|   | 
Details
   web
Records
Author Bals, S.; Batenburg, K.J.; Liang, D.; Lebedev, O.; Van Tendeloo, G.; Aerts, A.; Martens, J.A.; Kirschhock, C.E.
Title Quantitative three-dimensional modeling of zeotile through discrete electron tomography Type A1 Journal article
Year 2009 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 131 Issue 13 Pages 4769-4773
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Discrete electron tomography is a new approach for three-dimensional reconstruction of nanoscale objects. The technique exploits prior knowledge of the object to be reconstructed, which results in an improvement of the quality of the reconstructions. Through the combination of conventional transmission electron microscopy and discrete electron tomography with a model-based approach, quantitative structure determination becomes possible. In the present work, this approach is used to unravel the building scheme of Zeotile-4, a silica material with two levels of structural order. The layer sequence of slab-shaped building units could be identified. Successive layers were found to be related by a rotation of 120°, resulting in a hexagonal space group. The Zeotile-4 material is a demonstration of the concept of successive structuring of silica at two levels. At the first level, the colloid chemical properties of Silicalite-1 precursors are exploited to create building units with a slablike geometry. At the second level, the slablike units are tiled using a triblock copolymer to serve as a mesoscale structuring agent.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000264806300050 Publication Date 2009-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 58 Open Access
Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 13.858; 2009 IF: 8.580
Call Number UA @ lucian @ c:irua:76393 Serial 2767
Permanent link to this record
 

 
Author Lindner, H.; Murtazin, A.; Groh, S.; Niemax, K.; Bogaerts, A.
Title Simulation and experimental studies on plasma temperature, flow velocity, and injector diameter effects for an inductively coupled plasma Type A1 Journal article
Year 2011 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 83 Issue 24 Pages 9260-9266
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma (ICP) is analyzed by means of experiments and numerical simulation. Important plasma properties are analyzed, namely, the effective temperature inside the central channel and the mean flow velocity inside the plasma. Furthermore, the effect of torches with different injector diameters is studied by the model. The temperature inside the central channel is determined from the end-on collected line-to-background ratio in dependence of the injector gas flow rates. Within the limits of 3% deviation, the results of the simulation and the experiments are in good agreement in the range of flow rates relevant for the analysis of relatively large droplets, i.e., 50 μm. The deviation increases for higher gas flow rates but stays below 6% for all flow rates studied. The velocity of the gas inside the coil region was determined by side-on analyte emission measurements with single monodisperse droplet introduction and by the analysis of the injector gas path lines in the simulation. In the downstream region significantly higher velocities were found than in the upstream region in both the simulation and the experiment. The quantitative values show good agreement in the downstream region. In the upstream region, deviations were found in the absolute values which can be attributed to the flow conditions in that region and because the methods used for velocity determination are not fully consistent. Eddy structures are found in the simulated flow lines. These affect strongly the way taken by the path lines of the injector gas and they can explain the very long analytical signals found in the experiments at low flow rates. Simulations were performed for different injector diameters in order to find conditions where good analyte transport and optimum signals can be expected. The results clearly show the existence of a transition flow rate which marks the lower limit for effective analyte transport conditions through the plasma. A rule-of-thumb equation was extracted from the results from which the transition flow rate can be estimated for different injector diameters and different injector gas compositions.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000297946900013 Publication Date 2011-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 34 Open Access
Notes Approved Most recent IF: 6.32; 2011 IF: 5.856
Call Number UA @ lucian @ c:irua:94001 Serial 3009
Permanent link to this record
 

 
Author Heijkers, S.; Snoeckx, R.; Kozák, T.; Silva, T.; Godfroid, T.; Britun, N.; Snyders, R.; Bogaerts, A.
Title CO2 conversion in a microwave plasma reactor in the presence of N2 : elucidating the role of vibrational levels Type A1 Journal article
Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 119 Issue 119 Pages 12815-12828
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A chemical kinetics model is developed for a CO2/N2 microwave plasma, focusing especially on the vibrational levels of both CO2 and N2. The model is used to calculate the CO2 and N2 conversion as well as the energy efficiency of CO2 conversion for different power densities and for N2 fractions in the CO2/N2 gas mixture ranging from 0 to 90%. The calculation results are compared with measurements, and agreements within 23% and 33% are generally found for the CO2 conversion and N2 conversion, respectively. To explain the observed trends, the destruction and formation processes of both CO2 and N2 are analyzed, as well as the vibrational distribution functions of both CO2 and N2. The results indicate that N2 contributes in populating the lower asymmetric levels of CO2, leading to a higher absolute CO2 conversion upon increasing N2 fraction. However, the effective CO2 conversion drops because there is less CO2 initially present in the gas mixture; thus, the energy efficiency also drops with rising N2 fraction.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000356317500005 Publication Date 2015-05-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 56 Open Access
Notes Approved Most recent IF: 4.536; 2015 IF: 4.772
Call Number c:irua:126325 Serial 3523
Permanent link to this record
 

 
Author Martens, T.; Mihailova, D.; van Dijk, J.; Bogaerts, A.
Title Theoretical characterization of an atmospheric pressure glow discharge used for analytical spectrometry Type A1 Journal article
Year 2009 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 81 Issue 21 Pages 9096-9108
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We have investigated the plasma processes in an atmospheric pressure glow discharge (APGD) in He used for analytical spectrometry by means of fluid and Monte Carlo (MC) simulations. Typical results include the potential and electric field distributions in the plasma, the density profiles of the various plasma species throughout the discharge, the mean electron energy, as well as the rates of the various collision processes in the plasma, and the relative importance of the different production and loss rates for the various species. The similarities and differences with low-pressure glow discharges are discussed. The main differences are a very small cathode dark space region and a large positive column as well as the dominant role of molecular ions. Some characteristic features of the APGD, such as the occurrence of the different spatial zones in the discharge, are illustrated, with links to experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000276191900062 Publication Date 2009-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 15 Open Access
Notes Approved Most recent IF: 6.32; 2009 IF: 5.214
Call Number UA @ lucian @ c:irua:79554 Serial 3604
Permanent link to this record
 

 
Author Eckert, M.; Mortet, V.; Zhang, L.; Neyts, E.; Verbeeck, J.; Haenen, ken; Bogaerts, A.
Title Theoretical investigation of grain size tuning during prolonged bias-enhanced nucleation Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 6 Pages 1414-1423
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, the effects of prolonged bias-enhanced nucleation (prolonged BEN) on the growth mechanisms of diamond are investigated by molecular dynamics (MD) and combined MD-Metropolis Monte Carlo (MD-MMC) simulations. First, cumulative impacts of CxHy+ and Hx+ on an a-C:H/nanodiamond composite were simulated; second, nonconsecutive impacts of the dominant ions were simulated in order to understand the observed phenomena in more detail. As stated in the existing literature, the growth of diamond structures during prolonged BEN is a process that takes place below the surface of the growing film. The investigation of the penetration behavior of CxHy+ and Hx+ species shows that the carbon-containing ions remain trapped within this amorphous phase where they dominate mechanisms like precipitation of sp3 carbon clusters. The H+ ions, however, penetrate into the crystalline phase at high bias voltages (>100 V), destroying the perfect diamond structure. The experimentally measured reduction of grain sizes at high bias voltage, reported in the literature, might thus be related to penetrating H+ ions. Furthermore, the CxHy+ ions are found to be the most efficient sputtering agents, preventing the build up of defective material.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000288291400011 Publication Date 2011-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 9 Open Access
Notes Iwt; Fwo; Esteem 026019; Iap Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:87642 Serial 3605
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Two-dimensional model of a direct current glow discharge : description of the argon metastable atoms, sputtered atoms and ions Type A1 Journal article
Year 1996 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 68 Issue 15 Pages 2676-2685
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A two-dimensional model is presented that describes the behavior of argon metastable atoms, copper atoms, and copper ions in an argon direct. current glow discharge, in the standard cell of the VG9000 glow discharge mass spectrometer for analyzing flat samples. The model is combined with a previously developed model for the electrons, argon ions, and atoms in the same cell to obtain an overall picture of the glow discharge, The results of the present model comprise the number densities of the described plasma species, the relative contributions of different production and loss processes for the argon metastable atoms, the thermalization profile of the sputtered copper atoms, the relative importance of the different ionization mechanisms for the copper atoms, the ionization degree of copper, the copper ion-to-argon ion density ratio, and the relative roles of copper ions, argon ions, and atoms in the sputtering process. All these quantities are calculated for a range of voltages and pressures, Moreover, since the sticking coefficient of copper atoms on solid surfaces is not well-known in the literature, the influence of this parameter on the results is briefly discussed.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos A1996VA00300042 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.636 Times cited 57 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:16242 Serial 3775
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Goedheer, W.J.
Title Two-dimensional model of a direct current glow discharge: description of the electrons, argon ions and fast argon atoms Type A1 Journal article
Year 1996 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 68 Issue 14 Pages 2296-2303
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos A1996UY08700002 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.636 Times cited 70 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:16241 Serial 3776
Permanent link to this record
 

 
Author Aerts, R.; Somers, W.; Bogaerts, A.
Title Carbon dioxide splitting in a dielectric barrier discharge plasma : a combined experimental and computational study Type A1 Journal article
Year 2015 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 8 Issue 8 Pages 702-716
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2. We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000349954400019 Publication Date 2015-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 131 Open Access
Notes Approved Most recent IF: 7.226; 2015 IF: 7.657
Call Number c:irua:123930 Serial 279
Permanent link to this record
 

 
Author Bogaerts, A.; Bultinck, E.; Eckert, M.; Georgieva, V.; Mao, M.; Neyts, E.; Schwaederlé, L.
Title Computer modeling of plasmas and plasma-surface interactions Type A1 Journal article
Year 2009 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 6 Issue 5 Pages 295-307
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, an overview is given of different modeling approaches used for describing gas discharge plasmas, as well as plasma-surface interactions. A fluid model is illustrated for describing the detailed plasma chemistry in capacitively coupled rf discharges. The strengths and limitations of Monte Carlo simulations and of a particle-in-cell-Monte Carlo collisions model are explained for a magnetron discharge, whereas the capabilities of a hybrid Monte Carlo-fluid approach are illustrated for a direct current glow discharge used for spectrochemical analysis of materials. Finally, some examples of molecular dynamics simulations, for the purpose of plasma-deposition, are given.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000266471800003 Publication Date 2009-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 18 Open Access
Notes Approved Most recent IF: 2.846; 2009 IF: 4.037
Call Number UA @ lucian @ c:irua:76833 Serial 461
Permanent link to this record
 

 
Author Bogaerts, A.; de Bleecker, K.; Georgieva, V.; Kolev, I.; Madani, M.; Neyts, E.
Title Computer simulations for processing plasmas Type A1 Journal article
Year 2006 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 3 Issue 2 Pages 110-119
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000235628300003 Publication Date 2006-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 8 Open Access
Notes Approved Most recent IF: 2.846; 2006 IF: 2.298
Call Number UA @ lucian @ c:irua:56076 Serial 465
Permanent link to this record
 

 
Author Philippaerts, A.; Goossens, S.; Vermandel, W.; Tromp, M.; Turner, S.; Geboers, J.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F.
Title Design of Ru-zeolites for hydrogen-free production of conjugated linoleic acid Type A1 Journal article
Year 2011 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 4 Issue 6 Pages 757-767
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract While conjugated vegetable oils are currently used as additives in the drying agents of oils and paints, they are also attractive molecules for making bio-plastics. Moreover, conjugated oils will soon be accepted as nutritional additives for functional food products. While current manufacture of conjugated vegetable oils or conjugated linoleic acids (CLAs) uses a homogeneous base as isomerisation catalyst, a heterogeneous alternative is not available today. This contribution presents the direct production of CLAs over Ru supported on different zeolites, varying in topology (ZSM-5, BETA, Y), Si/Al ratio and countercation (H+, Na+, Cs+). Ru/Cs-USY, with a Si/Al ratio of 40, was identified as the most active and selective catalyst for isomerisation of methyl linoleate (cis-9,cis-12 (C18:2)) to CLA at 165 °C. Interestingly, no hydrogen pre-treatment of the catalyst or addition of hydrogen donors is required to achieve industrially relevant isomerisation productivities, namely, 0.7 g of CLA per litre of solvent per minute. Moreover, the biologically most active CLA isomers, namely, cis-9,trans-11, trans-10,cis-12 and trans-9,trans-11, were the main products, especially at low catalyst concentrations. Ex situ physicochemical characterisation with CO chemisorption, extended X-ray absorption fine structure measurements, transmission electron microscopy analysis, and temperature-programmed oxidation reveals the presence of highly dispersed RuO2 species in Ru/Cs-USY(40).
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000292214000009 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 24 Open Access
Notes Fwo Approved Most recent IF: 7.226; 2011 IF: 6.827
Call Number UA @ lucian @ c:irua:90352 Serial 660
Permanent link to this record
 

 
Author Ramakers, M.; Michielsen, I.; Aerts, R.; Meynen, V.; Bogaerts, A.
Title Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge Type A1 Journal article
Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 12 Issue 12 Pages 755-763
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper demonstrates that the CO2 conversion in a dielectric barrier discharge rises drastically upon addition of Ar or He, and the effect is more pronounced for Ar than for He. The effective CO2 conversion, on the other hand, drops upon addition of Ar or He, which is logical due to the lower CO2 content in the gas mixture, and the same is true for the energy efficiency, because a considerable fraction of the energy is then consumed into ionization/excitation of Ar or He atoms. The higher absolute CO2 conversion upon addition of Ar or He can be explained by studying in detail the Lissajous plots and the current profiles. The breakdown voltage is lower in the CO2/Ar and CO2/He mixtures, and the discharge gap is more filled with plasma, which enhances the possibility for CO2 conversion. The rates of electron impact excitationdissociation of CO2, estimated from the electron densities and mean electron energies, are indeed higher in the CO2/Ar and (to a lower extent) in the CO2/He mixtures, compared to the pure CO2 plasma. Moreover, charge transfer between Ar+ or Ar2+ ions and CO2, followed by electron-ion dissociative recombination of the CO2+ ions, might also contribute to, or even be dominant for the CO2 dissociation. All these effects can explain the higher CO2 conversion, especially upon addition of Ar, but also upon addition of He.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000359672400007 Publication Date 2015-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 63 Open Access
Notes Approved Most recent IF: 2.846; 2015 IF: 2.453
Call Number c:irua:126822 Serial 799
Permanent link to this record
 

 
Author Teodoru, S.; Kusano, Y.; Bogaerts, A.
Title The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge Type A1 Journal article
Year 2012 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 9 Issue 7 Pages 652-689
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A numerical model for NxOy remediation in humid air plasma produced with a dielectric barrier discharge at atmospheric pressure is presented. Special emphasis is given to NO2 and N2O reduction with the decrease of O2 content in the feedstock gas. A detailed reaction mechanism including electronic and ionic processes, as well as the contribution of radicals and excited atomic/molecular species is proposed. The temporal evolution of the densities of NO, NO2 and N2O species, and some other by-products, is analyzed, and the major pathways for the NxOy remediation are discussed for one pulse. Subsequently, simulations are presented for a multi-pulses case, where three O2 contents are tested for optimization of the remediation process. It is found that when the gas mixture O2/N2/H2O/NOx has no initial O2 content, the best NOx and N2O remediation is achieved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000306279500005 Publication Date 2012-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 24 Open Access
Notes Approved Most recent IF: 2.846; 2012 IF: 3.730
Call Number UA @ lucian @ c:irua:100920 Serial 842
Permanent link to this record
 

 
Author De Bie, C.; Verheyde, B.; Martens, T.; van Dijk, J.; Paulussen, S.; Bogaerts, A.
Title Fluid modeling of the conversion of methane into higher hydrocarbons in an atmospheric pressure dielectric barrier discharge Type A1 Journal article
Year 2011 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 8 Issue 11 Pages 1033-1058
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A one-dimensional fluid model for a dielectric barrier discharge in methane, used as a chemical reactor for gas conversion, is developed. The model describes the gas phase chemistry governing the conversion process of methane to higher hydrocarbons. The spatially averaged densities of the various plasma species as a function of time are discussed. Besides, the conversion of methane and the yields of the reaction products as a function of the residence time in the reactor are shown and compared with experimental data. Higher hydrocarbons (C2Hy and C3Hy) and hydrogen gas are typically found to be important reaction products. Furthermore, the main underlying reaction pathways are determined.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000297745500005 Publication Date 2011-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 70 Open Access
Notes Approved Most recent IF: 2.846; 2011 IF: 2.468
Call Number UA @ lucian @ c:irua:92443 Serial 1227
Permanent link to this record
 

 
Author Tinck, S.; Altamirano-Sánchez, E.; De Schepper, P.; Bogaerts, A.
Title Formation of a nanoscale SiO2 capping layer on photoresist lines with an Ar/SiCl4/O2 inductively coupled plasma : a modeling investigation Type A1 Journal article
Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 11 Issue 1 Pages 52-62
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract PECVD of a nanoscale SiO2 capping layer using low pressure SiCl4/O-2/Ar plasmas is numerically investigated. The purpose of this capping layer is to restore photoresist profiles with improved line edge roughness. A 2D plasma and Monte Carlo feature profile model are applied for this purpose. The deposited films are calculated for various operating conditions to obtain a layer with desired shape. An increase in pressure results in more isotropic deposition with a higher deposition rate, while a higher power creates a more anisotropic process. Dilution of the gas mixture with Ar does not result in an identical capping layer shape with a thickness linearly correlated to the dilution. Finally, a substrate bias seems to allow proper control of the vertical deposition rate versus sidewall deposition as desired.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000330588800006 Publication Date 2013-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 1 Open Access
Notes Approved Most recent IF: 2.846; 2014 IF: 2.453
Call Number UA @ lucian @ c:irua:115735 Serial 1256
Permanent link to this record
 

 
Author Aerts, R.; Snoeckx, R.; Bogaerts, A.
Title In-situ chemical trapping of oxygen in the splitting of carbon dioxide by plasma Type A1 Journal article
Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 11 Issue 10 Pages 985-992
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000344180900008 Publication Date 2014-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 29 Open Access
Notes Approved Most recent IF: 2.846; 2014 IF: 2.453
Call Number UA @ lucian @ c:irua:118302 Serial 1575
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Verlackt, C.C.; Khalilov, U.; van Duin, A.C.T.; Bogaerts, A.
Title Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species : a reactive molecular dynamics study Type A1 Journal article
Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 12 Issue 12 Pages 162-171
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Reactive molecular dynamics simulations are performed to study the interaction of reactive oxygen species, such as OH, HO2 and H2O2, with the endotoxic biomolecule lipid A of the gram-negative bacterium Escherichia coli. It is found that the aforementioned plasma species can destroy the lipid A, which consequently results in reducing its toxic activity. All bond dissociation events are initiated by hydrogen-abstraction reactions. However, the mechanisms behind these dissociations are dependent on the impinging plasma species, i.e. a clear difference is observed in the mechanisms upon impact of HO2 radicals and H2O2 molecules on one hand and OH radicals on the other hand. Our simulation results are in good agreement with experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000350275400005 Publication Date 2014-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 18 Open Access
Notes Approved Most recent IF: 2.846; 2015 IF: 2.453
Call Number c:irua:123540 Serial 1589
Permanent link to this record
 

 
Author Somers, W.; Dubreuil, M.F.; Neyts, E.C.; Vangeneugden, D.; Bogaerts, A.
Title Incorporation of fluorescent dyes in atmospheric pressure plasma coatings for in-line monitoring of coating homogeneity Type A1 Journal article
Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 11 Issue 7 Pages 678-684
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper reports on the incorporation of three commercial fluorescent dyes, i.e., rhodamine 6G, fluorescein, and fluorescent brightener 184, in plasma coatings, by utilizing a dielectric barrier discharge (DBD) reactor, and the subsequent monitoring of the coatings homogeneity based on the emitted fluorescent light. The plasma coatings are qualitatively characterized with fluorescence microscopy, UVvis spectroscopy and profilometry for the determination of the coating thickness. The emitted fluorescent light of the coating correlates to the amount of dye per area, and deviations of these factors can hence be observed by monitoring the intensity of this light. This allows monitoring the homogeneity of the plasma coatings in a fast and simple way, without making major adjustments to the process.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000340416300007 Publication Date 2014-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 3 Open Access
Notes Approved Most recent IF: 2.846; 2014 IF: 2.453
Call Number UA @ lucian @ c:irua:118063 Serial 1598
Permanent link to this record
 

 
Author Aerts, R.; Tu, X.; De Bie, C.; Whitehead, J.C.; Bogaerts, A.
Title An investigation into the dominant reactions for ethylene destruction in non-thermal atmospheric plasmas Type A1 Journal article
Year 2012 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 9 Issue 10 Pages 994-1000
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A crucial step, which is still not well understood in the destruction of volatile organic compounds (VOCs) with low temperature plasmas, is the initiation of the process. Here, we present a kinetic model for the destruction of ethylene in low temperature plasmas that allows us to calculate the relative importance of all plasma species and their related reactions. Modifying the ethylene concentration and/or the SED had a major impact on the relative importance of the radicals (i.e., mainly atomic oxygen) and the metastable nitrogen (i.e., more specifically N2(equation image)) in the destruction process. Our results show that the direct destruction by electron impact reactions for ethylene can be neglected; however, we can certainly not neglect the influence of N2(equation image)).
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000309750300008 Publication Date 2012-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 46 Open Access
Notes Approved Most recent IF: 2.846; 2012 IF: 3.730
Call Number UA @ lucian @ c:irua:101765 Serial 1727
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A.
Title Modeling SiH4/O2/Ar inductively coupled plasmas used for filling of microtrenches in shallow trench isolation (STI) Type A1 Journal article
Year 2012 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 9 Issue 5 Pages 522-539
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Modeling results are presented to gain a better insight in the properties of a SiH4/O2/Ar inductively coupled plasma (ICP) and how it interacts with a silicon substrate (wafer), as applied in the microelectronics industry for the fabrication of electronic devices. The SiH4/O2/Ar ICP is used for the filling of microtrenches with isolating material (SiO2), as applied in shallow trench isolation (STI). In this article, a detailed reaction set that describes the plasma chemistry of SiH4/O2/Ar discharges as well as surface processes, such as sputtering, oxidation, and deposition, is presented. Results are presented on the plasma properties during the plasma enhanced chemical vapor deposition process (PECVD) for different gas ratios, as well as on the shape of the filled trenches and the surface compositions of the deposited layers. For the operating conditions under study it is found that the most important species accounting for deposition are SiH2, SiH3O, SiH3 and SiH2O, while SiH+2, SiH+3, O+2 and Ar+ are the dominant species for sputtering of the surface. By diluting the precursor gas (SiH4) in the mixture, the deposition rate versus sputtering rate can be controlled for a desired trench filling process. From the calculation results it is clear that a high deposition rate will result in undesired void formation during the trench filling, while a small deposition rate will result in undesired trench bottom and mask damage by sputtering. By varying the SiH4/O2 ratio, the chemical composition of the deposited layer will be influenced. However, even at the highest SiH4/O2 ratio investigated (i.e., 3.2:1; low oxygen content), the bulk deposited layer consists mainly of SiO2, suggesting that low-volatile silane species deposit first and subsequently become oxidized instead of being oxidized first in the plasma before deposition. Finally, it was found that the top surface of the deposited layer contained less oxygen due to preferential sputtering of O atoms, making the top layer more Si-rich. However, this effect is negligible at a SiH4/O2 ratio of 2:1 or lower.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000303858100010 Publication Date 2012-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 5 Open Access
Notes Approved Most recent IF: 2.846; 2012 IF: 3.730
Call Number UA @ lucian @ c:irua:99127 Serial 2142
Permanent link to this record
 

 
Author Neyts, E.; Eckert, M.; Bogaerts, A.
Title Molecular dynamics simulations of the growth of thin a-C:H films under additional ion bombardment: influence of the growth species and the Ar+ ion kinetic energy Type A1 Journal article
Year 2007 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos
Volume 13 Issue 6/7 Pages 312-318
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000248381800007 Publication Date 2007-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.333 Times cited 14 Open Access
Notes Approved Most recent IF: 1.333; 2007 IF: 1.936
Call Number UA @ lucian @ c:irua:64532 Serial 2176
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A.
Title Molecular dynamics simulations of the sticking and etch behavior of various growth species of (ultra)nanocrystalline diamond films Type A1 Journal article
Year 2008 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos
Volume 14 Issue 7/8 Pages 213-223
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The reaction behavior of species that may affect the growth of ultrananocrystal line and nanocrystalline diamond ((U)NCD) films is investigated by means of molecular dynamics simulations. Impacts of CHx (x = 0 – 4), C2Hx (x=0-6), C3Hx (x=0-2), C4Hx (x = 0 – 2), H, and H-2 on clean and hydrogenated diamond (100)2 x 1 and (111) 1 x 1 surfaces at two different substrate temperatures are simulated. We find that the different bonding structures of the two surfaces cause different temperature effects on the sticking efficiency. These results predict a temperature-dependent ratio of diamond (100) and (111) growth. Furthermore, predictions of which are the most important hydrocarbon species for (U)NCD growth are made.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000259302700008 Publication Date 2008-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.333 Times cited 25 Open Access
Notes Approved Most recent IF: 1.333; 2008 IF: 1.483
Call Number UA @ lucian @ c:irua:70001 Serial 2177
Permanent link to this record
 

 
Author Tinck, S.; De Schepper, P.; Bogaerts, A.
Title Numerical investigation of SiO2 coating deposition in wafer processing reactors with SiCl4/O2/Ar inductively coupled plasmas Type A1 Journal article
Year 2013 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 10 Issue 8 Pages 714-730
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Simulations and experiments are performed to obtain a better insight in the plasma enhanced chemical vapor deposition process of SiO2 by SiCl4/O2/Ar plasmas for introducing a SiO2-like coating in wafer processing reactors. Reaction sets describing the plasma and surface chemistry of the SiCl4/O2/Ar mixture are presented. Typical calculation results include the bulk plasma characteristics, i.e., electrical properties, species densities, and information on important production and loss processes, as well as the chemical composition of the deposited coating, and the thickness uniformity of the film on all reactor surfaces. The film deposition characteristics, and the trends for varying discharge conditions, are explained based on the plasma behavior, as calculated by the model.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000327790000006 Publication Date 2013-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 3 Open Access
Notes Approved Most recent IF: 2.846; 2013 IF: 2.964
Call Number UA @ lucian @ c:irua:109900 Serial 2397
Permanent link to this record
 

 
Author Kirschhock, C.E.A.; Liang, D.; Aerts, A.; Aerts, C.A.; Kremer, S.P.B.; Jacobs, P.A.; Van Tendeloo, G.; Martens, J.A.
Title On the TEM and AFM evidence of zeosil nanoslabs present during the synthesis of silicalite-1 : reply Type L1 Letter to the editor
Year 2004 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 43 Issue 35 Pages 4562-4564
Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000224008400003 Publication Date 2004-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited Open Access
Notes Fwo; Iap-Pai Approved Most recent IF: 11.994; 2004 IF: 9.161
Call Number UA @ lucian @ c:irua:103253 Serial 2457
Permanent link to this record
 

 
Author Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A.
Title Particle-in-cell/Monte Carlo collisions model for the reactive sputter deposition of nitride layers Type A1 Journal article
Year 2009 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 6 Issue S:1 Pages S784-S788
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A 2d3v Particle-in-cell/Monte Carlo collisions (PIC/MCC) model was constructed for an Ar/N2 reactive gas mixture in a magnetron discharge. A titanium target was used, in order to study the sputter deposition of a TiNx thin film. Cathode currents and voltages were calculated self-consistently and compared with experiments. Also, ion fluxes to the cathode were calculated, which cause sputtering of the target. The sputtered atom fluxes from the target, and to the substrate were calculated, in order to visualize the deposition of the TiNx film.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000272302900149 Publication Date 2009-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 2 Open Access
Notes Approved Most recent IF: 2.846; 2009 IF: 4.037
Call Number UA @ lucian @ c:irua:79364 Serial 2558
Permanent link to this record
 

 
Author Kolev, I.; Bogaerts, A.
Title PIC – MCC numerical simulation of a DC planar magnetron Type A1 Journal article
Year 2006 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 3 Issue 2 Pages 127-134
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000235628300005 Publication Date 2006-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 27 Open Access
Notes Approved Most recent IF: 2.846; 2006 IF: 2.298
Call Number UA @ lucian @ c:irua:56077 Serial 2621
Permanent link to this record
 

 
Author Bogaerts, A.; Yusupov, M.; Van der Paal, J.; Verlackt, C.C.W.; Neyts, E.C.
Title Reactive molecular dynamics simulations for a better insight in plasma medicine Type A1 Journal article
Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 11 Issue 12 Pages 1156-1168
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this review paper, we present several examples of reactive molecular dynamics simulations, which contribute to a better understanding of the underlying mechanisms in plasma medicine on the atomic scale. This includes the interaction of important reactive oxygen plasma species with the outer cell wall of both gram-positive and gram-negative bacteria, and with lipids present in human skin. Moreover, as most biomolecules are surrounded by a liquid biofilm, the behavior of these plasma species in a liquid (water) layer is presented as well. Finally, a perspective for future atomic scale modeling studies is given, in the field of plasma medicine in general, and for cancer treatment in particular.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000346034700007 Publication Date 2014-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 22 Open Access
Notes Approved Most recent IF: 2.846; 2014 IF: 2.453
Call Number UA @ lucian @ c:irua:121269 Serial 2822
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A.; Shamiryan, D.
Title Simultaneous etching and deposition processes during the etching of silicon with a Cl2/O2/Ar inductively coupled plasma Type A1 Journal article
Year 2011 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 8 Issue 6 Pages 490-499
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this article, surface processes occurring during the etching of Si with a Cl2/O2/Ar plasma are investigated by means of experiments and modeling. Cl2-based plasmas are commonly used to etch silicon, while a small fraction of O2 is added to protect the sidewalls from lateral etching during the shallow trench isolation process. When the oxygen fraction exceeds a critical value, the wafer surface process changes from an etching regime to a deposition regime, drastically reducing the etch rate. This effect is commonly referred to as the etch stop phenomenon. To gain better understanding of this mechanism, the oxygen fraction is varied in the gas mixture and special attention is paid to the effects of oxygen and of the redeposition of non-volatile etched species on the overall etch/deposition process. It is found that, when the O2 flow is increased, the etch process changes from successful etching to the formation of a rough surface, and eventually to the actual growth of an oxide layer which completely blocks the etching of the underlying Si. The size of this etch stop island was found to increase as a function of oxygen flow, while its thickness was dependent on the amount of Si etched. This suggests that the growth of the oxide layer mainly depends on the redeposition of non-volatile etch products. The abrupt change in the etch rate as a function of oxygen fraction was not found back in the oxygen content of the plasma, suggesting the competitive nature between oxidation and chlorination at the wafer. Finally, the wafer and reactor wall compositions were investigated by modeling and it was found that the surface rapidly consisted mainly of SiO2 when the O2 flow was increased above about 15 sccm.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000292116800003 Publication Date 2011-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 5 Open Access
Notes Approved Most recent IF: 2.846; 2011 IF: 2.468
Call Number UA @ lucian @ c:irua:90926 Serial 3014
Permanent link to this record
 

 
Author Baguer, N.; Neyts, E.; van Gils, S.; Bogaerts, A.
Title Study of atmospheric MOCVD of TiO2 thin films by means of computational fluid dynamics simulations Type A1 Journal article
Year 2008 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos
Volume 14 Issue 11/12 Pages 339-346
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper presents the computational study of the metal-organic (MO) CVD of titanium dioxide (TiO2) films grown using titanium tetraisopropoxide (TTIP) as a precursor and nitrogen as a carrier gas. The TiO2 films are deposited under atmospheric pressure. The effects of the precursor concentration, the substrate temperature, and the hydrolysis reaction on the deposition process are investigated. It is found that hydrolysis of the TTIP decreases the onset temperature of the gas-phase thermal decomposition, and that the deposition rate increases with the precursor concentration and with the decrease of substrate temperature. Concerning the mechanism responsible for the film growth, the model shows that at the lowest precursor concentration, the direct adsorption of the precursor is dominant, while at higher precursor concentrations, the monomer deposition becomes more important.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000262215800003 Publication Date 2008-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.333 Times cited 14 Open Access
Notes Approved Most recent IF: 1.333; 2008 IF: 1.483
Call Number UA @ lucian @ c:irua:71905 Serial 3325
Permanent link to this record
 

 
Author Kremer, S.P.B.; Kirschhock, C.E.A.; Aerts, A.; Villani, K.; Martens, J.A.; Lebedev, O.I.; Van Tendeloo, G.
Title Tiling silicalite-1 nanoslabs into 3D mosaics Type A1 Journal article
Year 2003 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 15 Issue 20 Pages 1705-1707
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000186425600003 Publication Date 2003-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 82 Open Access
Notes Approved Most recent IF: 19.791; 2003 IF: NA
Call Number UA @ lucian @ c:irua:54810 Serial 3662
Permanent link to this record