|   | 
Details
   web
Records
Author Kukhlevsky, S.V.; Mechler, M.; Samek, O.; Janssens, K.
Title Analytical model of the enhanced light transmission through subwavelength metal slits: Green's function formalism versus Rayleigh's expansion Type A1 Journal article
Year 2006 Publication Applied physics B : lasers and optics Abbreviated Journal Appl Phys B-Lasers O
Volume 84 Issue 1/2 Pages 19-24
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Wos 000238828700004 Publication Date 2006-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0946-2171 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.696 Times cited 7 Open Access
Notes Approved Most recent IF: 1.696; 2006 IF: 2.023
Call Number UA @ admin @ c:irua:59635 Serial 5472
Permanent link to this record
 

 
Author Bogaerts, A.; Grozeva, M.
Title Effect of helium/argon gas ratio in a He-Ar-Cu+ IR hollow-cathode discharge laser : modeling study and comparison with experiments Type A1 Journal article
Year 2003 Publication Applied physics B : lasers and optics Abbreviated Journal Appl Phys B-Lasers O
Volume 76 Issue 3 Pages 299-306
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The He-Ar-Cu+ IR laser operates in a hollow-cathode discharge, typically in a mixture of helium with a few-% Ar. The population inversion of the Cu+ ion levels, responsible for laser action, is attributed to asymmetric charge transfer between He+ ions and sputtered Cu atoms. The Ar gas is added to promote sputtering of the Cu cathode. In this paper, a hybrid modeling network consisting of several different models for the various plasma species present in a He-Ar-Cu hollow-cathode discharge is applied to investigate the effect of Ar concentration in the gas mixture on the discharge behavior, and to find the optimum He/Ar gas ratio for laser operation. It is found that the densities of electrons, Ar+ ions, Ar-m* metastable atoms, sputtered Cu atoms and Cu+ ions increase upon the addition of more Ar gas, whereas the densities of He+ ions, He-2(+) ions and He-m* metastable atoms drop considerably. The product of the calculated Cu atom and He+ ion densities, which determines the production rate of the upper laser levels, and hence probably also the laser output power, is found to reach a maximum around 1-5% Ar addition. This calculation result is compared to experimental measurements, and reasonable agreement has been reached.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Berlin Editor
Language Wos 000182758000017 Publication Date 2004-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0946-2171;1432-0649; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.696 Times cited 6 Open Access
Notes Approved Most recent IF: 1.696; 2003 IF: 2.012
Call Number UA @ lucian @ c:irua:104125 Serial 812
Permanent link to this record