|   | 
Details
   web
Records
Author Niermann, T.; Verbeeck, J.; Lehmann, M.
Title Creating arrays of electron vortices Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 136 Issue Pages 165-170
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate the production of an ordered array of electron vortices making use of an electron optical setup consisting of two electrostatic biprisms. The biprism filaments are oriented nearly orthogonal with respect to each other in a transmission electron microscope. Matching the position of the filaments, we can choose to form different topological features in the electron wave. We outline the working principle of the setup and demonstrate fist experimental results. This setup partially bridges the gap between angular momentum carried by electron spin, which is intrinsic and therefore present in any position of the wave, and angular momentum carried by the vortex character of the wave, which can be extrinsic depending on the axis around which it is measured. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000327884700021 Publication Date 2013-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 9 Open Access
Notes FP7; Countatoms; Vortex ECASJO_; Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:112837UA @ admin @ c:irua:112837 Serial 538
Permanent link to this record
 

 
Author Lubk, A.; Javon, E.; Cherkashin, N.; Reboh, S.; Gatel, C.; Hytch, M.
Title Dynamic scattering theory for dark-field electron holography of 3D strain fields Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 136 Issue Pages 42-49
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Dark-held electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000327884700006 Publication Date 2013-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 18 Open Access
Notes European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference312483 – ESTEEM2); esteem2_jra4 Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:112836 Serial 766
Permanent link to this record
 

 
Author Javon, E.; Lubk; Cours, R.; Reboh, S.; Cherkashin, N.; Houdellier, F.; Gatel, C.; Hytch, M.J.
Title Dynamical effects in strain measurements by dark-field electron holography Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 147 Issue Pages 70-85
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Here, we study the effect of dynamic scattering on the projected geometric phase and strain maps reconstructed using dark-field electron holography (DFEH) for non-uniformly strained crystals. The investigated structure consists of a {SiGe/Si} superlattice grown on a (001)-Si substrate. The three dimensional strain held within the thin TEM lamella is modelled by the finite element method. The observed projected strain is simulated in two ways by multiplying the strain at each depth in the crystal by a weighting function determined from a recently developed analytical two-beam dynamical theory, and by simply taking the average value. We demonstrate that the experimental results need to be understood in terms of the dynamical theory and good agreement is found between the experimental and simulated results. Discrepancies do remain for certain cases and are likely to be from an imprecision in the actual two-beam diffraction conditions, notably the deviation parameter, and points to limitations in the 2-beam approximation. Finally, a route towards a 3D reconstruction of strain fields is proposed. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000343157400009 Publication Date 2014-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 10 Open Access
Notes Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:121108 Serial 769
Permanent link to this record
 

 
Author Ghosh, S.; Tongay, S.; Hebard, A.F.; Sahin, H.; Peeters, F.M.
Title Ferromagnetism in stacked bilayers of Pd/C60 Type A1 Journal article
Year 2014 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater
Volume 349 Issue Pages 128-134
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We provide experimental evidence for the existence of ferromagnetism in bilayers of Pd/C-60 which is supported by theoretical calculations based on density functional theory (DFT). The observed ferromagnetism is surprising as C-60 and Pd films are both non-ferromagnetic in the non-interacting limit. Magnetization (M) versus applied field (H) data acquired at different temperatures (T) show magnetic hysteresis with typical coercive fields (H-c) on the order of 50 Oe. From the temperature-dependent magnetization M(T) we extract a Curie temperature (T-c >= 550 K) using Bloch-like power law extrapolations to high temperatures. Using DFT calculations we investigated all plausible scenarios for the interaction between the C-60 molecules and the Pd slabs, Pd single atoms and Pd clusters. DFT shows that while the C-60 molecules are nonmagnetic, Pd films have a degenerate ground state that subject to a weak perturbation, can become ferromagnetic. Calculations also show that the interaction of C-60 molecules with excess Pd atoms and with sharp edges of a Pd slab is the most likely configuration that render the system ferromagnetic Interestingly, the calculated charge transfer (0.016 e per surface Pd atom, 0.064 e per Pd for intimate contact region) between C-60 and Pd does not appear to play an important role. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000326037600022 Publication Date 2013-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.63 Times cited 8 Open Access
Notes ; We thank Prof. Amlan Biswas and Daniel Grant for Atomic Force Microscopy measurements. This work is supported by the National Science Foundation (NSF) under Contract Number 1005301 (AFH). The authors also thank S. Ciraci for fruitful discussions. All the computational resources have been provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. Sahin is also supported by a FWO Pegasus Marie Curie Long Fellowship during the study. ; Approved Most recent IF: 2.63; 2014 IF: 1.970
Call Number UA @ lucian @ c:irua:112214 Serial 1184
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title First-principles electronic functionalization of silicene and germanene by adatom chemisorption Type A1 Journal article
Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 291 Issue Pages 104-108
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This study presents first-principles results on the electronic functionalization of silicene and germanene monolayers by means of chemisorption of adatom species H, Li, F, Sc, Ti, V. Three general adatom-monolayer configurations are considered, each having its distinct effect on the electronic structure, yielding metallic or semiconducting dispersions depending on the adatom species and configuration. The induced bandgap is a (in)direct F gap ranging from 0.2 to 2.3 eV for both silicene and germanene. In general the alternating configuration was found to be the most energetically stable. The boatlike and chairlike conformers are degenerate with the former having anisotropic effective carrier masses. The top configuration leads to the planar monolayer and predominately to a gapped dispersion. The hollow configuration with V adatoms retains the Dirac cone, but with strong orbital planar hybridization at the Fermi level. We also observe a planar surface state the Fermi level for the latter systems. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000329327700023 Publication Date 2013-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 32 Open Access
Notes Approved Most recent IF: 3.387; 2014 IF: 2.711
Call Number UA @ lucian @ c:irua:113766 Serial 1208
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title First-principles study of strained 2D MoS2 Type A1 Journal article
Year 2014 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 56 Issue Pages 416-421
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The electronic and vibrational properties of 2D honeycomb structures of molybdenum disulfide (MoS2) subjected to strain have been investigated using first-principles calculations based on density functional theory. We have studied the evolution of the electronic properties of bulk and layered MoS2, going down from a few layers up to a mono-layer, and next investigated the effect of bi-axial strain on their electronic structure and vibrational frequencies. Both for tensile and compressive biaxial strains, the shrinking of the energy band-gap of MoS2 with increasing level of applied strain is observed and a transition limit of the system from semiconducting to metallic is predicted to occur for strains in the range of 8-10%. We also found a progressive downshift (upshift) of both the E-2g(1) and A(1g) Raman active modes with increasing level of applied tensile (compressive) strain. Interestingly, significant changes in the curvature of the conduction and valence band near their extrema upon the application of strain are also predicted, with correlated variations of the electron and hole effective masses. These changes present interesting possibilities for engineering the electronic properties of 2D structures of MoS2. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication (up) Amsterdam Editor
Language Wos 000330815800070 Publication Date 2012-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 72 Open Access
Notes Approved Most recent IF: 2.221; 2014 IF: 2.000
Call Number UA @ lucian @ c:irua:115761 Serial 1220
Permanent link to this record
 

 
Author Boulay, E.; Ragoen, C.; Idrissi, H.; Schryvers, D.; Godet, S.
Title Influence of amorphous phase separation on the crystallization behavior of glass-ceramics in the BaO-TiO2-SiO2 system Type A1 Journal article
Year 2014 Publication Journal of non-crystalline solids Abbreviated Journal J Non-Cryst Solids
Volume 384 Issue Pages 61-72
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The possible role of a prior amorphous phase separation on the subsequent crystallization has been the topic of vigorous debates over the last decades and has not yet been clarified, especially regarding the role of the interfaces created by the phase separation. This study proposes to focus on the interplay between a prior amorphous phase separation and the crystallization of fresnoite in the BaO-TiO2-SiO2 system. The crystallization behavior of a non-stoichiometric composition inside the miscibility gap (called APS) is compared with the stoichiometric composition (called FRES) and a non-stoichiometric composition outside the miscibility gap (called NoAPS). The crystallization mechanisms are compared using differential thermal analysis (DTA) by calculating the Avrami parameters and the activation energies as a function of the particle size. The DTA study shows that the two non-stoichiometric compositions exhibit a pronounced surface crystallization behavior whereas FRES undergoes bulk nucleation. This is supported by a multi-scale microstructure characterization. Furthermore, this study demonstrates that the amorphous phase separation and the associated interfaces do not play any significant role in the nucleation step. Moreover, transmission electron microscope (TEM) and local orientation measurements show that the growth of the dendrites is not hindered by the SiO2-rich droplets. The final stage of crystallization of APS is tentatively explained by two composition effects that must be further investigated: the viscosity effect and the formation of a eutectic. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000329422400010 Publication Date 2013-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.124 Times cited 10 Open Access
Notes Approved Most recent IF: 2.124; 2014 IF: 1.766
Call Number UA @ lucian @ c:irua:114782 Serial 1614
Permanent link to this record
 

 
Author Xiao, Y.M.; Xu, W.; Peeters, F.M.
Title Infrared to terahertz absorption window in mono- and multi-layer graphene systems Type A1 Journal article
Year 2014 Publication Optics communications Abbreviated Journal Opt Commun
Volume 328 Issue Pages 135-142
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a theoretical study on optical properties such as optical conductance and light transmission coefficient for mono- and multi-layer graphene systems with AB- and ABC-stacking. Considering an air/graphene/dielectric-water structure, the optical coefficients for those graphene systems are examined and compared. The universal optical conductance sigma(N)(0)=N pi e(2)/(2h) for N layer graphene systems in the visible region is verified. For N 3 layer graphene, the mini-gap induced absorption edges can be observed in odd layers AB-stacked multilayer graphene, where the number and position of the absorption edges are decided by the layers number N. Meanwhile, we can observe the optical absorption windows for those graphene systems in the infrared to terahertz bandwidth (0.2-150 THz). The absorption window is induced by different transition energies required for inter- and intra-band optical absorption channels. We find that the depth and width of the absorption window can be tuned not only via varying temperature and electron density but also by changing the number of graphene layers and the stacking order. These theoretical findings demonstrate that mono- and multi-layer graphene systems can be applied as frequency tunable optoelectronic devices working in infrared to terahertz bandwidth. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000336970000022 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0030-4018; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.588 Times cited 7 Open Access
Notes ; This work was supported by the Ministry of Science and Technology of China (Grant no, 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 1.588; 2014 IF: 1.449
Call Number UA @ lucian @ c:irua:118364 Serial 1666
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C.
Title Interactions of plasma species on nickel catalysts : a reactive molecular dynamics study on the influence of temperature and surface structure Type A1 Journal article
Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 154 Issue Pages 1-8
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Methane reforming by plasma catalysis is a complex process that is far from understood. It requires a multidisciplinary approach which ideally takes into account all effects from the plasma on the catalyst, and vice versa. In this contribution, we focus on the interactions of CHx (x = {1,2,3}) radicals that are created in the plasma with several nickel catalyst surfaces. To this end, we perform reactive molecular dynamics simulations, based on the ReaxFF potential, in a wide temperature range of 4001600 K. First, we focus on the H2 formation as a function of temperature and surface structure. We observe that substantial H2 formation is obtained at 1400 K and above, while the role of the surface structure seems limited. Indeed, in the initial stage, the type of nickel surface influences the CH bond breaking efficiency of adsorbed radicals; however, the continuous carbon diffusion into the surface gradually diminishes the surface crystallinity and therefore reduces the effect of surface structure on the H2 formation probability. Furthermore, we have also investigated to what extent the species adsorbed on the catalyst surface can participate in surface reactions more in general, for the various surface structures and as a function of temperature. These results are part of the ongoing research on the methane reforming by plasma catalysis, a highly interesting yet complex alternative to conventional reforming processes.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000335098800001 Publication Date 2014-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 23 Open Access
Notes Approved Most recent IF: 9.446; 2014 IF: 7.435
Call Number UA @ lucian @ c:irua:114607 Serial 1686
Permanent link to this record
 

 
Author Schattschneider, P.; Löffler, S.; Stöger-Pollach, M.; Verbeeck, J.
Title Is magnetic chiral dichroism feasible with electron vortices? Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 136 Issue Pages 81-85
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We discuss the feasibility of detecting magnetic transitions with focused electron vortex probes, suggested by selection rules for the magnetic quantum number. We theoretically estimate the dichroic signal strength in the L2,3 edge of ferromagnetic d metals. It is shown that under realistic conditions, the dichroic signal is undetectable for nanoparticles larger than View the MathML source. This is confirmed by a key experiment with nanometer-sized vortices.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000327884700011 Publication Date 2013-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 64 Open Access
Notes Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:110952UA @ admin @ c:irua:110952 Serial 1750
Permanent link to this record
 

 
Author Van den Broek, W.; Rosenauer, A.; Van Aert, S.; Sijbers, J.; van Dyck, D.
Title A memory efficient method for fully three-dimensional object reconstruction with HAADF STEM Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 141 Issue Pages 22-31
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The conventional approach to object reconstruction through electron tomography is to reduce the three-dimensional problem to a series of independent two-dimensional slice-by-slice reconstructions. However, at atomic resolution the image of a single atom extends over many such slices and incorporating this image as prior knowledge in tomography or depth sectioning therefore requires a fully three-dimensional treatment. Unfortunately, the size of the three-dimensional projection operator scales highly unfavorably with object size and readily exceeds the available computer memory. In this paper, it is shown that for incoherent image formation the memory requirement can be reduced to the fundamental lower limit of the object size, both for tomography and depth sectioning. Furthermore, it is shown through multislice calculations that high angle annular dark field scanning transmission electron microscopy can be sufficiently incoherent for the reconstruction of single element nanocrystals, but that dynamical diffraction effects can cause classification problems if more than one element is present. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000335766600004 Publication Date 2014-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 6 Open Access
Notes ResearchFoundationFlanders(FWO;G.0393.11; G.0064.10;andG.0374.13); European Union Seventh Frame- workProgramme [FP7/2007-2013]under Grant agreement no. 312483 (ESTEEM2).; esteem2jra2; esteem2jra4 Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:117650 Serial 1992
Permanent link to this record
 

 
Author Shanenko, A.A.; Vagov, A.; Peeters, F.M.; Aguiar, J.A.
Title Nanofilms as effectively multiband superconductors: Intraband-pairing approximation and Ginzburg-Landau theory Type A1 Journal article
Year 2014 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 455 Issue Pages 3-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract It is well-known that the Ginzburg-Landau (GL) theory is a reliable and powerful theoretical tool to investigate the magnetic response of a superconducting state. However, in its standard form, this approach is not applicable to atomically uniform nano-thin superconducting films which are effective multiband superconductors. Here we discuss a relevant generalization of the GL theory, focusing on the underlying intraband-pairing approximation. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000344239200002 Publication Date 2014-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.386 Times cited 1 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-VI), and the Methusalem program. A.A.S. acknowledges the support of the Brazilian agencies CNPq and FACEPE (APQ-0589-1.05/08). ; Approved Most recent IF: 1.386; 2014 IF: 1.319
Call Number UA @ lucian @ c:irua:121192 Serial 2256
Permanent link to this record
 

 
Author Piña, J.C.; de Souza Silva, C.C.; Milošević, M.V.
Title Optimizing mesoscopic two-band superconductors for observation of fractional vortex states Type A1 Journal article
Year 2014 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 503 Issue Pages 48-51
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the two-component Ginzburg-Landau model, we investigate the effect of sample size and magnitude and homogeneity of external magnetic field on the stability of fractional vortex states in a mesoscopic two-band superconducting disk. We found that each fractional state has a preferable sample size, for which the range of applied field in which the state is stable is pronouncedly large. Vice versa, there exists an optimal magnitude of applied field for which a large range of possible sample radii will support the considered fractional state. Finally, we show that the stability of fractional states can be enhanced even further by magnetic nanostructuring of the sample, i.e. by suitably chosen geometrical parameters and magnetic moment of a ferromagnetic dot placed on top of the superconducting disk. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000340070600010 Publication Date 2014-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 5 Open Access
Notes ; This work was supported by the Brazilian science agencies CNPq and FACEPE, Grant APQ-2017-1.05/12. MVM acknowledges support from the CAPES-PVE program. ; Approved Most recent IF: 1.404; 2014 IF: 0.942
Call Number UA @ lucian @ c:irua:118743 Serial 2494
Permanent link to this record
 

 
Author De Schutter, B.; Devulder, W.; Schrauwen, A.; van Stiphout, K.; Perkisas, T.; Bals, S.; Vantomme, A.; Detavernier, C.
Title Phase formation in intermixed NiGe thin films : influence of Ge content and low-temperature nucleation of hexagonal nickel germanides Type A1 Journal article
Year 2014 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume 120 Issue Pages 168-173
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In this study, we focus on phase formation in intermixed NiGe thin films as they represent a simplified model of the small intermixed interface layer that is believed to form upon deposition of Ni on Ge and where initial phase formation happens. A combinatorial sputter deposition technique was used to co-deposit a range of intermixed NiGe thin films with Ge concentrations varying between 0 and 50 at.%Ge in a single deposition on both Ge (100) and inert SiO2 substrates. In situ X-ray diffraction and transmission electron microscopy where used to study phase formation. In almost the entire composition range under investigation, crystalline phases where found to be present in the as-deposited films. Between 36 and 48 at.%Ge, high-temperature hexagonal nickel germanides were found to occur metastabily below 300 °C, both on SiO2 and Ge (100) substrates. For Ge concentrations in the range between 36 and 42 at.%, this hexagonal germanide phase was even found to be present at room temperature in the as-deposited films. The results obtained in this work could provide more insight in the phase sequence of a pure Ni film on Ge.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000336697300028 Publication Date 2013-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 9 Open Access Not_Open_Access
Notes FWO project Nr. G076112N Approved Most recent IF: 1.806; 2014 IF: 1.197
Call Number UA @ lucian @ c:irua:116958 Serial 2584
Permanent link to this record
 

 
Author Verbruggen, S.W.; Deng, S.; Kurttepeli, M.; Cott, D.J.; Vereecken, P.M.; Bals, S.; Martens, J.A.; Detavernier, C.; Lenaerts, S.
Title Photocatalytic acetaldehyde oxidation in air using spacious TiO2 films prepared by atomic layer deposition on supported carbonaceous sacrificial templates Type A1 Journal article
Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 160 Issue Pages 204-210
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Supported carbon nanosheets and carbon nanotubes served as sacrificial templates for preparing spacious TiO2 photocatalytic thin films. Amorphous TiO2 was deposited conformally on the carbonaceous template material by atomic layer deposition (ALD). Upon calcination at 550 °C, the carbon template was oxidatively removed and the as-deposited continuous amorphous TiO2 layers transformed into interlinked anatase nanoparticles with an overall morphology commensurate to the original template structure. The effect of type of template, number of ALD cycles and gas residence time of pollutant on the photocatalytic activity, as well as the stability of the photocatalytic performance of these thin films was investigated. The TiO2 films exhibited excellent photocatalytic activity toward photocatalytic degradation of acetaldehyde in air as a model reaction for photocatalytic indoor air pollution abatement. Optimized films outperformed a reference film of commercial PC500.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000340687900024 Publication Date 2014-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 37 Open Access OpenAccess
Notes 335078 Colouratom; Iap-Pai P7/05; Fwo; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446; 2014 IF: 7.435
Call Number UA @ lucian @ c:irua:117094 Serial 2608
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Filippousi, M.; Flahaut, D.; Van Tendeloo, G.; Lacombe, S.; Martens, J.A.; Lenaerts, S.
Title Plasmonic goldsilver alloy on TiO2 photocatalysts with tunable visible light activity Type A1 Journal article
Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 156 Issue Pages 116-121
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Adaptation of the photoresponse of anatase TiO2 to match the solar spectrum is an important scientific challenge. Modification of TiO2 with noble metal nanoparticles displaying surface plasmon resonance effects is one of the promising approaches. Surface plasmon resonance typically depends on chemical composition, size, shape and spatial organization of the metal nanoparticles in contact with TiO2. AuxAg(1 − x) alloy nanoparticles display strong composition-dependent surface plasmon resonance in the visible light region of the spectrum. In this work, a general strategy is presented to prepare plasmonic TiO2-based photocatalysts with a visible light response that can be accurately tuned over a broad range of the spectrum. The application as self-cleaning material toward the degradation of stearic acid is demonstrated for a plasmonic TiO2 photocatalyst displaying visible light photoactivity at the intensity maximum of solar light around 490 nm.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000336013200014 Publication Date 2014-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 84 Open Access
Notes Flanders(FWO); Methusalem Approved Most recent IF: 9.446; 2014 IF: 7.435
Call Number UA @ lucian @ c:irua:115552 Serial 2646
Permanent link to this record
 

 
Author Aguiar, J.A.; Roa-Rojas, J.; Parra Vargas, C.A.; Landinez Tellez, D.A.; Corredor Bohorquez, L.T.; Shanenko, A.; Jardim, R.F.; Peeters, F.
Title Preface Type Editorial
Year 2014 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 455 Issue Pages 1-2
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Elsevier science bv Place of Publication (up) Amsterdam Editor
Language Wos 000344239200001&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7 Publication Date 2014-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS citing articles; WoS full record
Impact Factor 1.386 Times cited Open Access
Notes ; ; Approved Most recent IF: 1.386; 2014 IF: 1.319
Call Number UA @ lucian @ c:irua:121191 Serial 2696
Permanent link to this record
 

 
Author Chen, D.; Goris, B.; Bleichrodt, F.; Heidari Mezerji, H.; Bals, S.; Batenburg, K.J.; de With, G.; Friedrich, H.
Title The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 147 Issue Pages 137-148
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In electron tomography, the fidelity of the 3D reconstruction strongly depends on the employed reconstruction algorithm. In this paper, the properties of SIRT, TVM and DART reconstructions are studied with respect to having only a limited number of electrons available for imaging and applying different angular sampling schemes. A well-defined realistic model is generated, which consists of tubular domains within a matrix having slab-geometry. Subsequently, the electron tomography workflow is simulated from calculated tilt-series over experimental effects to reconstruction. In comparison with the model, the fidelity of each reconstruction method is evaluated qualitatively and quantitatively based on global and local edge profiles and resolvable distance between particles. Results show that the performance of all reconstruction methods declines with the total electron dose. Overall, SIRT algorithm is the most stable method and insensitive to changes in angular sampling. TVM algorithm yields significantly sharper edges in the reconstruction, but the edge positions are strongly influenced by the tilt scheme and the tubular objects become thinned. The DART algorithm markedly suppresses the elongation artifacts along the beam direction and moreover segments the reconstruction which can be considered a significant advantage for quantification. Finally, no advantage of TVM and DART to deal better with fewer projections was observed.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000343157400015 Publication Date 2014-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 42 Open Access OpenAccess
Notes Fwo Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:119073 Serial 2729
Permanent link to this record
 

 
Author Martinez, G.T.; Rosenauer, A.; de Backer, A.; Verbeeck, J.; Van Aert, S.
Title Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 137 Issue Pages 12-19
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000331092200003 Publication Date 2013-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 74 Open Access
Notes FWO; FP7; ERC Countatoms; ESTEEM2; esteem2_ta Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:111579UA @ admin @ c:irua:111579 Serial 2749
Permanent link to this record
 

 
Author Gaouyat, L.; He, Z.; Colomer, J.-F.; Lambin, P.; Mirabella, F.; Schryvers, D.; Deparis, O.
Title Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets Type A1 Journal article
Year 2014 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C
Volume 122 Issue Pages 303-308
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Conversion of solar energy into thermal energy helps reducing consumption of non-renewable energies. Cermets (ceramicmetal composites) are versatile materials suitable, amongst other applications, for solar selective absorbers. Although the presence of metallic Ni particles in the dielectric matrix is a prerequisite for efficient solar selective absorption in NiCrOx cermets, no clear evidence of such particles is reported so far. By combining comprehensive chemical and structural analyses, we reveal the presumed nanostructure which is at the origin of the remarkable optical properties of this cermet material. Using sputtered NiCrOx layers in a solar absorber multilayer stack on aluminium substrate allows us to achieve solar absorptance as high as α=96.1% while keeping thermal emissivity as low as ε=2.2%, both values being comparable to best values recorded so far. With the nanostructure of sputtered NiCrOx cermets eventually revealed, further optimization of solar absorbers can be anticipated and technological exploitation of cermet materials in other applications can be foreseen.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000331494200040 Publication Date 2013-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 12 Open Access
Notes Approved Most recent IF: 4.784; 2014 IF: 5.337
Call Number UA @ lucian @ c:irua:113086 Serial 2902
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.; van Duin, A.T.
Title Stability of CH3 molecules trapped on hydrogenated sites of graphene Type A1 Journal article
Year 2014 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 455 Issue Pages 60-65
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the effect of a hydrogen atom on the thermal stability of a trapped CH3 molecule on graphene using ReaxFF molecular dynamics simulations. Due to the hydrogen-molecule interaction, enhanced pinning of the CH3 molecule is observed when it is positioned adjacent to the graphene site with the hydrogen atom. We discuss the formation process of such a stable configuration, which originates from different adhesion and migration energies of the hydrogen atom and the CH3 molecule. We also studied the effect of the CH3-H configuration on the electronic transport properties of graphene nanoribbons using first principles density-functional calculations. We found that the formation of the CH3-H structure results in extra features in the transmission spectrum due to the formation of strongly localized states, which are absent when the CH3 molecule is trapped on pristine graphene. Our findings will be useful in exploiting gas sensing properties of graphene, especially for selective detection of individual molecules. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000344239200016 Publication Date 2014-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.386 Times cited 5 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN and the Flemish Science Foundation (FWO-VI). A. van Duin acknowledges funding from the Air Force Office of Scientific Research (AFOSR) under Grant no. FA9550-10-1-0563 G. R. Berdiyorov acknowledges support from King Fahd University of Petroleum and Minerals, Saudi Arabia, under the RG1329-1 and RG1329-2 DSR projects. ; Approved Most recent IF: 1.386; 2014 IF: 1.319
Call Number UA @ lucian @ c:irua:121193 Serial 3124
Permanent link to this record
 

 
Author Clima, S.; Govoreanu, B.; Jurczak, M.; Pourtois, G.
Title HfOx as RRAM material : first principles insights on the working principles Type A1 Journal article
Year 2014 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume 120 Issue Pages 13-18
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract First-principles simulations were employed to gain atomistic insights on the working principles of amorphous HfO2 based Resistive Random Access Memory stack: the nature of the defect responsible for the switching between the High and Low Resistive States has been unambiguously identified to be the substoichiometric Hf sites (commonly called oxygen vacancy-V-O) and the kinetics of the process have been investigated through the study of O diffusion. Also the role of each material layer in the TiN/HfO2/Hf/TiN RRAM stack and the impact of the deposition techniques have been examined: metallic Hf sputtering is needed to provide an oxygen exchange layer that plays the role of defect buffer. TiN shall be a good defect barrier for O but a bad defect buffer layer. A possible scenario to explain the device degradation (switching failure) mechanism has been proposed – the relaxation of the metastable amorphous phase towards crystalline structure leads to denser, more structured cluster that can increase the defect migration barriers. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000336697300004 Publication Date 2013-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 22 Open Access
Notes Approved Most recent IF: 1.806; 2014 IF: 1.197
Call Number UA @ lucian @ c:irua:117767 Serial 3535
Permanent link to this record
 

 
Author Zakharova, E.Y.; Kazakov, S.M.; Isaeva, A.A.; Abakumov, A.M.; Van Tendeloo, G.; Kuznetsov, A.N.
Title Pd5InSe and Pd8In2Se : new metal-rich homological selenides with 2D palladium-indium fragments : synthesis, structure and bonding Type A1 Journal article
Year 2014 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 589 Issue Pages 48-55
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Two new metal-rich palladium-indium selenides, Pd5InSe and Pd8In2Se, were synthesized using a high-temperature ampoule technique. Their crystal structures were determined from Rietveld analysis of powder diffraction data, supported by energy-dispersive X-ray spectroscopy and selected area electron diffraction. Both compounds crystallize in tetragonal system with P4/mmm space group (Pd5InSe: a = 4.0290(3) angstrom, c = 6.9858(5) angstrom, Z = 1; Pd8In2Se: a = 4.0045(4) angstrom, c = 10.952(1) angstrom, Z = 1). The first compound belongs to the Pd5TlAs structure type, while the second one – to a new structure type. Main structural units in both selenides are indium-centered [Pd12In] cuboctahedra of the tetragonally distorted Cu3Au type, single-and double-stacked along the c axis in Pd5InSe and Pd8In2Se, respectively, alternating with [Pd8Se] rectangular prisms. DFT electronic structure calculations predict both compounds to be 3D metallic conductors and Pauli-like paramagnets. According to the bonding analysis based on the electron localization function topology, both compounds feature multi-centered palladium-indium interactions in their heterometallic fragments. (C) 2013 Elsevier B. V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000330181400008 Publication Date 2013-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited 12 Open Access
Notes Approved Most recent IF: 3.133; 2014 IF: 2.999
Call Number UA @ lucian @ c:irua:114840 Serial 3552
Permanent link to this record
 

 
Author Houssa, M.; van den Broek, B.; Scalise, E.; Ealet, B.; Pourtois, G.; Chiappe, D.; Cinquanta, E.; Grazianetti, C.; Fanciulli, M.; Molle, A.; Afanas’ev, V.V.; Stesmans, A.;
Title Theoretical aspects of graphene-like group IV semiconductors Type A1 Journal article
Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 291 Issue Pages 98-103
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Silicene and germanene are the silicon and germanium counterparts of graphene, respectively. Recent experimental works have reported the growth of silicene on (1 1 1)Ag surfaces with different atomic configurations, depending on the growth temperature and surface coverage. We first theoretically study the structural and electronic properties of silicene on (1 1 1) Ag surfaces, focusing on the (4 x 4) silicene/Ag structure. Due to symmetry breaking in the silicene layer (nonequivalent number of top and bottom Si atoms), the corrugated silicene layer, with the Ag substrate removed, is predicted to be semiconducting, with a computed energy bandgap of about 0.3 eV. However, the hybridization between the Si 3p orbitals and the Ag 5s orbital in the silicene/(1 1 1)Ag slab model leads to an overall metallic system, with a distribution of local electronic density of states, which is related to the slightly disordered structure of the silicene layer on the (1 1 1)Ag surface. We next study the interaction of silicene and germanene with different hexagonal non-metallic substrates, namely ZnS and ZnSe. On reconstructed (0 0 0 1)ZnS or ZnSe surfaces, which should be more energetically stable for very thin layers, silicene and germanene are found to be semiconducting. Remarkably, the nature and magnitude of their energy bandgap can be controlled by an out-of-plane electric field, an important finding for the potential use of these materials in nanoelectronic devices. (C) 2013 Elsevier B. V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000329327700022 Publication Date 2013-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 20 Open Access
Notes Approved Most recent IF: 3.387; 2014 IF: 2.711
Call Number UA @ lucian @ c:irua:113765 Serial 3603
Permanent link to this record
 

 
Author Scalise, E.; Cinquanta, E.; Houssa, M.; van den Broek, B.; Chiappe, D.; Grazianetti, C.; Pourtois, G.; Ealet, B.; Molle, A.; Fanciulli, M.; Afanas’ev, V.V.; Stesmans, A.;
Title Vibrational properties of epitaxial silicene layers on (111) Ag Type A1 Journal article
Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 291 Issue Pages 113-117
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The electronic and vibrational properties of three different reconstructions of silicene on Ag(1 1 1) are calculated and compared to experimental results. The 2D epitaxial silicon layers, namely the (4 x 4), (root 13 x root 13) and (2 root 3 x 2 root 3) phases, exhibit different electronic and vibrational properties. Few peaks in the experimental Raman spectrum are identified and attributed to the vibrational modes of the silicene layers. The position and behavior of the Raman peaks with respect to the excitation energy are shown to be a fundamental tool to investigate and discern different phases of silicene on Ag( 1 1 1). (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000329327700025 Publication Date 2013-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 36 Open Access
Notes Approved Most recent IF: 3.387; 2014 IF: 2.711
Call Number UA @ lucian @ c:irua:113767 Serial 3843
Permanent link to this record
 

 
Author van Oers, C.J.; Kurttepeli, M.; Mertens, M.; Bals, S.; Meynen, V.; Cool, P.
Title Zeolite \beta nanoparticles based bimodal structures : mechanism and tuning of the porosity and zeolitic properties Type A1 Journal article
Year 2014 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 185 Issue Pages 204-212
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Despite great efforts in the research area of zeolite nanoparticles and their use in the synthesis of bimodal materials, still little is known about the impact of the synthesis conditions of the zeolite nanoparticles on its own characteristics, and on the properties and the formation mechanism of the final bimodal materials. A zeolite β nanoparticles solution is applied in a mesotemplate-free synthesis method, and the influence of the hydrothermal ageing temperature of the nanoparticles solution on both the zeolitic and porosity characteristics of the final bimodal material has been studied. Transmission electron microscopy in combination with 3-dimensional reconstructions obtained by electron tomography revealed that the zeolite β nanoparticles are connected by neck-like structures, thus creating a wormhole-like mesoporous material. Considering the zeolitic properties, a clear threshold is observed in the synthesis temperature series at 413 K. Below and at this threshold, the biporous materials show no apparent zeolitic characteristics, although these materials exhibit a more condensed and uniform SiOSi network in comparison to Al-MCF. Synthesis temperatures above the threshold lead to bimodal structures with defined zeolitic properties. Moreover, the dimensions of the nanoparticles are studied by TEM, revealing an increasing particle size with increasing temperature under the threshold of 413 K, which is in agreement with a sol-mechanism. This mechanism is disturbed after the threshold due to the start of the crystallisation process.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Amsterdam Editor
Language Wos 000330930400025 Publication Date 2013-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 10 Open Access OpenAccess
Notes 262348 Esmi Approved Most recent IF: 3.615; 2014 IF: 3.453
Call Number UA @ lucian @ c:irua:112501 Serial 3930
Permanent link to this record
 

 
Author Lobato, I.
Title Accurate modeling of high angle electron scattering Type Doctoral thesis
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:120593 Serial 50
Permanent link to this record
 

 
Author Goris, B.
Title Advanced electron tomography : 3 dimensional structural characterisation of nanomaterials down to the atomic scale Type Doctoral thesis
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:119017 Serial 71
Permanent link to this record
 

 
Author Yusupov, M.
Title Atomic scale simulations for a better insight in plasma medicine Type Doctoral thesis
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:117837 Serial 188
Permanent link to this record
 

 
Author Wiktor, C.
Title Characterization of metal-organic frameworks and other porous materials via advanced transmission electron microscopy Type Doctoral thesis
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:123905 Serial 325
Permanent link to this record