toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; Angelis, F.D.; Boyen, H.G.; pdf  doi
openurl 
  Title Intrinsic thermal instability of methylammonium lead trihalide perovskite Type A1 Journal article
  Year 2015 Publication Laser physics review Abbreviated Journal Adv Energy Mater  
  Volume 5 Issue 5 Pages 1500477  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Organolead halide perovskites currently are the new front-runners as light absorbers in hybrid solar cells, as they combine efficiencies passing already 20% with deposition temperatures below 100 °C and cheap solution-based fabrication routes. Long-term stability remains a major obstacle for application on an industrial scale. Here, it is demonstrated that significant decomposition effects already occur during annealing of a methylammonium lead triiode perovskite at 85 °C even in inert atmosphere thus violating international standards. The observed behavior supports the view of currently used perovskite materials as soft matter systems with low formation energies, thus representing a major bottleneck for their application, especially in countries with high average temperatures. This result can trigger a broader search for new perovskite families with improved thermal stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) S.l. Editor  
  Language Wos 000359374900005 Publication Date 2015-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 1691 Open Access  
  Notes FWO G004413N; GOA Solarpaint Approved Most recent IF: 16.721; 2015 IF: 16.146  
  Call Number c:irua:127298UA @ admin @ c:irua:127298 Serial 1719  
Permanent link to this record
 

 
Author Stambula, S.; Gauquelin, N.; Bugnet, M.; Gorantla, S.; Turner, S.; Sun, S.; Liu, J.; Zhang, G.; Sun, X.; Botton, G.A. pdf  doi
openurl 
  Title Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 8 Pages 3890-3900  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A platform for producing stabilized Pt atoms and clusters through the combination of an N-doped graphene support and atomic layer deposition (ALD) for the Pt catalysts was investigated using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). It was determined, using imaging and spectroscopy techniques, that a wide range of N-dopant types entered the graphene lattice through covalent bonds without largely damaging its structure. Additionally and most notably, Pt atoms and atomic clusters formed in the absence of nanoparticles. This work provides a new strategy for experimentally producing stable atomic and subnanometer cluster catalysts, which can greatly assist the proton exchange membrane fuel cell (PEMFC) development by producing the ultimate surface area to volume ratio catalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Washington, D.C. Editor  
  Language Wos 000332188100004 Publication Date 2014-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 57 Open Access  
  Notes Fwo Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:115571 Serial 352  
Permanent link to this record
 

 
Author Liao, Z.L.; Green, R.J.; Gauquelin, N.; Gonnissen, J.; Van Aert, S.; Verbeeck, J.; et al. openurl 
  Title Engineering properties by long range symmetry propagation initiated at perovskite heterostructure interface Type A1 Journal article
  Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume Issue Pages 1-25  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In epitaxial thin film systems, the crystal structure and its symmetry deviate from the bulk counterpart due to various mechanisms such as epitaxial strain and interfacial structural coupling, which induce an accompanying change in their properties. In perovskite materials, the crystal symmetry can be described by rotations of 6-fold coordinated transition metal oxygen octahedra, which are found to be altered at interfaces. Here, we unravel how the local oxygen octahedral coupling (OOC) at perovskite heterostructural interfaces initiates a different symmetry in epitaxial films and provide design rules to induce various symmetries in thin films by careful selecting appropriate combinations of substrate/buffer/film. Very interestingly we discovered that these combinations lead to symmetry changes throughout the full thickness of the film. Our results provide a deep insight into understanding the origin of induced crystal symmetry in a perovskite heterostructure and an intelligent route to achieve unique functional properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Weinheim Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record  
  Impact Factor 12.124 Times cited Open Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:134842 Serial 4176  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: