|   | 
Details
   web
Records
Author Bogaerts, A.
Title Hydrogen addition to an argon glow discharge: a numerical simulation Type A1 Journal article
Year 2002 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 17 Issue Pages 768-779
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000177254600004 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 48 Open Access
Notes Approved Most recent IF: 3.379; 2002 IF: 4.250
Call Number UA @ lucian @ c:irua:40190 Serial 1531
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Goedheer, W.
Title Improved hybrid Monte Carlo-fluid model for the electrical characteristics in an analytical radiofrequency glow discharge in argon Type A1 Journal article
Year 2001 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 16 Issue Pages 750-755
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000170034200006 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 11 Open Access
Notes Approved Most recent IF: 3.379; 2001 IF: 3.305
Call Number UA @ lucian @ c:irua:37249 Serial 1566
Permanent link to this record
 

 
Author Van der Paal, J.; Aernouts, S.; van Duin, A.C.T.; Neyts, E.C.; Bogaerts, A.
Title Interaction of O and OH radicals with a simple model system for lipids in the skin barrier : a reactive molecular dynamics investigation for plasma medicine Type A1 Journal article
Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 46 Issue 39 Pages 395201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma medicine has been claimed to provide a novel route to heal wounds and regenerate skin, although very little is currently known about the elementary processes taking place. We carried out a series of ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of O and OH radicals with lipids, more specifically with α-linolenic acid as a model for the free fatty acids present in the upper skin layer. Our calculations predict that the O and OH radicals most typically abstract a H atom from the fatty acids, which can lead to the formation of a conjugated double bond, but also to the incorporation of alcohol or aldehyde groups, thereby increasing the hydrophilic character of the fatty acids and changing the general lipid composition of the skin. Within the limitations of the investigated model, no formation of possibly toxic products was observed.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000324810400007 Publication Date 2013-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 36 Open Access
Notes Approved Most recent IF: 2.588; 2013 IF: 2.521
Call Number UA @ lucian @ c:irua:109904 Serial 1684
Permanent link to this record
 

 
Author Mao, M.; Bogaerts, A.
Title Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma enhanced CVD system : the effect of different gas mixtures Type A1 Journal article
Year 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 43 Issue 20 Pages 205201,1-205201,20
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A hybrid model, called the hybrid plasma equipment model (HPEM), was used to study an inductively coupled plasma in gas mixtures of H2 or NH3 with CH4 or C2H2 used for the synthesis of carbon nanotubes or carbon nanofibres (CNTs/CNFs). The plasma properties are discussed for different gas mixtures at low and moderate pressures, and the growth precursors for CNTs/CNFs are analysed. It is found that C2H2, C2H4 and C2H6 are the predominant molecules in CH4 containing plasmas besides the feedstock gas, and serve as carbon sources for CNT/CNF formation. On the other hand, long-chain hydrocarbons are observed in C2H2-containing plasmas. Furthermore, the background gases CH4 and C2H2 show a different decomposition rate with H2 or NH3 addition at moderate pressures.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000277373400009 Publication Date 2010-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 52 Open Access
Notes Approved Most recent IF: 2.588; 2010 IF: 2.109
Call Number UA @ lucian @ c:irua:82067 Serial 1723
Permanent link to this record
 

 
Author Mao, M.; Bogaerts, A.
Title Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma-enhanced CVD system : the effect of processing parameters Type A1 Journal article
Year 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 43 Issue 31 Pages 315203-315203,15
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A parameter study is carried out for an inductively coupled plasma used for the synthesis of carbon nanotubes or carbon nanofibres (CNTs/CNFs), by means of the Hybrid Plasma Equipment Model. The influence of processing parameters including gas ratio for four different gas mixtures typically used for CNT/CNF growth (i.e. CH4/H2, CH4/NH3, C2H2/H2 and C2H2/NH3), inductively coupled plasma (ICP) power (501000 W), operating pressure (10 mTorr1 Torr), bias power (01000 W) and temperature of the substrate (01000 °C) on the plasma chemistry is investigated and the optimized conditions for CNT/CNF growth are analysed. Summarized, our calculations suggest that a lower fraction of hydrocarbon gases (CH4 or C2H2, i.e. below 20%) and hence a higher fraction of etchant gases (H2 or NH3) in the gas mixture result in more 'clean' conditions for controlled CNT/CNF growth. The same applies to a higher ICP power, a moderate ICP gas pressure above 100 mTorr (at least for single-walled carbon nanotubes), a high bias power (for aligned CNTs) and an intermediate substrate temperature.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000280275200007 Publication Date 2010-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 17 Open Access
Notes Approved Most recent IF: 2.588; 2010 IF: 2.109
Call Number UA @ lucian @ c:irua:88365 Serial 1724
Permanent link to this record
 

 
Author Tinck, S.; Boullart, W.; Bogaerts, A.
Title Investigation of etching and deposition processes of Cl2/O2/Ar inductively coupled plasmas on silicon by means of plasmasurface simulations and experiments Type A1 Journal article
Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 42 Issue Pages 095204,1-095204,13
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, a simulation method is described to predict the etching behaviour of Cl2/O2/Ar inductively coupled plasmas on a Si substrate, as used in shallow trench isolation for the production of electronic devices. The hybrid plasma equipment model (HPEM) developed by Kushner et al is applied to calculate the plasma characteristics in the reactor chamber and two additional Monte Carlo simulations are performed to predict the fluxes, angles and energy of the plasma species bombarding the Si substrate, as well as the resulting surface processes such as etching and deposition. The simulations are performed for a wide variety of operating conditions such as gas composition, chamber pressure, power deposition and substrate bias. It is predicted by the simulations that when the fraction of oxygen in the gas mixture is too high, the oxidation of the Si substrate is superior to the etching of Si by chlorine species, resulting in an etch rate close to zero as is also observed in the experiments.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000265531000030 Publication Date 2009-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 23 Open Access
Notes Approved Most recent IF: 2.588; 2009 IF: 2.083
Call Number UA @ lucian @ c:irua:75601 Serial 1731
Permanent link to this record
 

 
Author Van Gaens, W.; Bogaerts, A.
Title Kinetic modelling for an atmospheric pressure argon plasma jet in humid air Type A1 Journal article
Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 46 Issue 27 Pages 275201-275253
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A zero-dimensional, semi-empirical model is used to describe the plasma chemistry in an argon plasma jet flowing into humid air, mimicking the experimental conditions of a setup from the Eindhoven University of Technology. The model provides species density profiles as a function of the position in the plasma jet device and effluent. A reaction chemistry set for an argon/humid air mixture is developed, which considers 84 different species and 1880 reactions. Additionally, we present a reduced chemistry set, useful for higher level computational models. Calculated species density profiles along the plasma jet are shown and the chemical pathways are explained in detail. It is demonstrated that chemically reactive H, N, O and OH radicals are formed in large quantities after the nozzle exit and H2, O2(1Δg), O3, H2O2, NO2, N2O, HNO2 and HNO3 are predominantly formed as 'long living' species. The simulations show that water clustering of positive ions is very important under these conditions. The influence of vibrational excitation on the calculated electron temperature is studied. Finally, the effect of varying gas temperature, flow speed, power density and air humidity on the chemistry is investigated.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000320854700009 Publication Date 2013-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 115 Open Access
Notes Approved Most recent IF: 2.588; 2013 IF: 2.521
Call Number UA @ lucian @ c:irua:108725 Serial 1758
Permanent link to this record
 

 
Author Zhang, Y.; Jiang, W.; Bogaerts, A.
Title Kinetic simulation of direct-current driven microdischarges in argon at atmospheric pressure Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 43 Pages 435201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A one-dimensional, implicit particle-in-cell Monte Carlo collision model is used to simulate the plasma kinetic properties at a steady state in a parallel-plate direct current argon glow microdischarge under various operating conditions, such as driving voltage (301000 V) and gap size (101000 µm) at atmospheric pressure. First, a comparison between rf and dc modes is shown for the same pressure, driving voltage and gap spacing. Furthermore, the effect of gap size scaling (in the range of 101000 µm) on the breakdown voltage, peak electron density and peak electron current density at the breakdown voltage is examined. The breakdown voltage is lower than 150 V in all gaps considered. The microdischarge is found to have a neutral bulk plasma region and a cathode sheath region with size varying with the applied voltage and the discharge gap. In our calculations, the electron and ion densities are of the order of 10181023 m−3, which is in the glow discharge limit, as the ionization degree is lower than 1% . The electron energy distribution function shows a two-energy group distribution at a gap of 10 µm and a three-energy group distribution at larger gaps such as 200 µm and 1000 µm, emphasizing the importance of the gap spacing in dc microdischarges.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000343150500011 Publication Date 2014-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 10 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:119152 Serial 1759
Permanent link to this record
 

 
Author Bogaerts, A.; Chen, Z.; Bleiner, D.
Title Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments Type A1 Journal article
Year 2006 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 21 Issue Pages 384-395
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000236391400002 Publication Date 2006-02-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 67 Open Access
Notes Approved Most recent IF: 3.379; 2006 IF: 3.630
Call Number UA @ lucian @ c:irua:56972 Serial 1784
Permanent link to this record
 

 
Author Gijbels, R.; van Straaten, M.; Bogaerts, A.
Title Mass spectrometric analysis of inorganic solids: GDMS and other methods Type A1 Journal article
Year 1995 Publication Advances in mass spectrometry Abbreviated Journal
Volume 13 Issue Pages 241-256
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos A1995BG78P00013 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0568-000x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12267 Serial 1952
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Modeling of a microsecond pulsed glow discharge: behavior of the argon excited levels and of the sputtered copper atoms and ions Type A1 Journal article
Year 2001 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 16 Issue Pages 239-249
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000167163200001 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 36 Open Access
Notes Approved Most recent IF: 3.379; 2001 IF: 3.305
Call Number UA @ lucian @ c:irua:34146 Serial 2116
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Jackson, G.P.
Title Modeling of a millisecond pulsed glow discharge: investigation of the afterpeak Type A1 Journal article
Year 2003 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 18 Issue Pages 533-548
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000183300800005 Publication Date 2003-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 42 Open Access
Notes Approved Most recent IF: 3.379; 2003 IF: 3.200
Call Number UA @ lucian @ c:irua:44017 Serial 2117
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Modeling of argon direct current glow discharges and comparison with experiment: how good is the agreement? Type A1 Journal article
Year 1998 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 13 Issue Pages 945-953
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000076002900019 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 24 Open Access
Notes Approved Most recent IF: 3.379; 1998 IF: 3.845
Call Number UA @ lucian @ c:irua:24128 Serial 2118
Permanent link to this record
 

 
Author Bogaerts, A.; De Bie, C.; Eckert, M.; Georgieva, V.; Martens, T.; Neyts, E.; Tinck, S.
Title Modeling of the plasma chemistry and plasmasurface interactions in reactive plasmas Type A1 Journal article
Year 2010 Publication Pure and applied chemistry Abbreviated Journal Pure Appl Chem
Volume 82 Issue 6 Pages 1283-1299
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, an overview is given of modeling activities going on in our research group, for describing the plasma chemistry and plasmasurface interactions in reactive plasmas. The plasma chemistry is calculated by a fluid approach or by hybrid Monte Carlo (MC)fluid modeling. An example of both is illustrated in the first part of the paper. The example of fluid modeling is given for a dielectric barrier discharge (DBD) in CH4/O2, to describe the partial oxidation of CH4 into value-added chemicals. The example of hybrid MCfluid modeling concerns an inductively coupled plasma (ICP) etch reactor in Ar/Cl2/O2, including also the description of the etch process. The second part of the paper deals with the treatment of plasmasurface interactions on the atomic level, with molecular dynamics (MD) simulations or a combination of MD and MC simulations.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000279063900010 Publication Date 2010-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1365-3075;0033-4545; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.626 Times cited 13 Open Access
Notes Approved Most recent IF: 2.626; 2010 IF: 2.134
Call Number UA @ lucian @ c:irua:82108 Serial 2134
Permanent link to this record
 

 
Author Martens, T.; Bogaerts, A.; Brok, W.J.M.; van der Mullen, J.J.A.M.
Title Modeling study on the influence of the pressure on a dielectric barrier discharge microplasma Type A1 Journal article
Year 2007 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 22 Issue 9 Pages 1003-1042
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000248917300013 Publication Date 2007-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 17 Open Access
Notes Approved Most recent IF: 3.379; 2007 IF: 3.269
Call Number UA @ lucian @ c:irua:64791 Serial 2140
Permanent link to this record
 

 
Author Bogaerts, A.; Chen, Z.
Title Nanosecond laser ablation of Cu: modeling of the expansion in He background gas, and comparison with expansion in vacuum Type A1 Journal article
Year 2004 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 19 Issue Pages 1169-1176
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000223738000015 Publication Date 2004-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 39 Open Access
Notes Approved Most recent IF: 3.379; 2004 IF: 3.926
Call Number UA @ lucian @ c:irua:47649 Serial 2275
Permanent link to this record
 

 
Author Mao, M.; Benedikt, J.; Consoli, A.; Bogaerts, A.
Title New pathways for nanoparticle formation in acetylene dusty plasmas: a modelling investigation and comparison with experiments Type A1 Journal article
Year 2008 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 41 Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, the initial mechanisms of nanoparticle formation and growth in radiofrequency acetylene (C2H2) plasmas are investigated by means of a comprehensive self-consistent one-dimensional (1D) fluid model. This model is an extension of the 1D fluid model, developed earlier by De Bleecker et al. Based on the comparison of our previous results with available experimental data for acetylene plasmas in the literature, some new mechanisms for negative ion formation and growth are proposed. Possible routes are considered for the formation of larger (linear and branched) hydrocarbons C2nH2 (n = 3, 4, 5), which contribute to the generation of C2nH− anions (n = 3, 4, 5) due to dissociative electron attachment. Moreover, the vinylidene anion (H2CC−) and higher anions (n = 24) are found to be important plasma species.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000260738100024 Publication Date 2008-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 47 Open Access
Notes Approved Most recent IF: 2.588; 2008 IF: 2.104
Call Number UA @ lucian @ c:irua:71018 Serial 2330
Permanent link to this record
 

 
Author Gul, B.; Tinck, S.; De Schepper, P.; Aman-ur-Rehman; Bogaerts, A.
Title Numerical investigation of HBr/He transformer coupled plasmas used for silicon etching Type A1 Journal article
Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 48 Issue 48 Pages 025202
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A two-dimensional hybrid Monte Carlofluid model is applied to study HBr/He inductively coupled plasmas used for etching of Si. Complete sets of gas-phase and surface reactions are presented and the effects of the gas mixing ratio on the plasma characteristics and on the etch rates are discussed. A comparison with experimentally measured etch rates is made to validate the modelling results. The etch rate in the HBr plasma is found to be quite low under the investigated conditions compared to typical etch rates of Si with F- or Cl-containing gases. This allows for a higher control and fine-tuning of the etch rate when creating ultra-small features. Our calculations predict a higher electron temperature at higher He fraction, because the electrons do not lose their energy so efficiently in vibrational and rotational excitations. As a consequence, electron impact ionization and dissociation become more important, yielding higher densities of ions, electrons and H atoms. This results in more pronounced sputtering of the surface. Nevertheless, the overall etch rate decreases upon increasing He fraction, suggesting that chemical etching is still the determining factor for the overall etch rate.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000347980100011 Publication Date 2014-12-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 7 Open Access
Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
Call Number c:irua:121335 Serial 2394
Permanent link to this record
 

 
Author Lindner, H.; Autrique, D.; Pisonero, J.; Günther, D.; Bogaerts, A.
Title Numerical simulation analysis of flow patterns and particle transport in the HEAD laser ablation cell with respect to inductively coupled plasma spectrometry Type A1 Journal article
Year 2010 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 25 Issue 3 Pages 295-304
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The present study analyses a specific laser ablation cell, the High Efficiency Aerosol Dispersion (HEAD) cell (see J. Pisonero et al., J. Anal. At. Spectrom., 2006, 21, 922931), by means of computational fluid dynamics (CFD) simulations. However, this cell consists of different modular parts, therefore, the results are probably of interest for the further development of other ablation cells. In the HEAD cell, the ablation spot is positioned below an orifice in the ceiling of the sample chamber. The particle transport through this orifice has been analysed for a ceiling height of 0.8 mm. The critical velocity for the onset of particle losses was found to be independent on the ejection angle at the crater spot. The deceleration of the particles can be described as the stopping in an effectively steady gas. Particle losses were negligible in this modular part of the cell at the evaluated laser ablation conditions. The transport efficiency through the Venturi chamber was investigated for different sample gas flow rates. In this case, it was found that small particles were predominantly lost at low flow rates, the large particles at higher flow rates. Making use of the simulation results, it was possible to design a modification of the HEAD cell that results in extremely short calculated washout times. The simulations yielded a signal of less than 10 ms, which was produced by more than 99% of the introduced mass.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000274961600005 Publication Date 2010-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 16 Open Access
Notes Approved Most recent IF: 3.379; 2010 IF: 4.372
Call Number UA @ lucian @ c:irua:80871 Serial 2403
Permanent link to this record
 

 
Author Mao, M.; Wang, Y.N.; Bogaerts, A.
Title Numerical study of the plasma chemistry in inductively coupled SF6 and SF6/AR plasmas used for deep silicon etching applications Type A1 Journal article
Year 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 44 Issue 43 Pages 435202,1-435202,15
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A hybrid model, called the hybrid plasma equipment model, was used to study inductively coupled SF6 plasmas used for Si etching applications. The plasma properties such as number densities of electrons, positive and negative ions, and neutrals are calculated under typical etching conditions. The electron kinetics is analysed by means of the electron energy probability function. The plasma chemistry taking place in pure SF6 and in an Ar/SF6 mixture is also discussed, and finally the effect of the argon fraction on the plasma properties is investigated.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000296591100004 Publication Date 2011-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 20 Open Access
Notes Approved Most recent IF: 2.588; 2011 IF: 2.544
Call Number UA @ lucian @ c:irua:91754 Serial 2409
Permanent link to this record
 

 
Author Aghaei, M.; Flamigni, L.; Lindner, H.; Günther, D.; Bogaerts, A.
Title Occurrence of gas flow rotational motion inside the ICP torch : a computational and experimental study Type A1 Journal article
Year 2014 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 29 Issue 2 Pages 249-261
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma, connected to the sampling cone of a mass spectrometer, is computationally investigated. The occurrence of rotational motion of the auxiliary and carrier gas flows is studied. The effects of operating parameters, i.e., applied power and gas flow rates, as well as geometrical parameters, i.e., sampler orifice diameter and injector inlet diameter, are investigated. Our calculations predict that at higher applied power the auxiliary and carrier gas flows inside the torch move more forward to the sampling cone, which is validated experimentally for the auxiliary gas flow, by means of an Elan 6000 ICP-MS. Furthermore, an increase of the gas flow rates can also modify the occurrence of rotational motion. This is especially true for the carrier gas flow rate, which has a more pronounced effect to reduce the backward motion than the flow rates of the auxiliary and cooling gas. Moreover, a larger sampler orifice (e.g., 2 mm instead of 1 mm) reduces the backward flow of the auxiliary gas path lines. Finally, according to our model, an injector inlet of 2 mm diameter causes more rotations in the carrier gas flow than an injector inlet diameter of 1.5 mm, which can be avoided again by changing the operating parameters.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000329934000005 Publication Date 2013-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 21 Open Access
Notes Approved Most recent IF: 3.379; 2014 IF: 3.466
Call Number UA @ lucian @ c:irua:112896 Serial 2427
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A.
Title On the reaction behaviour of hydrocarbon species at diamond (1 0 0) and (1 1 1) surfaces: a molecular dynamics investigation Type A1 Journal article
Year 2008 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 41 Issue Pages 032006,1-3
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000253177800006 Publication Date 2008-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 17 Open Access
Notes Approved Most recent IF: 2.588; 2008 IF: 2.104
Call Number UA @ lucian @ c:irua:66107 Serial 2449
Permanent link to this record
 

 
Author Martens, T.; Brok, W.J.M.; van Dijk, J.; Bogaerts, A.
Title On the regime transitions during the formation of an atmospheric pressure dielectric barrier glow discharge Type A1 Journal article
Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 42 Issue 12 Pages 122002,1-122002,5
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature. If during the electrical current pulse a glow discharge is reached, then this pulse will last only a few microseconds in operating periods of sinusoidal voltage with lengths of about 10 to 100 µs. In this paper we demonstrate that right before a glow discharge is reached, the discharge very closely resembles the commonly assumed Townsend discharge structure, but actually contains some significant differing features and hence should not be considered as a Townsend discharge. In order to clarify this, we present calculation results of high time and space resolution of the pulse formation. The results indicate that indeed a maximum of ionization is formed at the anode, but that the level of ionization remains high and that the electric field at that time is significantly disturbed. Our results also show where this intermediate structure comes from.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000266639300002 Publication Date 2009-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 21 Open Access
Notes Approved Most recent IF: 2.588; 2009 IF: 2.083
Call Number UA @ lucian @ c:irua:76458 Serial 2450
Permanent link to this record
 

 
Author de Bleecker, K.; Herrebout, D.; Bogaerts, A.; Gijbels, R.; Descamps, P.
Title One-dimensional modelling of a capacitively coupled rf plasma in silane/helium, including small concentrations of O2 and N2 Type A1 Journal article
Year 2003 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 36 Issue Pages 1826-1833
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access
Notes Approved Most recent IF: 2.588; 2003 IF: 1.265
Call Number UA @ lucian @ c:irua:44022 Serial 2463
Permanent link to this record
 

 
Author Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A.
Title The origin of Bohm diffusion, investigated by a comparison of different modelling methods Type A1 Journal article
Year 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 43 Issue 29 Pages 292001,1-292001,5
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract 'Bohm diffusion' causes the electrons to diffuse perpendicularly to the magnetic field lines. However, its origin is not yet completely understood: low and high frequency electric field fluctuations are both named to cause Bohm diffusion. The importance of including this process in a Monte Carlo (MC) model is demonstrated by comparing calculated ionization rates with particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations. A good agreement is found with a Bohm diffusion parameter of 0.05, which corresponds well to experiments. Since the PIC/MCC method accounts for fast electric field fluctuations, we conclude that Bohm diffusion is caused by fast electric field phenomena.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000279638700001 Publication Date 2010-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 16 Open Access
Notes Approved Most recent IF: 2.588; 2010 IF: 2.109
Call Number UA @ lucian @ c:irua:83109 Serial 2521
Permanent link to this record
 

 
Author Bogaerts, A.
Title Plasma diagnostics and numerical simulations: insight into the heart of analytical glow discharges Type A1 Journal article
Year 2007 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 22 Issue 1 Pages 13-40
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000242978500001 Publication Date 2006-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 23 Open Access
Notes Approved Most recent IF: 3.379; 2007 IF: 3.269
Call Number UA @ lucian @ c:irua:61139 Serial 2633
Permanent link to this record
 

 
Author van Dijk, J.; Kroesen, G.M.W.; Bogaerts, A.
Title Plasma modelling and numerical simulation Type Editorial
Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 42 Issue 19 Pages 190301,1-190301,14
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000269993100001 Publication Date 2009-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 64 Open Access
Notes Approved Most recent IF: 2.588; 2009 IF: 2.083
Call Number UA @ lucian @ c:irua:78166 Serial 2637
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Simon, P.; Berdiyorov, G.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A.
Title Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 2 Pages 025205-25209
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of atmospheric pressure plasmas in medicine is increasingly gaining attention in recent years, although very little is currently known about the plasma-induced processes occurring on the surface of living organisms. It is known that most bio-organisms, including bacteria, are coated by a liquid film surrounding them, and there might be many interactions between plasma species and the liquid layer before the plasma species reach the surface of the bio-organisms. Therefore, it is essential to study the behaviour of the reactive species in a liquid film, in order to determine whether these species can travel through this layer and reach the biomolecules, or whether new species are formed along the way. In this work, we investigate the interaction of reactive oxygen species (i.e. O, OH, HO2 and H2O2) with water, which is assumed as a simple model system for the liquid layer surrounding biomolecules. Our computational investigations show that OH, HO2 and H2O2 can travel deep into the liquid layer and are hence in principle able to reach the bio-organism. Furthermore, O, OH and HO2 radicals react with water molecules through hydrogen-abstraction reactions, whereas no H-abstraction reaction takes place in the case of H2O2. This study is important to gain insight into the fundamental operating mechanisms in plasma medicine, in general, and the interaction mechanisms of plasma species with a liquid film, in particular.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000329108000013 Publication Date 2013-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 51 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:112286 Serial 2823
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Relative sensitivity factors in glow discharge mass spectrometry: the role of charge transfer ionization Type A1 Journal article
Year 1996 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 11 Issue Pages 841-847
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos A1996VG92800032 Publication Date 2004-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.466 Times cited 38 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:16243 Serial 2860
Permanent link to this record
 

 
Author Bleiner, D.; Chen, Z.; Autrique, D.; Bogaerts, A.
Title Role of laser-induced melting and vaporization of metals during ICP-MS and LIBS analysis, investigated with computer simulations and experiments Type A1 Journal article
Year 2006 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 21 Issue 9 Pages 910-921
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000240082600010 Publication Date 2006-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 42 Open Access
Notes Approved Most recent IF: 3.379; 2006 IF: 3.630
Call Number UA @ lucian @ c:irua:58840 Serial 2914
Permanent link to this record