|   | 
Details
   web
Records
Author Singh, S.K.; Costamagna, S.; Neek-Amal, M.; Peeters, F.M.
Title Melting of partially fluorinated graphene : from detachment of fluorine atoms to large defects and random coils Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 8 Pages 4460-4464
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The melting of fluorographene is very unusual and depends strongly on the degree of fluorination. For temperatures below 1000 K, fully fluorinated graphene (FFG) is thermomechanically more stable than graphene but at T-m approximate to 2800 K FFG transits to random coils which is almost 2 times lower than the melting temperature of graphene, i.e., 5300 K. For fluorinated graphene up to 30% ripples causes detachment of individual F-atoms around 2000 K, while for 40%-60% fluorination large defects are formed beyond 1500 K and beyond 60% of fluorination F-atoms remain bonded to graphene until melting. The results agree with recent experiments on the dependence of the reversibility of the fluorination process on the percentage of fluorination.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000332188100069 Publication Date 2014-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 16 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoc Fellowship/299855 (for M.N.-A.), the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-VI). Financial support from the Collaborative program MINCyT (Argentina)-FWO(Belgium) is also acknowledged. ; Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:128874 Serial 4600
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Zhang, K.; Marleny Rodriguez-Albelo, L.; Masala, A.; Bordiga, S.; Jiang, J.; Navarro, J.A.R.; Kirschhock, C.E.A.; Martens, J.A.
Title 1D-2D-3D Transformation Synthesis of Hierarchical Metal-Organic Framework Adsorbent for Multicomponent Alkane Separation Type A1 Journal article
Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 139 Issue 139 Pages 819-828
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new hierarchical MOF consisting of Cu(II) centers connected by benzene-tricarboxylates (BTC) is prepared by thermoinduced solid transformation of a dense CuBTC precursor phase. The mechanism of the material formation has been thoroughly elucidated and revealed a transformation of a ribbon-like 1D building unit into 2D layers and finally a 3D network. The new phase contains excess copper, charge compensated by systematic hydroxyl groups, which leads to an open microporous framework with tunable permanent mesoporosity. The new phase is particularly attractive for molecular separation. Energy consumption of adsorptive separation processes can be lowered by using adsorbents that discriminate molecules based on adsorption entropy rather than enthalpy differences. In separation of a 11-component mixture of C-1-C-6 alkanes, the hierarchical phase outperforms the structurally related microporous HKUST-1 as well as silicate-based hierarchical materials. Grand canonical Monte Carlo (GCMC) simulation provides microscopic insight into the structural host-guest interaction, confirming low adsorption enthalpies and significant entropic contributions to the molecular separation. The unique three-dimensional hierarchical structure as well as the systematic presence of Cu(II) unsaturated coordination sites cause this exceptional behavior.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000392459300041 Publication Date 2016-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 33 Open Access Not_Open_Access
Notes ; L.H.W. and S.T. thank Research Foundation Flanders (FWO) for a postdoctoral research fellowship under contract numbers 12M1415N and G004613N, respectively. J.J. is grateful to the National University of Singapore for financial supports (R261-508-001-646/733 and R-279-000-474-112). J.A.R.N. acknowledges generous funding from Spanish Ministry of Economy (CTQ2014-53486-R) and FEDER and Marie Curie IIF-625939 (L.M.R.A) funding from European Union. J.A.M. gratefully acknowledges financial support from Flemish Government (Long-term structural funding Methusalem). Collaboration among universities was supported by the Belgian Government (IAP-PAI network). We thank E. Gobechiya for XRD measurements. We would like to acknowledge Matthias Thommes for the discussion on the interpretation of N<INF>2</INF> physisorption isotherms. ; Approved Most recent IF: 13.858
Call Number UA @ lucian @ c:irua:141513 c:irua:141513 c:irua:141513 c:irua:141513 Serial 4492
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Huygh, S.; Surmenev, R.A.; Neyts, E.C.
Title Density functional theory study of interface interactions in hydroxyapatite/rutile composites for biomedical applications Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 29 Pages 15687-15695
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract To gain insight into the nature of the adhesion mechanism between hydroxyapatite (HA) and rutile (rTiO(2)), the mutual affinity between their surfaces was systematically studied using density functional theory (DFT). We calculated both bulk and surface properties of HA and rTiO(2), and explored the interfacial bonding mechanism of amorphous HA (aHA) surface onto amorphous as well as stoichiometric and nonstoichiometric crystalline rTiO(2). Formation energies of bridging and subbridging oxygen vacancies considered in the rTiO(2)(110) surface were evaluated and compared with other theoretical and experimental results. The interfacial interaction was evaluated through the work of adhesion. For the aHA/rTiO(2)(110) interfaces, the work of adhesion is found to depend strongly on the chemical environment of the rTiO(2)(110) surface. Electronic analysis indicates that the charge transfer is very small in the case of interface formation between aHA and crystalline rTiO(2)(110). In contrast, significant charge transfer occurs between aHA and amorphous rTiO(2) (aTiO(2)) slabs during the formation of the interface. Charge density difference (CDD) analysis indicates that the dominant interactions in the interface have significant covalent character, and in particular the Ti-O and Ca-O bonds. Thus, the obtained results reveal that the aHA/aTiO(2) interface shows a more preferable interaction and is thermodynamically more stable than other interfaces. These results are particularly important for improving the long-term stability of HA-based implants.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000406726200022 Publication Date 2017-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access
Notes Approved Most recent IF: 4.536
Call Number UA @ lucian @ c:irua:145195 Serial 4715
Permanent link to this record
 

 
Author Vets, C.; Neyts, E.C.
Title Stabilities of bimetallic nanoparticles for chirality-selective carbon nanotube growth and the effect of carbon interstitials Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 28 Pages 15430-15436
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Bimetallic nanoparticles play a crucial role in various applications. A better understanding of their properties would facilitate these applications and possibly even enable chirality-specific growth of carbon nanotubes (CNTs). We here examine the stabilities of NiFe, NiGa, and FeGa nanoparticles and the effect of carbon dissolved in NiFe nanoparticles through density functional theory (DFT) calculations and Born Oppenheimer molecular dynamics (BOMD) simulations. We establish that nanoparticles with more Fe in the core and more Ga on the surface are more stable and compare these results with well-known properties such as surface energy and atom size. Furthermore, we find that the nanoparticles become more stable with increasing carbon content, both at 0 K and at 700 K. These results provide a basis for further research into the chirality-specific growth of CNT's.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000406355700050 Publication Date 2017-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 4.536
Call Number UA @ lucian @ c:irua:145206 Serial 4725
Permanent link to this record
 

 
Author Lundeberg, M.B.; Gao, Y.; Asgari, R.; Tan, C.; Van Duppen, B.; Autore, M.; Alonso-Gonzalez, P.; Woessner, A.; Watanabe, K.; Taniguchi, T.; Hillenbrand, R.; Hone, J.; Polini, M.; Koppens, F.H.L.
Title Tuning quantum nonlocal effects in graphene plasmonics Type A1 Journal article
Year 2017 Publication Science Abbreviated Journal Science
Volume 357 Issue 6347 Pages 187-190
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The response of electron systems to electrodynamic fields that change rapidly in space is endowed by unique features, including an exquisite spatial nonlocality. This can reveal much about the materials' electronic structure that is invisible in standard probes that use gradually varying fields. Here, we use graphene plasmons, propagating at extremely slow velocities close to the electron Fermi velocity, to probe the nonlocal response of the graphene electron liquid. The near-field imaging experiments reveal a parameter-free match with the full quantum description of the massless Dirac electron gas, which involves three types of nonlocal quantum effects: single-particle velocity matching, interaction-enhanced Fermi velocity, and interaction-reduced compressibility. Our experimental approach can determine the full spatiotemporal response of an electron system.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000405391700042 Publication Date 2017-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 37.205 Times cited 87 Open Access
Notes ; F.H.L.K., M.P., and R.H. acknowledge support by the European Union Seventh Framework Programme under grant agreement no. 696656 Graphene Flagship. M. P. acknowledges support by Fondazione Istituto Italiano di Tecnologia. F. H. L. K. acknowledges financial support from the European Union Seventh Framework Programme under the ERC starting grant (307806, CarbonLight) and project GRASP (FP7-ICT-2013-613024-GRASP). F. H. L. K. acknowledges support from the Spanish Ministry of Economy and Competitiveness, through the “ Severo Ochoa” Programme for Centres of Excellence in R& D (SEV-2015-0522), support by Fundacio Cellex Barcelona, CERCA Programme/Generalitat de Catalunya, the Mineco grants Ramon y Cajal (RYC-2012-12281), Plan Nacional (FIS2013-47161-P and FIS2014-59639-JIN), and support from the Government of Catalonia through the SGR grant (2014-SGR-1535). R. H. acknowledges support from the Spanish Ministry of Economy and Competitiveness (national project MAT-2015-65525-R). P. A-G. acknowledges financial support from the national project FIS2014-60195-JIN and the ERC starting grant 715496, 2DNANOPTICA. K. W. and T. T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, and JSPS KAKENHI grant numbers JP26248061, JP15K21722, and JP25106006. Y. G., C. T., and J. H. acknowledge support from the U. S. Office of Naval Research N00014-13-1-0662. C. T. was supported under contract FA9550-11-C-0028 and awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. This research used resources of the Center for Functional Nanomaterials, which is a U. S. Department of Energy Office of Science Facility at Brookhaven National Laboratory under contract no. DE-SC0012704. B. V. D. acknowledges support from the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. M. P. is extremely grateful for the financial support granted by ICFO during a visit in August 2016. This work used open source software (www. python. org, www. matplotlib. org, and www. blender. org). R. H. is cofounder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the ones used in this study. All other authors declare no competing financial interests. ; Approved Most recent IF: 37.205
Call Number UA @ lucian @ c:irua:144833 Serial 4730
Permanent link to this record
 

 
Author Wang, Y.-L.; Glatz, A.; Kimmel, G.J.; Aranson, I.S.; Thoutam, L.R.; Xiao, Z.-L.; Berdiyorov, G.R.; Peeters, F.M.; Crabtree, G.W.; Kwok, W.-K.
Title Parallel magnetic field suppresses dissipation in superconducting nanostrips Type A1 Journal article
Year 2017 Publication America Abbreviated Journal P Natl Acad Sci Usa
Volume 114 Issue 48 Pages E10274-E10280
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the \u0022holy grail\u0022 of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.'));
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000416891600007 Publication Date 2017-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.661 Times cited 18 Open Access
Notes ; This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The simulation was supported by the Scientific Discovery through Advanced Computing program funded by US DOE, Office of Science, Advanced Scientific Computing Research and Basic Energy Science, Division of Materials Science and Engineering. L.R.T. and Z.-L.X. acknowledge support through National Science Foundation Grant DMR-1407175. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. ; Approved Most recent IF: 9.661
Call Number UA @ lucian @ c:irua:147697 Serial 4889
Permanent link to this record
 

 
Author Cherigui, E.A.M.; Şentosun, K.; Mamme, M.H.; Lukaczynska, M.; Terryn, H.; Bals, S.; Ustarroz, J.
Title On the control and effect of water content during the electrodeposition of Ni nanostructures from deep eutectic solvents Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue 122 Pages 23129-23142
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride urea deep eutectic solvent (DES) containing different amounts of water. By combining electrochemical techniques, with ex situ field emission scanning electron microscopy, high-angle annular dark field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, the effect of water content on the electrochemical processes occurring during nickel deposition was better understood. At highly negative potentials and depending on water content, Ni growth is halted due to water splitting and formation of a mixed layer of Ni/NiOx(OH)(2(1-x)(ads)). Moreover, under certain conditions, the DES components can also be (electro)chemically reduced at the electrode surface, blocking further three-dimensional growth of the Ni NPs. Hence, a two-dimensional crystalline Ni-containing network can be formed in the interparticle region.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000447471700038 Publication Date 2018-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 27 Open Access OpenAccess
Notes ; E.A.M.C. and M.H.M. acknowledge funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S.B. acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). Finally, J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_sara Approved Most recent IF: 4.536
Call Number UA @ lucian @ c:irua:154731 Serial 5121
Permanent link to this record
 

 
Author van der Burgt, J.S.; Geuchies, J.J.; van der Meer, B.; Vanrompay, H.; Zanaga, D.; Zhang, Y.; Albrecht, W.; Petukhov, A.V.; Filion, L.; Bals, S.; Swart, I.; Vanmaekelbergh, D.
Title Cuboidal supraparticles self-assembled from cubic CsPbBr3 perovskite nanocrystals Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue 122 Pages 15706-15712
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Colloidal CsPbBr3 nanocrystals (NCs) have emerged as promising candidates for various opto-electronic applications, such as light-emitting diodes, photodetectors, and solar cells. Here, we report on the self-assembly of cubic NCs from an organic suspension into ordered cuboidal supraparticles (SPs) and their structural and optical properties. Upon increasing the NC concentration or by addition of a nonsolvent, the formation of the SPs occurs homogeneously in the suspension, as monitored by in situ X-ray scattering measurements. The three-dimensional structure of the SPs was resolved through high-angle annular dark-field scanning transmission electron microscopy and electron tomography. The NCs are atomically aligned but not connected. We characterize NC vacancies on superlattice positions both in the bulk and on the surface of the SPs. The occurrence of localized atomic-type NC vacancies-instead of delocalized ones-indicates that NC-NC attractions are important in the assembly, as we verify with Monte Carlo simulations. Even when assembled in SPs, the NCs show bright emission, with a red shift of about 30 meV compared to NCs in suspension.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000439003600071 Publication Date 2018-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 60 Open Access OpenAccess
Notes ; The authors thank Dr. Rajeev Dattani and Jacques Gorini from the ID02 beamline of the ESRF for their excellent assistance during the X-ray scattering experiments. We also thank Carlo van Overbeek, P. Tim Prins, and Federico Montanarella for their support during the synchrotron experiments. The authors gratefully acknowledge Prof. Dr. Alfons van Blaaderen for fruitful discussions. D.V. acknowledges funding from NWO-CW TOPPUNT “Superficial superstructures.” J.J.G. acknowledges the joint Debye and ESRF graduate programs for the financial support. H.V. gratefully acknowledges the financial support by the Flemish Fund for Scientific Research (FWO grant 1S32617NN). S.B. acknowledges the financial support from the European Research Council (ERC Starting grant # 335078-COLOURATOMS). Y.Z. acknowledges the financial support from the European Union's Horizon 2020 research and innovation program, under the Marie Sklodowska-Curie grant agreement #665501 through a FWO [PEGASUS]2 Marie Sklodowska-Curie fellowship (12U4917N). W.A. acknowledges the financial support from the European Research Council under the European Unions Seventh Framework Program (FP-2007-2013)/ERC Advanced grant agreement 291667 HierarSACol. ; ecas_Sara Approved Most recent IF: 4.536
Call Number UA @ lucian @ c:irua:153161UA @ admin @ c:irua:153161 Serial 5087
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D.
Title Advanced electron microscopy for advanced materials Type A1 Journal article
Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 24 Issue 42 Pages 5655-5675
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab
Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000310602200001 Publication Date 2012-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 107 Open Access
Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829
Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70
Permanent link to this record
 

 
Author Müller, M.; Turner, S.; Lebedev, O.I.; Wang, Y.; Van Tendeloo, G.; Fischer, R.A.
Title Au@MOF-5 and Au/Mox@MOF-5 (M = Zn, Ti; x = 1, 2) : preparation and microstructural characterisation Type A1 Journal article
Year 2011 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume Issue 12 Pages 1876-1887
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Zn-carboxylate-based porous coordination polymer MOF-5 [Zn4O(bdc)3] and the metal oxide loaded materials ZnO@MOF-5 and TiO2@MOF-5 were loaded in a second step with the precursor [ClAuCO] to yield intermediate materials denoted as [ClAuCO]@MOF-5, [ClAuCO]/ZnO@MOF-5 and [ClAuCO]/TiO2@MOF-5. These composites were decomposed to Au@MOF-5, Au/ZnO@MOF-5 and Au/TiO2@MOF-5 under hydrogen at 100 °C. The nanoparticle-loaded hybrid materials were characterised by powder X-ray diffraction (PXRD), IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and N2 sorption measurements, which reveal an intact MOF-5 structure that maintains a high specific surface area. For Au@MOF-5, crystalline Au nanoparticles were distributed over the MOF matrix in a homogeneous fashion with a size of ca. 13 nm, evidenced by high resolution transmission electron microscopy. In the case of Au/ZnO@MOF-5, the Au and metal oxide particles of a few nm in size were coexistent in a given volume of the MOF-5 matrix and were not separated in different crystalline MOF particles. For the TiO2 loaded materials the oxide is preferentially located near the outer surface of the MOF particles, leading to an increase of larger exterior Au particles in comparison to very small interior Au particles as observed for the other materials. Au@MOF-5, Au/ZnO@MOF-5 and Au/TiO2@MOF-5 were tested in liquid-phase oxidation of alcohols. Preliminary results show a high activity for the Au loaded materials in this reaction. This observation is attributed to the microstructure of the composites with very small Au particles distributed homogeneously over the MOF matrix.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000289644300004 Publication Date 2011-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 75 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.444; 2011 IF: 3.049
Call Number UA @ lucian @ c:irua:88644 Serial 205
Permanent link to this record
 

 
Author Li, Y.; Zhang, X.; Geise, H.J.; Van Tendeloo, G.
Title Behavior of Ni-doped MgMoO4 single-phase catalysts for synthesis of multiwalled carbon nanotube bundles Type A1 Journal article
Year 2007 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos
Volume 13 Issue 1 Pages 30-36
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000244062200005 Publication Date 2007-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.333 Times cited 4 Open Access
Notes Approved Most recent IF: 1.333; 2007 IF: 1.936
Call Number UA @ lucian @ c:irua:63787 Serial 225
Permanent link to this record
 

 
Author Aerts, R.; Somers, W.; Bogaerts, A.
Title Carbon dioxide splitting in a dielectric barrier discharge plasma : a combined experimental and computational study Type A1 Journal article
Year 2015 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 8 Issue 8 Pages 702-716
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2. We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000349954400019 Publication Date 2015-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 131 Open Access
Notes Approved Most recent IF: 7.226; 2015 IF: 7.657
Call Number c:irua:123930 Serial 279
Permanent link to this record
 

 
Author Shenderova, O.; Hens, S.; Vlasov, I.; Turner, S.; Lu, Y.-G.; Van Tendeloo, G.; Schrand, A.; Burikov, S.A.; Dolenko, T.A.
Title Carbon-dot-decorated nanodiamonds Type A1 Journal article
Year 2014 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 31 Issue 5 Pages 580-590
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The synthesis of a new class of fluorescent carbon nanomaterials, carbon-dot-decorated nanodiamonds (CDD-ND), is reported. These CDD-NDs are produced by specific acid treatment of detonation soot, forming tiny rounded sp2 carbon species (carbon dots), 12 atomic layers thick and 12 nm in size, covalently attached to the surface of the detonation diamond nanoparticles. A combination of nanodiamonds bonded with a graphitic phase as a starting material and the application of graphite intercalated acids for oxidation of the graphitic carbon is necessary for the successful production of CDD-ND. The CDD-ND photoluminescence (PL) is stable, 20 times more intense than the intrinsic PL of well-purified NDs and can be tailored by changing the oxidation process parameters. Carbon-dot-decorated DNDs are shown to be excellent probes for bioimaging applications and inexpensive additives for PL nanocomposites.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000335518900008 Publication Date 2014-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 30 Open Access
Notes Fwo; 262348 Esmi; 246791 Countatoms Approved Most recent IF: 4.474; 2014 IF: 3.081
Call Number UA @ lucian @ c:irua:117332 Serial 280
Permanent link to this record
 

 
Author Villani, K.; Kirschhock, C.E.A.; Liang, D.; Van Tendeloo, G.; Martens, J.A.
Title Catalytic carbon oxidation over ruthenium-based catalysts Type A1 Journal article
Year 2006 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 45 Issue 19 Pages 3106-3109
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000237533400016 Publication Date 2006-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 36 Open Access
Notes Approved Most recent IF: 11.994; 2006 IF: 10.232
Call Number UA @ lucian @ c:irua:59449 Serial 291
Permanent link to this record
 

 
Author Bogaerts, A.; Bultinck, E.; Eckert, M.; Georgieva, V.; Mao, M.; Neyts, E.; Schwaederlé, L.
Title Computer modeling of plasmas and plasma-surface interactions Type A1 Journal article
Year 2009 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 6 Issue 5 Pages 295-307
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, an overview is given of different modeling approaches used for describing gas discharge plasmas, as well as plasma-surface interactions. A fluid model is illustrated for describing the detailed plasma chemistry in capacitively coupled rf discharges. The strengths and limitations of Monte Carlo simulations and of a particle-in-cell-Monte Carlo collisions model are explained for a magnetron discharge, whereas the capabilities of a hybrid Monte Carlo-fluid approach are illustrated for a direct current glow discharge used for spectrochemical analysis of materials. Finally, some examples of molecular dynamics simulations, for the purpose of plasma-deposition, are given.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000266471800003 Publication Date 2009-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 18 Open Access
Notes Approved Most recent IF: 2.846; 2009 IF: 4.037
Call Number UA @ lucian @ c:irua:76833 Serial 461
Permanent link to this record
 

 
Author Bogaerts, A.; de Bleecker, K.; Georgieva, V.; Kolev, I.; Madani, M.; Neyts, E.
Title Computer simulations for processing plasmas Type A1 Journal article
Year 2006 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 3 Issue 2 Pages 110-119
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000235628300003 Publication Date 2006-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 8 Open Access
Notes Approved Most recent IF: 2.846; 2006 IF: 2.298
Call Number UA @ lucian @ c:irua:56076 Serial 465
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Bals, S.; Nikolaev, I.V.; Antipov, E.V.; Van Tendeloo, G.
Title Crystallographic shear structures as a route to anion-deficient perovskites Type A1 Journal article
Year 2006 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 45 Issue 40 Pages 6697-6700
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000241474500022 Publication Date 2006-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 62 Open Access
Notes Approved Most recent IF: 11.994; 2006 IF: 10.232
Call Number UA @ lucian @ c:irua:61689 Serial 589
Permanent link to this record
 

 
Author Huijben, M.; Koster, G.; Kruize, M.K.; Wenderich, S.; Verbeeck, J.; Bals, S.; Slooten, E.; Shi, B.; Molegraaf, H.J.A.; Kleibeuker, J.E.; Van Aert, S.; Goedkoop, J.B.; Brinkman, A.; Blank, D.H.A.; Golden, M.S.; Van Tendeloo, G.; Hilgenkamp, H.; Rijnders, G.;
Title Defect engineering in oxide heterostructures by enhanced oxygen surface exchange Type A1 Journal article
Year 2013 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 23 Issue 42 Pages 5240-5248
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The synthesis of materials with well-controlled composition and structure improves our understanding of their intrinsic electrical transport properties. Recent developments in atomically controlled growth have been shown to be crucial in enabling the study of new physical phenomena in epitaxial oxide heterostructures. Nevertheless, these phenomena can be influenced by the presence of defects that act as extrinsic sources of both doping and impurity scattering. Control over the nature and density of such defects is therefore necessary to fully understand the intrinsic materials properties and exploit them in future device technologies. Here, it is shown that incorporation of a strontium copper oxide nano-layer strongly reduces the impurity scattering at conducting interfaces in oxide LaAlO3SrTiO3(001) heterostructures, opening the door to high carrier mobility materials. It is proposed that this remote cuprate layer facilitates enhanced suppression of oxygen defects by reducing the kinetic barrier for oxygen exchange in the hetero-interfacial film system. This design concept of controlled defect engineering can be of significant importance in applications in which enhanced oxygen surface exchange plays a crucial role.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000327480900003 Publication Date 2013-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 87 Open Access
Notes Countatoms; Vortex; Fwo; Ifox ECASJO_; Approved Most recent IF: 12.124; 2013 IF: 10.439
Call Number UA @ lucian @ c:irua:109273UA @ admin @ c:irua:109273 Serial 615
Permanent link to this record
 

 
Author Kirschhock, C.E.A.; Kremer, S.P.B.; Vermant, J.; Van Tendeloo, G.; Jacobs, P.A.; Martens, J.A.
Title Design and synthesis of hierarchical materials from ordered zeolitic building units Type A1 Journal article
Year 2005 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 11 Issue 15 Pages 4306-4313
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000230761400001 Publication Date 2005-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 93 Open Access
Notes Approved Most recent IF: 5.317; 2005 IF: 4.907
Call Number UA @ lucian @ c:irua:60019 Serial 658
Permanent link to this record
 

 
Author Philippaerts, A.; Goossens, S.; Vermandel, W.; Tromp, M.; Turner, S.; Geboers, J.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F.
Title Design of Ru-zeolites for hydrogen-free production of conjugated linoleic acid Type A1 Journal article
Year 2011 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 4 Issue 6 Pages 757-767
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract While conjugated vegetable oils are currently used as additives in the drying agents of oils and paints, they are also attractive molecules for making bio-plastics. Moreover, conjugated oils will soon be accepted as nutritional additives for functional food products. While current manufacture of conjugated vegetable oils or conjugated linoleic acids (CLAs) uses a homogeneous base as isomerisation catalyst, a heterogeneous alternative is not available today. This contribution presents the direct production of CLAs over Ru supported on different zeolites, varying in topology (ZSM-5, BETA, Y), Si/Al ratio and countercation (H+, Na+, Cs+). Ru/Cs-USY, with a Si/Al ratio of 40, was identified as the most active and selective catalyst for isomerisation of methyl linoleate (cis-9,cis-12 (C18:2)) to CLA at 165 °C. Interestingly, no hydrogen pre-treatment of the catalyst or addition of hydrogen donors is required to achieve industrially relevant isomerisation productivities, namely, 0.7 g of CLA per litre of solvent per minute. Moreover, the biologically most active CLA isomers, namely, cis-9,trans-11, trans-10,cis-12 and trans-9,trans-11, were the main products, especially at low catalyst concentrations. Ex situ physicochemical characterisation with CO chemisorption, extended X-ray absorption fine structure measurements, transmission electron microscopy analysis, and temperature-programmed oxidation reveals the presence of highly dispersed RuO2 species in Ru/Cs-USY(40).
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000292214000009 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 24 Open Access
Notes Fwo Approved Most recent IF: 7.226; 2011 IF: 6.827
Call Number UA @ lucian @ c:irua:90352 Serial 660
Permanent link to this record
 

 
Author Yiu, H.H.P.; Niu, H.-jun; Biermans, E.; Van Tendeloo, G.; Rosseinsky, M.J.
Title Designed multifunctional nanocomposites for biomedical applications Type A1 Journal article
Year 2010 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 20 Issue 10 Pages 1599-1609
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The assembly of multifunctional nanocomposite materials is demonstrated by exploiting the molecular sieving property of SBA-16 nanoporous silica and using it as a template material. The cages of the pore networks are used to host iron oxide magnetic nanoparticles, leaving a pore volume of 0.29 cm3 g-1 accessible for drug storage. This iron oxide-silica nanocomposite is then functionalized with amine groups. Finally the outside of the particle is decorated with antibodies. Since the size of many protein molecules, including that of antibodies, is too large to enter the pore system of SBA-16, the amine groups inside the pores are preserved for drug binding. This is proven using a fluorescent protein, fluorescein-isothiocyanate-labeled bovine serum albumin (FITC-BSA), with the unreacted amine groups inside the pores dyed with rhodamine B isothiocyanate (RITC). The resulting nanocomposite material offers a dual-targeting drug delivery mechanism, i.e., magnetic and antibody-targeting, while the functionalization approach is extendable to other applications, e.g., fluorescence-magnetic dual-imaging diagnosis.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000278597100008 Publication Date 2010-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X;1616-3028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 56 Open Access
Notes Approved Most recent IF: 12.124; 2010 IF: 8.508
Call Number UA @ lucian @ c:irua:83298 Serial 662
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Shenderova, O.; Vlasov, I.I.; Verbeeck, J.; Van Tendeloo, G.
Title Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy Type A1 Journal article
Year 2009 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 19 Issue 13 Pages 2116-2124
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Size, morphology, and nitrogen impurity location, all of which are all thought to be related to the luminescent properties of detonation nanodiamonds, are determined in several detonation nanodiamond samples using a combination of transmission electron microscopy techniques. Results obtained from annealed and cleaned detonation nanodiamond samples are compared to results from conventionally purified detonation nanodiamond. Detailed electron energy loss spectroscopy combined with model-based quantification provides direct evidence for the sp3 like embedding of nitrogen impurities into the diamond cores of all the studied nanodiamond samples. Simultaneously, the structure and morphology of the cleaned detonation nanodiamond particles are studied using high resolution transmission electron microscopy. The results show that the size and morphology of detonation nanodiamonds can be modified by temperature treatment and that by applying a special cleaning procedure after temperature treatment, nanodiamond particles with clean facets almost free from sp2 carbon can be prepared. These clean facets are clear evidence that nanodiamond cores are not necessarily in coexistence with a graphitic shell of non-diamond carbon.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000268297800012 Publication Date 2009-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X;1616-3028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 100 Open Access
Notes Esteem 026019 Approved Most recent IF: 12.124; 2009 IF: 6.990
Call Number UA @ lucian @ c:irua:78261UA @ admin @ c:irua:78261 Serial 674
Permanent link to this record
 

 
Author Doenen, M.; Zhang, L.; Erni, R.; Williams, O.A.; Hardy, A.; van Bael, M.K.; Wagner, P.; Haenen, K.; Nesladek, M.; Van Tendeloo, G.
Title Diamond nucleation by carbon transport from buried nanodiamond TiO2 sol-gel composites Type A1 Journal article
Year 2009 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 21 Issue 6 Pages 670-673
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000263492000007 Publication Date 2008-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 20 Open Access
Notes Fwo; Iap-P6/42; Esteem 026019 Approved Most recent IF: 19.791; 2009 IF: NA
Call Number UA @ lucian @ c:irua:76329 Serial 688
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Salje, E.K.H.
Title Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy Type A1 Journal article
Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 24 Issue 4 Pages 523-527
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High-resolution aberration-corrected transmission electron microscopy aided by statistical parameter estimation theory is used to quantify localized displacements at a (110) twin boundary in orthorhombic CaTiO3. The displacements are 36 pm for the Ti atoms and confined to a thin layer. This is the first direct observation of the generation of ferroelectricity by interfaces inside this material which opens the door for domain boundary engineering.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000299156400011 Publication Date 2011-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 150 Open Access
Notes Fwo Approved Most recent IF: 19.791; 2012 IF: 14.829
Call Number UA @ lucian @ c:irua:94110 Serial 717
Permanent link to this record
 

 
Author Ke, X.; Turner, S.; Quintana, M.; Hadad, C.; Montellano-López, A.; Carraro, M.; Sartorel, A.; Bonchio, M.; Prato, M.; Bittencourt, C.; Van Tendeloo, G.;
Title Dynamic motion of Ru-polyoxometalate ions (POMs) on functionalized few-layer graphene Type A1 Journal article
Year 2013 Publication Small Abbreviated Journal Small
Volume 9 Issue 23 Pages 3922-3927
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The interaction and stability of Ru4POM on few layer graphene via functional groups is investigated by time-dependent imaging using aberration-corrected transmission electron microscopy. The Ru4POM demonstrates dynamic motion on the graphene surface with its frequency and amplitude of rotation related to the nature of the functional group used. The stability of the Ru4POMgraphene hybrid corroborates its long-term robustness when applied to multielectronic catalytic processes.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000331282400003 Publication Date 2013-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 16 Open Access
Notes IAP-7; Countatoms; Approved Most recent IF: 8.643; 2013 IF: 7.514
Call Number UA @ lucian @ c:irua:115768 Serial 763
Permanent link to this record
 

 
Author Ramakers, M.; Michielsen, I.; Aerts, R.; Meynen, V.; Bogaerts, A.
Title Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge Type A1 Journal article
Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 12 Issue 12 Pages 755-763
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper demonstrates that the CO2 conversion in a dielectric barrier discharge rises drastically upon addition of Ar or He, and the effect is more pronounced for Ar than for He. The effective CO2 conversion, on the other hand, drops upon addition of Ar or He, which is logical due to the lower CO2 content in the gas mixture, and the same is true for the energy efficiency, because a considerable fraction of the energy is then consumed into ionization/excitation of Ar or He atoms. The higher absolute CO2 conversion upon addition of Ar or He can be explained by studying in detail the Lissajous plots and the current profiles. The breakdown voltage is lower in the CO2/Ar and CO2/He mixtures, and the discharge gap is more filled with plasma, which enhances the possibility for CO2 conversion. The rates of electron impact excitationdissociation of CO2, estimated from the electron densities and mean electron energies, are indeed higher in the CO2/Ar and (to a lower extent) in the CO2/He mixtures, compared to the pure CO2 plasma. Moreover, charge transfer between Ar+ or Ar2+ ions and CO2, followed by electron-ion dissociative recombination of the CO2+ ions, might also contribute to, or even be dominant for the CO2 dissociation. All these effects can explain the higher CO2 conversion, especially upon addition of Ar, but also upon addition of He.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000359672400007 Publication Date 2015-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 63 Open Access
Notes Approved Most recent IF: 2.846; 2015 IF: 2.453
Call Number c:irua:126822 Serial 799
Permanent link to this record
 

 
Author Chen, Z.; Tan, Z.; Ji, G.; Schryvers, D.; Ouyang, Q.; Li, Z.
Title Effect of interface evolution on thermal conductivity of vacuum hot pressed SiC/Al composites Type A1 Journal article
Year 2015 Publication Advanced engineering materials Abbreviated Journal Adv Eng Mater
Volume 17 Issue 17 Pages 1076-1084
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The SiC/Al composites have been fabricated by a vacuum hot pressing (VHP) process in order to study the effect of interface evolution on the global thermal conductivity (TC). By optimizing the VHP parameters of sintering temperature and time, the three different kinds of SiC/Al interface configurations, that is, non-bonded, diffusion-bonded, and reaction-bonded interfaces, are formed and identified by measurement of relative density, X-ray diffraction, scanning and (high-resolution) transmission electron microscopy. The VHPed composite sintered at 655 °C for 60 min is fully dense and presents a tightly-adhered and clean SiC/Al interface at the nanoscale, the ideal diffusion-bonded interface being the most favorable for minimizing interfacial thermal resistance, which in turn results in the highest TC of around 270 W/mK.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000357680700019 Publication Date 2015-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1438-1656; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.319 Times cited 9 Open Access
Notes Approved Most recent IF: 2.319; 2015 IF: 1.758
Call Number c:irua:123000 Serial 818
Permanent link to this record
 

 
Author Teodoru, S.; Kusano, Y.; Bogaerts, A.
Title The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge Type A1 Journal article
Year 2012 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 9 Issue 7 Pages 652-689
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A numerical model for NxOy remediation in humid air plasma produced with a dielectric barrier discharge at atmospheric pressure is presented. Special emphasis is given to NO2 and N2O reduction with the decrease of O2 content in the feedstock gas. A detailed reaction mechanism including electronic and ionic processes, as well as the contribution of radicals and excited atomic/molecular species is proposed. The temporal evolution of the densities of NO, NO2 and N2O species, and some other by-products, is analyzed, and the major pathways for the NxOy remediation are discussed for one pulse. Subsequently, simulations are presented for a multi-pulses case, where three O2 contents are tested for optimization of the remediation process. It is found that when the gas mixture O2/N2/H2O/NOx has no initial O2 content, the best NOx and N2O remediation is achieved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000306279500005 Publication Date 2012-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 24 Open Access
Notes Approved Most recent IF: 2.846; 2012 IF: 3.730
Call Number UA @ lucian @ c:irua:100920 Serial 842
Permanent link to this record
 

 
Author Van Tendeloo, G.; Amelinckx, S.
Title Electron microscopy of fullerenes and related materials Type H3 Book chapter
Year 2000 Publication Abbreviated Journal
Volume Issue Pages 353-396
Keywords H3 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Wiley-VCH Place of Publication (up) Weinheim Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:29722 Serial 961
Permanent link to this record
 

 
Author Amelinckx, S.; van Dyck, D.; van Landuyt, J.; Van Tendeloo, G.
Title Electron microscopy: principles and fundamentals Type ME1 Book as editor or co-editor
Year 1997 Publication Abbreviated Journal
Volume Issue Pages
Keywords ME1 Book as editor or co-editor; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Vch Place of Publication (up) Weinheim Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 3-527-29479-1 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:22089 Serial 967
Permanent link to this record