|   | 
Details
   web
Records
Author Filippousi, M.; Angelakeris, M.; Katsikini, M.; Paloura, E.; Efthimiopoulos, I.; Wang, Y.; Zamboulis, D.; Van Tendeloo, G.
Title Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 29 Pages 16209-16217
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Iron oxide nanoparticles were prepared using the simplest and most efficient chemical route, the coprecipitation, in the absence and the presence of three different and widely used surfactants. The purpose of this study is to investigate the possible influence of the different surfactants on the structure and therefore on the magnetic properties of the iron oxide nanoparticles. Thus, different techniques were employed in order to elucidate the composition and structure of the magnetic iron oxide nanoparticles. By combining transmission electron microscopy with X-ray powder diffraction and X-ray absorption fine structure measurements, we were able to determine and confirm the crystal structure of the constituent iron oxides. The magnetic properties were investigated by measuring the hysteresis loops where the surfactant influence on their collective magnetic behavior and subsequent AC magnetic hyperthermia response is apparent. The results indicate that the produced iron oxide nanoparticles may be considered as good candidates for biomedical applications in hyperthermia treatments because of their high heating capacity exhibited under an alternating magnetic field, which is sufficient to provoke damage to the cancer cells.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000339540700073 Publication Date 2014-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 47 Open Access
Notes European Research Council under the seventh Framework Program (FP7); ERC Grant No. 246791 – COUNTATOMS; IAP-AIP functional Supramolecular structure IUAP P7/05 Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:118129 Serial 3398
Permanent link to this record
 

 
Author Wang, Y.-L.; Glatz, A.; Kimmel, G.J.; Aranson, I.S.; Thoutam, L.R.; Xiao, Z.-L.; Berdiyorov, G.R.; Peeters, F.M.; Crabtree, G.W.; Kwok, W.-K.
Title Parallel magnetic field suppresses dissipation in superconducting nanostrips Type A1 Journal article
Year 2017 Publication America Abbreviated Journal P Natl Acad Sci Usa
Volume 114 Issue 48 Pages E10274-E10280
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the \u0022holy grail\u0022 of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.'));
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington, D.C. Editor
Language Wos 000416891600007 Publication Date 2017-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.661 Times cited 18 Open Access
Notes ; This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The simulation was supported by the Scientific Discovery through Advanced Computing program funded by US DOE, Office of Science, Advanced Scientific Computing Research and Basic Energy Science, Division of Materials Science and Engineering. L.R.T. and Z.-L.X. acknowledge support through National Science Foundation Grant DMR-1407175. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. ; Approved Most recent IF: 9.661
Call Number UA @ lucian @ c:irua:147697 Serial 4889
Permanent link to this record
 

 
Author Müller, M.; Turner, S.; Lebedev, O.I.; Wang, Y.; Van Tendeloo, G.; Fischer, R.A.
Title Au@MOF-5 and Au/Mox@MOF-5 (M = Zn, Ti; x = 1, 2) : preparation and microstructural characterisation Type A1 Journal article
Year 2011 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume Issue 12 Pages 1876-1887
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Zn-carboxylate-based porous coordination polymer MOF-5 [Zn4O(bdc)3] and the metal oxide loaded materials ZnO@MOF-5 and TiO2@MOF-5 were loaded in a second step with the precursor [ClAuCO] to yield intermediate materials denoted as [ClAuCO]@MOF-5, [ClAuCO]/ZnO@MOF-5 and [ClAuCO]/TiO2@MOF-5. These composites were decomposed to Au@MOF-5, Au/ZnO@MOF-5 and Au/TiO2@MOF-5 under hydrogen at 100 °C. The nanoparticle-loaded hybrid materials were characterised by powder X-ray diffraction (PXRD), IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and N2 sorption measurements, which reveal an intact MOF-5 structure that maintains a high specific surface area. For Au@MOF-5, crystalline Au nanoparticles were distributed over the MOF matrix in a homogeneous fashion with a size of ca. 13 nm, evidenced by high resolution transmission electron microscopy. In the case of Au/ZnO@MOF-5, the Au and metal oxide particles of a few nm in size were coexistent in a given volume of the MOF-5 matrix and were not separated in different crystalline MOF particles. For the TiO2 loaded materials the oxide is preferentially located near the outer surface of the MOF particles, leading to an increase of larger exterior Au particles in comparison to very small interior Au particles as observed for the other materials. Au@MOF-5, Au/ZnO@MOF-5 and Au/TiO2@MOF-5 were tested in liquid-phase oxidation of alcohols. Preliminary results show a high activity for the Au loaded materials in this reaction. This observation is attributed to the microstructure of the composites with very small Au particles distributed homogeneously over the MOF matrix.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000289644300004 Publication Date 2011-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 75 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.444; 2011 IF: 3.049
Call Number UA @ lucian @ c:irua:88644 Serial 205
Permanent link to this record
 

 
Author Wang, Y.; Belén Serrano, A.; Sentosun, K.; Bals, S.; Liz-Marzán, L.M.
Title Stabilization and encapsulation of gold nanostars mediated by dithiols Type A1 Journal article
Year 2015 Publication Small Abbreviated Journal Small
Volume 11 Issue 11 Pages 4314-4320
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Surface chemistry plays a pivotal role in regulating the morphology of nanoparticles, maintaining colloidal stability, and mediating the interaction with target analytes toward practical applications such as surface-enhanced Raman scattering (SERS)-based sensing and imaging. The use of a binary ligand mixture composed of 1,4-benzenedithiol (BDT) and hexadecyltrimethylammonium chloride (CTAC) to provide gold nanostars with long-term stability is reported. This is despite BDT being a bifunctional ligand, which usually leads to bridging and loss of colloidal stability. It is found however that neither BDT nor CTAC alone are able to provide sufficient colloidal and chemical stability. BDT-coated Au nanostars are additionally used as seeds to direct the encapsulation with a gold outer shell, leading to the formation of unusual nanostructures including semishell-coated gold nanostars, which are characterized by high-resolution electron microscopy and electron tomography. Finally, BDT is exploited as a probe to reveal the enhanced local electric fields in the different nanostructures, showing that the semishell configuration provides significantly high SERS signals as compared to other coreshell configurations obtained during seeded growth, including full shells.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000360852900009 Publication Date 2015-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 36 Open Access OpenAccess
Notes 267867 Plasmaquo; 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.643; 2015 IF: 8.368
Call Number c:irua:127571 Serial 3136
Permanent link to this record
 

 
Author Roesler, C.; Dissegna, S.; Rechac, V.L.; Kauer, M.; Guo, P.; Turner, S.; Ollegott, K.; Kobayashi, H.; Yamamoto, T.; Peeters, D.; Wang, Y.; Matsumura, S.; Van Tendeloo, G.; Kitagawa, H.; Muhler, M.; Llabres i Xamena, F.X.; Fischer, R.A.
Title Encapsulation of bimetallic metal nanoparticles into robust zirconium-based metal-organic frameworks : evaluation of the catalytic potential for size-selective hydrogenation Type A1 Journal article
Year 2017 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 23 Issue 15 Pages 3583-3594
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The realization of metal nanoparticles (NPs) with bimetallic character and distinct composition for specific catalytic applications is an intensively studied field. Due to the synergy between metals, most bimetallic particles exhibit unique properties that are hardly provided by the individual monometallic counterparts. However, as small-sized NPs possess high surface energy, agglomeration during catalytic reactions is favored. Sufficient stabilization can be achieved by confinement of NPs in porous support materials. In this sense, metal-organic frameworks (MOFs) in particular have gained a lot of attention during the last years; however, encapsulation of bimetallic species remains challenging. Herein, the exclusive embedding of preformed core-shell PdPt and RuPt NPs into chemically robust Zr-based MOFs is presented. Microstructural characterization manifests partial retention of the core-shell systems after successful encapsulation without harming the crystallinity of the microporous support. The resulting chemically robust NP@UiO-66 materials exhibit enhanced catalytic activity towards the liquid-phase hydrogenation of nitrobenzene, competitive with commercially used Pt on activated carbon, but with superior size-selectivity for sterically varied substrates.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000397502900010 Publication Date 2016-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 13 Open Access Not_Open_Access
Notes ; This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft (DFG). ; Approved Most recent IF: 5.317
Call Number UA @ lucian @ c:irua:142485 Serial 4653
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Zhao, S.-X.; Bogaerts, A.; Wang, Y.-N.
Title Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas Type A1 Journal article
Year 2010 Publication Physics of plasmas Abbreviated Journal Phys Plasmas
Volume 17 Issue 11 Pages 113512-113512,11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A two-dimensional self-consistent fluid model combined with the full set of Maxwell equations is developed to investigate an argon capacitively coupled plasma, focusing on the electromagnetic effects on the discharge characteristics at various discharge conditions. The results indicate that there exist distinct differences in plasma characteristics calculated with the so-called electrostatic model (i.e., without taking into account the electromagnetic effects) and the electromagnetic model (which includes the electromagnetic effects), especially at very high frequencies. Indeed, when the excitation source is in the high frequency regime and the electromagnetic effects are taken into account, the plasma density increases significantly and meanwhile the ionization rate evolves to a very different distribution when the electromagnetic effects are dominant. Furthermore, the dependence of the plasma characteristics on the voltage and pressure is also investigated, at constant frequency. It is observed that when the voltage is low, the difference between these two models becomes more obvious than at higher voltages. As the pressure increases, the plasma density profiles obtained from the electromagnetic model smoothly shift from edge-peaked over uniform to a broad maximum in the center. In addition, the edge effect becomes less pronounced with increasing frequency and pressure, and the skin effect rather than the standing-wave effect becomes dominant when the voltage is high.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Woodbury, N.Y. Editor
Language Wos 000285486500105 Publication Date 2010-11-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited 30 Open Access
Notes Approved Most recent IF: 2.115; 2010 IF: 2.320
Call Number UA @ lucian @ c:irua:84763 Serial 429
Permanent link to this record
 

 
Author Si, X.-J.; Zhao, S.-X.; Xu, X.; Bogaerts, A.; Wang, Y.-N.
Title Fluid simulations of frequency effects on nonlinear harmonics in inductively coupled plasma Type A1 Journal article
Year 2011 Publication Physics of plasmas Abbreviated Journal Phys Plasmas
Volume 18 Issue 3 Pages 033504-033504,9
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A fluid model is self-consistently established to investigate the harmonic effects in an inductively coupled plasma, where the electromagnetic field is solved by the finite difference time domain technique. The spatiotemporal distribution of harmonic current density, harmonic potential, and other plasma quantities, such as radio frequency power deposition, plasma density, and electron temperature, have been investigated. Distinct differences in current density have been observed when calculated with and without Lorentz force, which indicates that the nonlinear Lorentz force plays an important role in the harmonic effects, especially at low frequencies. Moreover, the even harmonics are larger than the odd harmonics both in the current density and the potential. Finally, the dependence of various plasma quantities with and without the Lorentz force on various driving frequencies is also examined. It is shown that the deposited power density decreases and the depth of penetration increases slightly because of the Lorentz force. The electron density increases distinctly while the electron temperature remains almost the same when the Lorentz force is taken into account.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Woodbury, N.Y. Editor
Language Wos 000289151900073 Publication Date 2011-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited 7 Open Access
Notes Approved Most recent IF: 2.115; 2011 IF: 2.147
Call Number UA @ lucian @ c:irua:87876 Serial 1233
Permanent link to this record