statistics are independent of the shape of the contacts with the reservoirs, provided they are macroscopic in size. In general, the current distribution depends on the spatial dimension. For the special cases of the symmetric simple exclusion process and the zero-range process, the current statistics are the same for all spatial dimensions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Bristol Editor
  Language Wos 000355282700001 Publication Date 2015-05-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.786 Times cited 5 Open Access
  Notes ; We thank Christian Van den Broeck for bringing this problem to our attention. We are grateful to Bart Partoens and Carlo Vanderzande for a careful reading of the manuscript. This work was supported by the Flemish Science Foundation (Fonds Wetenschappelijk Onderzoek), Project No. G038811N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 3.786; 2015 IF: 3.558
  Call Number c:irua:126405 Serial 592
Permanent link to this record
 

 
Author Peerenboom, K.; Parente, A.; Kozák, T.; Bogaerts, A.; Degrez, G.
  Title Dimension reduction of non-equilibrium plasma kinetic models using principal component analysis Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
  Volume 24 Issue 24 Pages 025004
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The chemical complexity of non-equilibrium plasmas poses a challenge for plasma modeling because of the computational load. This paper presents a dimension reduction method for such chemically complex plasmas based on principal component analysis (PCA). PCA is used to identify a low-dimensional manifold in chemical state space that is described by a small number of parameters: the principal components. Reduction is obtained since continuity equations only need to be solved for these principal components and not for all the species. Application of the presented method to a CO2 plasma model including state-to-state vibrational kinetics of CO2 and CO demonstrates the potential of the PCA method for dimension reduction. A manifold described by only two principal components is able to predict the CO2 to CO conversion at varying ionization degrees very accurately.
  Address
  Corporate Author Thesis
  Publisher Institute of Physics Place of Publication (down) Bristol Editor
  Language Wos 000356816200008 Publication Date 2015-01-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.302 Times cited 11 Open Access
  Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
  Call Number c:irua:123534 Serial 704
Permanent link to this record
 

 
Author Berdiyorov, G.; Harrabi, K.; Maneval, J.P.; Peeters, F.M.
  Title Effect of pinning on the response of superconducting strips to an external pulsed current Type A1 Journal article
  Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
  Volume 28 Issue 28 Pages 025004
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using the anisotropic time-dependent Ginzburg-Landau theory we study the effect of ordered and disordered pinning on the time response of superconducting strips to an external current that switched on abruptly. The pinning centers result in a considerable delay of the response time of the system to such abrupt switching on of the current, whereas the output voltage is always larger when pinning is present. The resistive state in both cases are characterized either by dynamically stable phase-slip centers/lines or expanding in-time hot-spots, which are the main mechanisms for dissipation in current-carrying superconductors. We find that hot-spots are always initiated by the phase-slip state. However, the range of the applied current for the phase-slip state increases significantly when pinning is introduced. Qualitative changes are observed in the dynamics of the superconducting condensate in the presence of pinning.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Bristol Editor
  Language Wos 000351046300010 Publication Date 2014-12-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.878 Times cited 19 Open Access
  Notes ; This work was supported by EU Marie Curie (Project No: 253057), the Flemish Science Foundation (FWO-Vl) and King Fahd University of Petroleum and Minerals, Saudi Arabia, under the IN131034 DSR project. ; Approved Most recent IF: 2.878; 2015 IF: 2.325
  Call Number c:irua:125491 Serial 829
Permanent link to this record
 

 
Author Kozák, T.; Bogaerts, A.
  Title Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
  Volume 24 Issue 24 Pages 015024
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We use a zero-dimensional reaction kinetics model to simulate CO2 conversion in microwave discharges where the excitation of the vibrational levels plays a significant role in the dissociation kinetics. The model includes a description of the CO2 vibrational kinetics, taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is used to simulate a general tubular microwave reactor, where a stream of CO2 flows through a plasma column generated by microwave radiation. We study the effects of the internal plasma parameters, namely the reduced electric field, electron density and the total specific energy input, on the CO2 conversion and its energy efficiency. We report the highest energy efficiency (up to 30%) for a specific energy input in the range 0.41.0 eV/molecule and a reduced electric field in the range 50100 Td and for high values of the electron density (an ionization degree greater than 10−5). The energy efficiency is mainly limited by the VT relaxation which contributes dominantly to the vibrational energy losses and also contributes significantly to the heating of the reacting gas. The model analysis provides useful insight into the potential and limitations of CO2 conversion in microwave discharges.
  Address
  Corporate Author Thesis
  Publisher Institute of Physics Place of Publication (down) Bristol Editor
  Language Wos 000348298200025 Publication Date 2014-12-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.302 Times cited 100 Open Access
  Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
  Call Number c:irua:122243 Serial 1087
Permanent link to this record
 

 
Author Van Gaens, W.; Iseni, S.; Schmidt-Bleker, A.; Weltmann, K.-D.; Reuter, S.; Bogaerts, A.
  Title Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure Type A1 Journal article
  Year 2015 Publication New journal of physics Abbreviated Journal New J Phys
  Volume 17 Issue 17 Pages 033003
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this paper we study the cold atmospheric pressure plasma jet, called kinpen, operating in Ar with different admixture fractions up to 1% pure , and + . Moreover, the device is operating with a gas curtain of dry air. The absolute net production rates of the biologically active ozone () and nitrogen dioxide () species are measured in the far effluent by quantum cascade laser absorption spectroscopy in the mid-infrared. Additionally, a zero-dimensional semi-empirical reaction kinetics model is used to calculate the net production rates of these reactive molecules, which are compared to the experimental data. The latter model is applied throughout the entire plasma jet, starting already within the device itself. Very good qualitative and even quantitative agreement between the calculated and measured data is demonstrated. The numerical model thus yields very useful information about the chemical pathways of both the and the generation. It is shown that the production of these species can be manipulated by up to one order of magnitude by varying the amount of admixture or the admixture type, since this affects the electron kinetics significantly at these low concentration levels.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Bristol Editor
  Language Wos 000352898500003 Publication Date 2015-03-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.786 Times cited 29 Open Access
  Notes Approved Most recent IF: 3.786; 2015 IF: 3.558
  Call Number c:irua:124228 Serial 2391
Permanent link to this record
 

 
Author Scuracchio, P.; Dobry, A.; Costamagna, S.; Peeters, F.M.
  Title Tuning the polarized quantum phonon transmission in graphene nanoribbons Type A1 Journal article
  Year 2015 Publication Nanotechnology Abbreviated Journal Nanotechnology
  Volume 26 Issue 26 Pages 305401
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We propose systems that allow a tuning of the phonon transmission function T(omega) in graphene nanoribbons by using C-13 isotope barriers, antidot structures, and distinct boundary conditions. Phonon modes are obtained by an interatomic fifth-nearest neighbor force-constant model (5NNFCM) and T(omega) is calculated using the non-equilibrium Green's function formalism. We show that by imposing partial fixed boundary conditions it is possible to restrict contributions of the in-plane phonon modes to T(omega) at low energy. On the contrary, the transmission functions of out-of-plane phonon modes can be diminished by proper antidot or isotope arrangements. In particular, we show that a periodic array of them leads to sharp dips in the transmission function at certain frequencies omega(nu) which can be pre-defined as desired by controlling their relative distance and size. With this, we demonstrated that by adequate engineering it is possible to govern the magnitude of the ballistic transmission functions T(omega) in graphene nanoribbons. We discuss the implications of these results in the design of controlled thermal transport at the nanoscale as well as in the enhancement of thermo-electric features of graphene-based materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Bristol Editor
  Language Wos 000358675900010 Publication Date 2015-07-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.44 Times cited 5 Open Access
  Notes ; Discussions with C E Repetto, C R Stia and K H Michel are gratefully acknowledged. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and PIP 11220090100392 of CONICET (Argentina). We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. ; Approved Most recent IF: 3.44; 2015 IF: 3.821
  Call Number c:irua:127186 Serial 3759
Permanent link to this record
 

 
Author Zhang, Y.; Wang, H.-yu; Jiang, W.; Bogaerts, A.
  Title Two-dimensional particle-in cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure Type A1 Journal article
  Year 2015 Publication New journal of physics Abbreviated Journal New J Phys
  Volume 17 Issue 17 Pages 083056
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The plasma behavior in a parallel-plate dielectric barrier discharge (DBD) is simulated by a two-dimensional particle-in-cell/Monte Carlo collision model, comparing for the first time an unpacked (empty) DBD with a packed bed DBD, i.e., a DBD filled with dielectric spheres in the gas gap. The calculations are performed in air, at atmospheric pressure. The discharge is powered by a pulse with a voltage amplitude of −20 kV. When comparing the packed and unpacked DBD reactors with the same dielectric barriers, it is clear that the presence of the dielectric packing leads to a transition in discharge behavior from a combination of negative streamers and unlimited surface streamers on the bottom dielectric surface to a combination of predominant positive streamers and limited surface discharges on the dielectric surfaces of the beads and plates. Furthermore, in the packed bed DBD, the electric field is locally enhanced inside the dielectric material, near the contact points between the beads and the plates, and therefore also in the plasma between the packing beads and between a bead and the dielectric wall, leading to values of $4\times {10}
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Bristol Editor
  Language Wos 000360957800003 Publication Date 2015-08-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.786 Times cited 22 Open Access
  Notes Approved Most recent IF: 3.786; 2015 IF: 3.558
  Call Number c:irua:127650 Serial 3777
Permanent link to this record
 

 
Author Ozaydin, H.D.; Sahin, H.; Kang, J.; Peeters, F.M.; Senger, R.T.
  Title Electronic and magnetic properties of 1T-TiSe2 nanoribbons Type A1 Journal article
  Year 2015 Publication 2D materials Abbreviated Journal 2D Mater
  Volume 2 Issue 2 Pages 044002
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Motivated by the recent synthesis of single layer TiSe2, we used state-of-the-art density functional theory calculations, to investigate the structural and electronic properties of zigzag and armchair-edged nanoribbons (NRs) of this material. Our analysis reveals that, differing from ribbons of other ultra-thin materials such as graphene, TiSe2 NRs have some distinctive properties. The electronic band gap of the NRs decreases exponentially with the width and vanishes for ribbons wider than 20 angstrom. For ultranarrow zigzag-edged NRs we find odd-even oscillations in the band gap width, although their band structures show similar features. Moreover, our detailed magnetic-ground-state analysis reveals that zigzag and armchair edged ribbons have non-magnetic ground states. Passivating the dangling bonds with hydrogen at the edges of the structures influences the band dispersion. Our results shed light on the characteristic properties of T phase NRs of similar crystal structures.
  Address
  Corporate Author Thesis
  Publisher IOP Publishing Place of Publication (down) Bristol Editor
  Language Wos 000368936600005 Publication Date 2015-10-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.937 Times cited 20 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAK-BIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus Short Marie Curie Fellowship. HDO, HS and RTS acknowledge the support from TUBITAK through project 114F397. ; Approved Most recent IF: 6.937; 2015 IF: NA
  Call Number UA @ lucian @ c:irua:131602 Serial 4169
Permanent link to this record
 

 
Author Venturi, F.; Calizzi, M.; Bals, S.; Perkisas, T.; Pasquini, L.
  Title Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates Type A1 Journal article
  Year 2015 Publication Materials research express Abbreviated Journal Mater Res Express
  Volume 2 Issue 2 Pages 015007
  Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
  Abstract Magnesium nanoparticles (NPs) with initial size in the 10-50 nmrange were synthesized by inert gas condensation under helium flow and deposited on room temperature substrates. The morphology and crystal structure of the NPs ensemble were investigated as a function of the deposition time by complementary electron microscopy techniques, including high resolution imaging and chemical mapping. With increasing amount of material, strong coarsening phenomena were observed at room temperature: small NPs disappeared while large faceted NPs developed, leading to a 5-fold increase of the average NPs size within a few minutes. The extent of coarsening and the final morphology depended also on the nature of the substrate. Furthermore, large single-crystal NPs were seen to arise from the self-organization of primary NPs units, providing a mechanism for crystal growth. The dynamics of the self-assembly process involves the basic steps of NPs sticking, diffusion on substrate, coordinated rotation and attachment/coalescence. Key features are the surface energy anisotropy, reflected by the faceted shape of the NPs, and the low melting point of the material. The observed phenomena have strong implications in relation to the synthesis and stability of nanostructures based on Mg or other elements with similar features.
  Address
  Corporate Author Thesis
  Publisher IOP Publishing Place of Publication (down) Bristol Editor
  Language Wos 000369978500007 Publication Date 2014-12-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2053-1591 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.068 Times cited 14 Open Access Not_Open_Access
  Notes ; Financial support by COST Action MP1103 'Nanostructured Materials for Solid-State Hydrogen Storage' is gratefully acknowledged. ; Approved Most recent IF: 1.068; 2015 IF: NA
  Call Number UA @ lucian @ c:irua:132275 Serial 4240
Permanent link to this record
 

 
Author Woo, S.Y.; Gauquelin, N.; Nguyen, H.P.T.; Mi, Z.; Botton, G.A.
  Title Interplay of strain and indium incorporation in InGaN/GaN dot-in-a-wire nanostructures by scanning transmission electron microscopy Type A1 Journal article
  Year 2015 Publication Nanotechnology Abbreviated Journal Nanotechnology
  Volume 26 Issue 26 Pages 344002
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The interplay between strain and composition is at the basis of heterostructure design to engineer new properties. The influence of the strain distribution on the incorporation of indium during the formation of multiple InGaN/GaN quantum dots (QDs) in nanowire (NW) heterostructures has been investigated, using the combined techniques of geometric phase analysis of atomic-resolution images and quantitative elemental mapping from core-loss electron energy-loss spectroscopy within scanning transmission electron microscopy. The variation in In-content between successive QDs within individual NWs shows a dependence on the magnitude of compressive strain along the growth direction within the underlying GaN barrier layer, which affects the incorporation of In-atoms to minimize the local effective strain energy. Observations suggest that the interfacial misfit between InGaN/GaN within the embedded QDs is mitigated by strain partitioning into both materials, and results in normal stresses inflicted by the presence of the surrounding GaN shell. These experimental measurements are linked to the local piezoelectric polarization fields for individual QDs, and are discussed in terms of the photoluminescence from an ensemble of NWs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Bristol Editor
  Language Wos 000359079500003 Publication Date 2015-08-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.44 Times cited 19 Open Access
  Notes Approved Most recent IF: 3.44; 2015 IF: 3.821
  Call Number UA @ lucian @ c:irua:136278 Serial 4504
Permanent link to this record
 

 
Author de Backer, A.; De wael, A.; Gonnissen, J.; Martinez, G.T.; Béché, A.; MacArthur, K.E.; Jones, L.; Nellist, P.D.; Van Aert, S.
  Title Quantitative annular dark field scanning transmission electron microscopy for nanoparticle atom-counting : what are the limits? Type A1 Journal article
  Year 2015 Publication Journal of physics : conference series Abbreviated Journal
  Volume 644 Issue Pages 012034-4
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Quantitative atomic resolution annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique for nanoparticle atom-counting. However, a lot of nanoparticles provide a severe characterisation challenge because of their limited size and beam sensitivity. Therefore, quantitative ADF STEM may greatly benefit from statistical detection theory in order to optimise the instrumental microscope settings such that the incoming electron dose can be kept as low as possible whilst still retaining single-atom precision. The principles of detection theory are used to quantify the probability of error for atom-counting. This enables us to decide between different image performance measures and to optimise the experimental detector settings for atom-counting in ADF STEM in an objective manner. To demonstrate this, ADF STEM imaging of an industrial catalyst has been conducted using the near-optimal detector settings. For this experiment, we discussed the limits for atomcounting diagnosed by combining a thorough statistical method and detailed image simulations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Bristol Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:129198 Serial 4506
Permanent link to this record
 

 
Author Hai, G.-Q.; Peeters, F.M.
  Title Hamiltonian of a many-electron system with single-electron and electron-pair states in a two-dimensional periodic potential Type A1 Journal article
  Year 2015 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
  Volume 88 Issue 88 Pages 20
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Based on the metastable electron-pair energy band in a two-dimensional (2D) periodic potential obtained previously by Hai and Castelano [J. Phys.: Condens. Matter 26, 115502 (2014)], we present in this work a Hamiltonian of many electrons consisting of single electrons and electron pairs in the 2D system. The electron-pair states are metastable of energies higher than those of the single-electron states at low electron density. We assume two different scenarios for the single-electron band. When it is considered as the lowest conduction band of a crystal, we compare the obtained Hamiltonian with the phenomenological model Hamiltonian of a boson-fermion mixture proposed by Friedberg and Lee [Phys. Rev. B 40, 6745 (1989)]. Single-electron-electron-pair and electron-pair-electron-pair interaction terms appear in our Hamiltonian and the interaction potentials can be determined from the electron-electron Coulomb interactions. When we consider the single-electron band as the highest valence band of a crystal, we show that holes in this valence band are important for stabilization of the electron-pair states in the system.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Berlin Editor
  Language Wos 000347776800005 Publication Date 2015-01-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.461 Times cited 2 Open Access
  Notes ; This work was supported by FAPESP and CNPq (Brazil). ; Approved Most recent IF: 1.461; 2015 IF: 1.345
  Call Number c:irua:125317 Serial 1406
Permanent link to this record
 

 
Author Vasylenko, A.A.; Misko, V.R.
  Title Nonlinear transport of the Wigner crystal in symmetric and asymmetric FET-like structures : nonlinear transport of the Wigner crystal on superfluid He-4 in quasi-one-dimensional channels with symmetric and asymmetric constrictions Type A1 Journal article
  Year 2015 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
  Volume 88 Issue 88 Pages 105
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract When floating on a two-dimensional surface of superfluid He-4, electrons arrange themselves in two-dimensional crystalline structure known as Wigner crystal. In channels, the boundaries interfere the crystalline order and in case of very narrow channels one observes a quasi-one-dimensional (quasi-1D) Wigner crystal formed by just a few rows of electrons and, ultimately, one row in the “quantum wire” regime. Recently, the “quantum wire” regime was accessed experimentally [D.G. Rees, H. Totsuji, K. Kono, Phys. Rev. Lett. 108, 176801 (2012)] resulting in unusual transport phenomena such as, e.g., oscillations in the electron conductance. Using molecular dynamics simulations, we study the nonlinear transport of electrons in channels with various types of constrictions: single and multiple symmetric and asymmetric geometrical constrictions with varying width and length, and saddle-point-type potentials with varying gate voltage. In particular, we analyze the average particle velocity of the particles and the corresponding electron current versus the driving force or the gate voltage. We have revealed a significant difference in the dynamics for long and short constrictions: The oscillations of the average velocity of the particles for the systems with short constrictions exhibit a clear correlation with the transitions between the states with different numbers of rows of particles; on the other hand, for the systems with longer constrictions these oscillations are suppressed. The obtained results qualitatively agree with the experimental observations. Next, we propose a FET-like structure that consists of a channel with asymmetric constrictions. We show that applying a transverse bias results either in increase of the average particle velocity or in its suppression thus allowing a flexible control tool over the electron transport. The advantage of the asymmetric FET is that it does not have a gate and it allows an easy control of relatively large electron flow. Furthermore, the asymmetric device can be used for rectification of an ac-driven electron flow. Our results bring important insights into the dynamics of electrons floating on the surface of superfluid He-4 in channels with constrictions and allow the effective control over the electron transport.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Berlin Editor
  Language Wos 000353065100002 Publication Date 2015-04-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.461 Times cited Open Access
  Notes Approved Most recent IF: 1.461; 2015 IF: 1.345
  Call Number c:irua:125997 Serial 2359
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: