|   | 
Details
   web
Records
Author Molnár, B.; Vasilopoulos, P.; Peeters, F.M.
Title Magnetoconductance through a chain of rings with or without periodically modulated spin-orbit interaction strength and magnetic field Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 72 Issue Pages 075330,1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Lancaster, Pa Editor
Language Wos 000231564500117 Publication Date 2005-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 52 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:69414 Serial 1915
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P.
Title Quantum transport of a two-dimensional electron gas in a spatially modulated magnetic field Type A1 Journal article
Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 47 Issue 3 Pages 1466-1473
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electrical transport properties of a two-dimensional electron gas axe studied in the presence of a perpendicular magnetic field B modulated weakly and periodically along one direction, B = (B + B0 cos Kx)z, with B0 much less than B, K = 2pi/a, and a being the period of the modulation. B0 is taken constant or proportional to B. The Landau levels broaden into bands and their width, proportional to the modulation strength B0, oscillates with B and gives rise to oscillations in the magnetoresistance at low B. These oscillations reflect the commensurability between the cyclotron diameter at the Fermi level and the period a and consequently hey are distinctly different from the Shubnikov-de Ha.as ones, at higher B, in period and temperature dependence. The bandwidth at the Fermi energy can be one order of magnitude larger, at low B, than that of the electric case for equal modulation strengths. The resulting magnetoresistance oscillations have a much higher amplitude than those of the electric case with which they are out of phase. Explicit asymptotic expressions are derived for the temperature dependence of the transport coefficients. The case when both electric and magnetic modulations are present is also considered. The position of the resulting oscillations depends on the ratio delta between the two modulation strengths. When the modulations are out of phase there is no shift in the position of the oscillations when delta varies and for a particular value of delta the oscillations are suppressed.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Lancaster, Pa Editor
Language Wos A1993KJ51800042 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 169 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:5787 Serial 2795
Permanent link to this record
 

 
Author Wang, X.F.; Vasilopoulos, P.; Peeters, F.M.
Title Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 65 Issue 16 Pages 165217
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ballistic spin transport through waveguides, with symmetric or asymmetric double stubs attached to them periodically, is studied systematically in the presence of a weak spin-orbit coupling that makes the electrons precess. By an appropriate choice of the waveguide length and of the stub parameters injected spin-polarized electrons can be blocked completely and the transmission shows a periodic and nearly-square-type behavior, with values 1 and 0, with wide gaps when only one mode is allowed to propagate in the waveguide. A similar behavior is possible for a certain range of the stub parameters even when two modes can propagate in the waveguide and the conductance is doubled. Such a structure is a good candidate for establishing a realistic spin transistor. A further modulation of the spin current can be achieved by inserting defects in a finite-number stub superlattice. Finite-temperature effects on the spin conductance are also considered.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Lancaster, Pa Editor
Language Wos 000175325000061 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 112 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:95128 Serial 3082
Permanent link to this record
 

 
Author Molnár, B.; Peeters, F.M.; Vasilopoulos, P.
Title Spin-dependent magnetotransport through a ring due to spin-orbit interaction Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 69 Issue Pages 155335,1-11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Lancaster, Pa Editor
Language Wos 000221426800104 Publication Date 2004-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 199 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:69385 Serial 3083
Permanent link to this record
 

 
Author Papp, G.; Vasilopoulos, P.; Peeters, F.M.
Title Spin polarization in a two-dimensional electron gas modulated periodically by ferromagnetic and Schottky metal stripes Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 72 Issue Pages 115315,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Lancaster, Pa Editor
Language Wos 000232229100096 Publication Date 2005-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 51 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:69415 Serial 3095
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M.
Title Tunneling, conductance, and wavevector filtering through magnetic barriers in bilayer graphene Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 3 Pages 035409,1-035409,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We evaluate the transmission and conductance through magnetic barrier structures in bilayer graphene. In particular we consider a magnetic step, single and double barriers, -function barriers, as well as barrier structures that have average magnetic field equal to zero. The transmission depends strongly on the direction of the incident electron or hole wavevector and gives the possibility to construct a direction-dependent wavevector filter. The results contrast sharply with previous results on single-layer graphene. In general, the angular range of perfect transmission becomes drastically wider and the gaps narrower. This perfect transmission range decreases with the number of barriers, the barrier width, and the magnetic field. Depending on the structure, a variety of transmission resonances occur that are reflected in the conductance through the structure.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Lancaster, Pa Editor
Language Wos 000262978200107 Publication Date 2009-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 80 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:75983 Serial 3762
Permanent link to this record
 

 
Author Tahir, M.; Vasilopoulos, P.; Peeters, F.M.
Title Quantum magnetotransport properties of a MoS2 monolayer Type A1 Journal article
Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 035406
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study transport properties of a MoS2 monolayer in the presence of a perpendicular magnetic field B. We derive and discuss its band structure and take into account spin and valley Zeeman effects. Compared to a conventional two-dimensional electron gas, these effects lead to new quantum Hall plateaus and new peaks in the longitudinal resistivity as functions of the magnetic field. The field B leads to a significant enhancement of the spin splitting in the conduction band, to a beating of the Shubnikov-de Haas (SdH) oscillations in the low-field regime, and to their splitting in the high-field regime. The Zeeman fields suppress significantly the beating of the SdH oscillations in the low-field regime and strongly enhance their splitting at high fields. The spin and valley polarizations show a similar beating pattern at low fields and are clearly separated at high fields in which they attain a value higher than 90%.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Lancaster, Pa Editor
Language Wos 000367663500003 Publication Date 2016-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 42 Open Access
Notes ; This work was supported by the Canadian NSERC Grant No. OGP0121756 (M.T., P.V.) and by the Flemish Science Foundation (FWO-Vl) (F.M.P.). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:131093 Serial 4233
Permanent link to this record
 

 
Author Missault, N.; Vasilopoulos, P.; Vargiamidis, V.; Peeters, F.M.; Van Duppen, B.
Title Spin- and valley-dependent transport through arrays of ferromagnetic silicene junctions Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 195423
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study ballistic transport of Dirac fermions in silicene through arrays of barriers, of width d, in the presence of an exchange field M and a tunable potential of height U or depth-U. The spin-and valley-resolved conductances as functions of U or M, exhibit resonances away from the Dirac point (DP) and close to it a pronounced dip that becomes a gap when a critical electric field E-z is applied. This gap widens by increasing the number of barriers and can be used to realize electric field-controlled switching of the current. The spin p(s) and valley p(v) polarizations of the current near the DP increase with Ez or M and can reach 100% for certain of their values. These field ranges widen significantly by increasing the number of barriers. Also, ps and pv oscillate nearly periodically with the separation between barriers or wells and can be inverted by reversing M.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Lancaster, Pa Editor
Language Wos 000364998100006 Publication Date 2015-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 54 Open Access
Notes ; This work was supported by the Canadian NSERC Grant No. OGP0121756 (P.V.) and by the Flemish Science Foundation (FWO-Vl) with a Ph.D. research grant (B.V.D.). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:130264 Serial 4247
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P.; Shi, J.
Title Density of states and Fermi level of a periodically modulated two-dimensional electron gas Type A1 Journal article
Year 2002 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 14 Issue 38 Pages 8803-8816
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Explicit analytic expressions are obtained for the density of states D(E) and Fermi energy E-F of a two-dimensional electron gas in the presence of a weak and periodic unidirectional electric or magnetic modulation and of a uniform perpendicular magnetic field B. The Landau levels broaden into bands and their width, proportional to the modulation strength, oscillates with B and gives rise to Weiss oscillations in D(E), E-F and the transport coefficients. When both electric and magnetic modulations are present the position of the resulting oscillations depends on the ratio delta between the two modulation strengths. When the modulations are out of phase there is no shift in the position of the oscillations when delta varies and for a particular value of delta the oscillations are suppressed.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000178678400008 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 8 Open Access
Notes Approved Most recent IF: 2.649; 2002 IF: 1.775
Call Number UA @ lucian @ c:irua:104140 Serial 640
Permanent link to this record
 

 
Author Borza, S.; Peeters, F.M.; Vasilopoulos, P.; Papp, G.
Title Electric-field manipulation of spin states in confined non-magnetic/magnetic heterostructures Type A1 Journal article
Year 2007 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 19 Issue 17 Pages 176221,1-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000246556400033 Publication Date 2007-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 4 Open Access
Notes Approved Most recent IF: 2.649; 2007 IF: 1.886
Call Number UA @ lucian @ c:irua:64758 Serial 885
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M.
Title Graphene in inhomogeneous magnetic fields : bound, quasi-bound and scattering states Type A1 Journal article
Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 23 Issue 31 Pages 315301,1-315301,14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electron states in graphene-based magnetic dot and magnetic ring structures and combinations of both are investigated. The corresponding spectra are studied as a function of the radii, the strengths of the inhomogeneous magnetic field and of a uniform background field, the strength of an electrostatic barrier and the angular momentum quantum number. In the absence of an external magnetic field we have only long-lived quasi-bound and scattering states and we assess their influence on the density of states. In addition, we consider elastic electron scattering by a magnetic dot, whose average B vanishes, and show that the Hall and longitudinal resistivities, as a function of the Fermi energy, exhibit a pronounced oscillatory structure due to the presence of quasi-bound states. Depending on the dot parameters this oscillatory structure differs substantially for energies below and above the first Landau level.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000293008900002 Publication Date 2011-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 38 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE, the Canadian NSERC grant no. OGP0121756 and the Belgian Science Policy (IAP). We acknowledge discussions and correspondence with Professor A Matulis. ; Approved Most recent IF: 2.649; 2011 IF: 2.546
Call Number UA @ lucian @ c:irua:91176 Serial 1372
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M.
Title Kronig-Penney model of scalar and vector potentials in graphene Type A1 Journal article
Year 2010 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 22 Issue 46 Pages 465302,1-465302,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We consider a one-dimensional (1D) superlattice (SL) on graphene consisting of very high and very thin (δ-function) magnetic and potential barriers with zero average potential and zero magnetic field. We calculate the energy spectrum analytically, study it in different limiting cases, and determine the condition under which an electron beam incident on an SL is highly collimated along its direction. In the absence of the magnetic SL the collimation is very sensitive to the value of W/Ws and is optimal for W/Ws = 1, where W is the distance between the positive and negative barriers and L = W + Ws is the size of the unit cell. In the presence of only the magnetic SL the collimation decreases and the symmetry of the spectrum around ky is broken for W/Ws\neq 1 . In addition, a gap opens which depends on the strength of the magnetic field. We also investigate the effect of spatially separated potential and magnetic δ-function barriers and predict a better collimation in specific cases.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000283838800004 Publication Date 2010-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 41 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Belgian Science Policy (IAP), and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 2.649; 2010 IF: 2.332
Call Number UA @ lucian @ c:irua:85807 Serial 1767
Permanent link to this record
 

 
Author Xu, W.; Vasilopoulos, P.; Das, M.P.; Peeters, F.M.
Title The low-temperature self-consistent g factor for heterostructures in strong magnetic fields Type A1 Journal article
Year 1995 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 7 Issue Pages 4419-4432
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos A1995RC23600011 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.346 Times cited 20 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12196 Serial 1853
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.
Title Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines Type A1 Journal article
Year 2010 Publication Philosophical transactions of the Royal Society : mathematical, physical and engineering sciences Abbreviated Journal Philos T R Soc A
Volume 368 Issue 1932 Pages 5499-5524
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We review the energy spectrum and transport properties of several types of one-dimensional superlattices (SLs) on single-layer and bilayer graphene. In single-layer graphene, for certain SL parameters an electron beam incident on an SL is highly collimated. On the other hand, there are extra Dirac points generated for other SL parameters. Using rectangular barriers allows us to find analytical expressions for the location of new Dirac points in the spectrum and for the renormalization of the electron velocities. The influence of these extra Dirac points on the conductivity is investigated. In the limit of δ-function barriers, the transmission T through and conductance G of a finite number of barriers as well as the energy spectra of SLs are periodic functions of the dimensionless strength P of the barriers, Graphic, with vF the Fermi velocity. For a KronigPenney SL with alternating sign of the height of the barriers, the Dirac point becomes a Dirac line for P = π/2+nπ with n an integer. In bilayer graphene, with an appropriate bias applied to the barriers and wells, we show that several new types of SLs are produced and two of them are similar to type I and type II semiconductor SLs. Similar to single-layer graphene SLs, extra Dirac points are found in bilayer graphene SLs. Non-ballistic transport is also considered.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000283660000011 Publication Date 2010-11-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-503X;1471-2962; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.97 Times cited 64 Open Access
Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the Canadian NSERC through grant no. OGP0121756. ; Approved Most recent IF: 2.97; 2010 IF: 2.459
Call Number UA @ lucian @ c:irua:85597 Serial 3023
Permanent link to this record
 

 
Author Milton Pereira, J.; Vasilopoulos, P.; Peeters, F.M.
Title Resonant tunneling in graphene microstructures Type A1 Journal article
Year 2008 Publication Microelectronics journal Abbreviated Journal Microelectron J
Volume 39 Issue 3-4 Pages 534-536
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Luton Editor
Language Wos 000255600600055 Publication Date 2007-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.163 Times cited 9 Open Access
Notes Approved Most recent IF: 1.163; 2008 IF: 0.859
Call Number UA @ lucian @ c:irua:68850 Serial 2892
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Matulis, A.; Peeters, F.M.
Title Angular confinement and direction-dependent transmission in graphene nanostructures with magnetic barriers Type A1 Journal article
Year 2009 Publication AIP conference proceedings Abbreviated Journal
Volume 1199 Issue Pages 363-364
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We evaluate the transmission through magnetic barriers in graphene-based nanostructures. Several particular cases are considered: a magnetic step, single and double barriers, delta -function barriers as well as barrier structures with inhomogeneous magnetic field profiles but with average magnetic field equal to zero. The transmission exhibits a strong dependence on the direction of the incident wave vector. In general the resonant structure of the transmission is significantly more pronounced for (Dirac) electrons with linear spectrum compared to that for electrons with a parabolic one.
Address
Corporate Author Thesis
Publisher Place of Publication (up) New York Editor
Language Wos 000281590800171 Publication Date 2010-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:84892 Serial 115
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.; Pereira, J.M.
Title Band structure, density of states, and transmission in graphene bilayer superlattices Type A1 Journal article
Year 2009 Publication AIP conference proceedings Abbreviated Journal
Volume 1199 Issue Pages 547-548
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The energy spectrum and density of states of graphene bilayer superlattices (SLs) are evaluated. We take into account doping and/or gating of the layers as well as tunnel coupling between them. In addition, we evaluate the transmission through such SLs and through single or double barriers. The transmission exhibits a strong dependence on the direction of the incident wave vector.
Address
Corporate Author Thesis
Publisher Place of Publication (up) New York Editor
Language Wos 000281590800258 Publication Date 2010-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:84893 Serial 217
Permanent link to this record
 

 
Author Pereira, J.M., Jr.; Mlinar, V.; Peeters, F.M.; Vasilopoulos, P.
Title Graphene-based quantum wires Type P1 Proceeding
Year 2007 Publication AIP conference proceedings T2 – 28th International Conference on the Physics of Semiconductors (ICPS-28), JUL 24-28, 2006, Vienna, AUSTRIA Abbreviated Journal
Volume Issue Pages 721-722
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We investigate the properties of carriers in graphene-based quantum wires created by potential barriers, by means of analytical and numerical calculations. We obtain expressions for the energy spectrum as a function of barrier height, well width and linear momentum along the wire. The results demonstrate a direction-dependent resonant transmission across the potential well.
Address
Corporate Author Thesis
Publisher Place of Publication (up) New York Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume 893 Series Issue Edition
ISSN 978-0-7354-0397-0; 0094-243x ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:103601 Serial 1369
Permanent link to this record
 

 
Author Zarenia, M.; Vasilopoulos, P.; Pourtolami, N.; Peeters, F.M.
Title Landau-level dispersion and the quantum Hall plateaus in bilayer graphene Type P1 Proceeding
Year 2013 Publication AIP conference proceedings Abbreviated Journal
Volume 1566 Issue Pages 275-276
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We study the quantum Hall effect (QHE) in bilayer graphene using the Kubo-Greenwood formula. At zero temperature the Hall conductivity sigma(yx) is given by sigma(yx) – 4(N + 1)e(2)/h with N the index of the highest occupied Landau level (LL). Including the dispersion of the LLs and their width, due to e. g. scattering by impurities, produces the plateau of the n = 0 LL in agreement with experimental results on doped samples and similar theoretical results on single-layer graphene plateaus widen with impurity concentration. Further, the evaluated resistivity rho(xx) exhibits a strong, oscillatory dependence on the electron concentration. Explicit results are obtained for delta-function impurities.
Address
Corporate Author Thesis
Publisher Place of Publication (up) New York Editor
Language Wos 000331793000137 Publication Date 2014-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (project CONGRAN) and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:115871 Serial 1770
Permanent link to this record
 

 
Author Molnar, B.; Vasilopoulos, P.; Peeters, F.M.
Title Square-wave conductance through a chain of rings due to spin-orbit interaction Type P1 Proceeding
Year 2005 Publication AIP conference proceedings Abbreviated Journal
Volume 772 Issue Pages 1335-1336
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We study ballistic electron transport through a finite chain of quantum circular rings in the presence of spin-orbit interaction (SOI) of strength alpha. The transmission and reflection coefficients for a single ring, obtained analytical lylead to the conductance for a chain of rings as a function of alpha and of the wave vector k of the incident electron. Due to destructive spin interferences the chain can be totaly opaque for certain ranges of k the width of which depends on the value of alpha. A periodic modulation of a widens up the gaps considerably and produces a nearly binary conductance output.
Address
Corporate Author Thesis
Publisher Place of Publication (up) New York Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-243x ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94771 Serial 3113
Permanent link to this record
 

 
Author Li, L.L.; Moldovan, D.; Vasilopoulos, P.; Peeters, F.M.
Title Aharonov-Bohm oscillations in phosphorene quantum rings Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 20 Pages 205426
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Aharonov-Bohm (AB) effect in square phosphorene quantum rings, with armchair and zigzag edges, is investigated using the tight-binding method. The energy spectra and wave functions of such rings, obtained as a function of the magnetic flux Phi threading the ring, are strongly influenced by the ringwidthW, an in-plane electric field E-p, and a side-gating potential V-g. Compared to a square dot, the ring shows an enhanced confinement due to its inner edges and an interedge coupling along the zigzag direction, both of which strongly affect the energy spectrum and the wave functions. The energy spectrum that is gapped consists of a regular part, of conduction (valence) band states, that shows the usual AB oscillations in the higher-(lower-) energy region, and of edge states, in the gap, that exhibit no AB oscillations. As the width W decreases, the AB oscillations become more distinct and regular and their period is close to Phi(0)/2, where the flux quantum Phi(0) = h/e is the period of an ideal circular ring (W -> 0). Both the electric field E-p and the side-gating potential V-g reduce the amplitude of the AB oscillations. The amplitude can be effectively tuned by E-p or V-g and exhibits an anisotropic behavior for different field directions or side-gating configurations.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication (up) New York, N.Y Editor
Language Wos 000402003700010 Publication Date 2017-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; This work was financially supported by the Chinese Academy of Sciences, the Flemish Science Foundation (FWO-V1), and by the Canadian NSERC Grant No. OGP0121756 (P.V.). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:144267 Serial 4638
Permanent link to this record
 

 
Author Van Pottelberge, R.; Zarenia, M.; Vasilopoulos, P.; Peeters, F.M.
Title Graphene quantum dot with a Coulomb impurity : subcritical and supercritical regime Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 24 Pages 245410
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the influence of confinement on the atomic collapse due to a Coulomb impurity placed at the center of a graphene quantum dot of radius R. We apply the zigzag or infinite-mass boundary condition and consider both a point-size and a finite-size impurity. As a function of the impurity strength Za, the energy spectra are discrete. In the case of the zigzag boundary condition, the degenerate (with respect to the angular momentum m) zero-energy levels are pulled down in energy as Z alpha increases, and they remain below epsilon = – Z alpha. Our results show that the energy levels exhibit a 1/R dependence in the subcritical regime [Z alpha < |km + 1/2|, k = 1 (-1) for the K (K') valley]. In the supercritical regime (Z alpha > |km + 1/2|) we find a qualitatively very different behavior where the levels decrease as a function of R in a nonmonotonic manner. While the valley symmetry is preserved in the presence of the impurity, we find that the impurity breaks electron-hole symmetry. We further study the energy spectrum of zigzag quantum dots in gapped graphene. Our results show that as the gap increases, the lowest electron states are pushed into the gap by the impurity.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication (up) New York, N.Y Editor
Language Wos 000403072400005 Publication Date 2017-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; We thank Massoud Ramezani-Masir and Dean Moldovan for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem funding of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756 (P. V.). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:144197 Serial 4661
Permanent link to this record
 

 
Author Mirzakhani, M.; Zarenia, M.; Vasilopoulos, P.; Ketabi, S.A.; Peeters, F.M.
Title Landau levels in biased graphene structures with monolayer-bilayer interfaces Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 12 Pages 125430
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electron energy spectrum in monolayer-bilayer-monolayer and in bilayer-monolayer-bilayer graphene structures is investigated and the effects of a perpendicular magnetic field and electric bias are studied. Different types of monolayer-bilayer interfaces are considered as zigzag (ZZ) or armchair (AC) junctions which modify considerably the bulk Landau levels (LLs) when the spectra are plotted as a function of the center coordinate of the cyclotron orbit. Far away from the two interfaces, one obtains the well-known LLs for extended monolayer or bilayer graphene. The LL structure changes significantly at the two interfaces or junctions where the valley degeneracy is lifted for both types of junctions, especially when the distance between them is approximately equal to the magnetic length. Varying the nonuniform bias and the width of this junction-to-junction region in either structure strongly influence the resulting spectra. Significant differences exist between ZZ and AC junctions in both structures. The densities of states (DOSs) for unbiased structures are symmetric in energy whereas those for biased structures are asymmetric. An external bias creates interface LLs in the gaps between the LLs of the unbiased system in which the DOS can be quite small. Such a pattern of LLs can be probed by scanning tunneling microscopy.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication (up) New York, N.Y Editor
Language Wos 000411321800003 Publication Date 2017-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; This work was supported by the BOF-UA (Bijzonder Onderzoeks Fonds), the Canadian NSERC through Grant No. OGP0121756 (P.V.), and the Methusalem Program of the Flemish Government. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:146746 Serial 4787
Permanent link to this record
 

 
Author Wang, X.F.; Vasilopoulos, P.; Peeters, F.M.
Title Ballistic spin transport through electronic stub tuners : spin precession, selection, and square-wave transmission Type A1 Journal article
Year 2002 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 80 Issue 8 Pages 1400-1402
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ballistic spin transport is studied through electronic tuners with double stubs attached to them. The spins precess due to the spin-orbit interaction. Injected polarized spins can exit the structure polarized in the opposite direction. A nearly square-wave spin transmission, with values 1 and 0, can be obtained using a periodic system of symmetric stubs and changing their length or width. The gaps in the transmission can be widened using asymmetric stubs. An additional modulation is obtained upon combining stub structures with different values of the spin-orbit strength. D 2002 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication (up) New York, N.Y. Editor
Language Wos 000174009800028 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 49 Open Access
Notes Approved Most recent IF: 3.411; 2002 IF: 4.207
Call Number UA @ lucian @ c:irua:95131 Serial 215
Permanent link to this record
 

 
Author Tso, H.C.; Vasilopoulos, P.; Peeters, F.M.
Title Coulomb coupling between spatially separated electron and hole layers: generalized random-phase approximation Type A1 Journal article
Year 1993 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 70 Issue Pages 2146-2149
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract http://dx.doi.org/doi:10.1103/PhysRevLett.70.2146
Address
Corporate Author Thesis
Publisher Place of Publication (up) New York, N.Y. Editor
Language Wos A1993KV97400024 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.512 Times cited 58 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:5786 Serial 531
Permanent link to this record
 

 
Author Tso, H.C.; Vasilopoulos, P.; Peeters, F.M.
Title Direct Coulomb and phonon-mediated coupling between spatially separated electron gases Type A1 Journal article
Year 1992 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 68 Issue Pages 2516-2519
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) New York, N.Y. Editor
Language Wos A1992HP80100028 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.512 Times cited 106 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:3003 Serial 709
Permanent link to this record
 

 
Author Milton Pereira, J.; Vasilopoulos, P.; Peeters, F.M.
Title Graphene-based resonant-tunneling structures Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 90 Issue 13 Pages 132122,1-3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication (up) New York, N.Y. Editor
Language Wos 000245317100056 Publication Date 2007-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 147 Open Access
Notes Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:64303 Serial 1370
Permanent link to this record
 

 
Author Shakouri, K.; Vasilopoulos, P.; Vargiamidis, V.; Hai, G.-Q.; Peeters, F.M.
Title Spin- and valley-dependent commensurability oscillations and electric-field-induced quantum Hall plateaux in periodically modulated silicene Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 21 Pages 213109
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the commensurability oscillations in silicene subject to a perpendicular electric field E-z, a weak magnetic field B, and a weak periodic potential V = V-0 cos(Cy); C = 2 pi/a(0) with a(0) its period. The field E-z and/or the modulation lift the spin degeneracy of the Landau levels and lead to spin and valley resolved Weiss oscillations. The spin resolution is maximal when the field E-z is replaced by a periodic one E-z = E-0 cos(Dy); D = 2 pi/b(0), while the valley one is maximal for b(0) = a(0). In certain ranges of B values, the current is fully spin or valley polarized. Additional quantum Hall conductivity plateaux arise due to spin and valley intra-Landau-level transitions. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication (up) New York, N.Y. Editor
Language Wos 000337143000047 Publication Date 2014-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 16 Open Access
Notes ; The work was supported by the Flemish Science Foundation (FWO-VI), the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. Also, G. Q. H. was supported by FAPESP and CNPq (Brazil). ; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:118409 Serial 3078
Permanent link to this record
 

 
Author Molnar, B.; Vasilopoulos, P.; Peeters, F.M.
Title Spin-dependent transmission through a chain of rings : influence of a periodically modulated spin-orbit interaction strength or ring radius Type A1 Journal article
Year 2004 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 85 Issue 4 Pages 612-614
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study ballistic electron transport through a finite chain of quantum circular rings in the presence of spin-orbit interaction of strength alpha. For a single ring, the transmission and reflection coefficients are obtained analytically and from them the conductance for a chain of rings as a function of alpha and of the wave vector k of the incident electron. We show that due to destructive spin interferences, the chain can be totally opaque for certain ranges of k, the width of which depends on the value of alpha. A periodic modulation of the strength alpha or of the ring radius widens the gaps considerably and produces a nearly binary conductance output. (C) 2004 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication (up) New York, N.Y. Editor
Language Wos 000222855400034 Publication Date 2004-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 26 Open Access
Notes Approved Most recent IF: 3.411; 2004 IF: 4.308
Call Number UA @ lucian @ c:irua:94799 Serial 3085
Permanent link to this record
 

 
Author Matulis, A.; Peeters, F.M.; Vasilopoulos, P.
Title Wavevector-dependent tunneling through magnetic barriers Type A1 Journal article
Year 1994 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 72 Issue Pages 1518-1521
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) New York, N.Y. Editor
Language Wos A1994MZ11500032 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.512 Times cited 403 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:9364 Serial 3909
Permanent link to this record