|   | 
Details
   web
Records
Author Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F.M.; Çakir, D.
Title MXenes/graphene heterostructures for Li battery applications : a first principles study Type A1 Journal article
Year 2018 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 6 Issue 5 Pages 2337-2345
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract MXenes are the newest class of two-dimensional (2D) materials, and they offer great potential in a wide range of applications including electronic devices, sensors, and thermoelectric and energy storage materials. In this work, we combined the outstanding electrical conductivity, that is essential for battery applications, of graphene with MXene monolayers (M2CX2 where M = Sc, Ti, V and X = OH, O) to explore its potential in Li battery applications. Through first principles calculations, we determined the stable stacking configurations of M2CX2/graphene bilayer heterostructures and their Li atom intercalation by calculating the Li binding energy, diffusion barrier and voltage. We found that: (1) for the ground state stacking, the interlayer binding is strong, yet the interlayer friction is small; (2) Li binds more strongly to the O-terminated monolayer, bilayer and heterostructure MXene systems when compared with the OHterminated MXenes due to the H+ induced repulsion to the Li atoms. The binding energy of Li decreases as the Li concentration increases due to enhanced repulsive interaction between the positively charged Li ions; (3) Ti2CO2/graphene and V2CO2/graphene heterostructures exhibit large Li atom binding energies making them the most promising candidates for battery applications. When fully loaded with Li atoms, the binding energy is -1.43 eV per Li atom and -1.78 eV per Li atom for Ti2CO2/graphene and V2CO2/graphene, respectively. These two heterostructures exhibit a nice compromise between storage capacity and kinetics. For example, the diffusion barrier of Li in Ti2CO2/graphene is around 0.3 eV which is comparable to that of graphite. Additionally, the calculated average voltages are 1.49 V and 1.93 V for Ti2CO2/graphene and V2CO2/graphene structures, respectively; (4) a small change in the in-plane lattice parameters (<1%), interatomic bond lengths and interlayer distances (<0.5 angstrom) proves the stability of the heterostructures against Li intercalation, and the impending phase separation into constituent layers and capacity fading during charge-discharge cycles in real battery applications; (5) as compared to bare M2CX2 bilayers, M2CX2/graphene heterostructures have lower molecular mass, offering high storage capacity; (6) the presence of graphene ensures good electrical conductivity that is essential for battery applications. Given these advantages, Ti2CO2/graphene and V2CO2/graphene heterostructures are predicted to be promising for lithium-ion battery applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000423981200049 Publication Date 2018-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 131 Open Access
Notes (up) ; This work was supported by the bilateral project between the Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by the TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from the TUBITAK (Grant No. 115F024 and 116F080). Part of this work was supported by the BAGEP Award of the Science Academy. ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:149265UA @ admin @ c:irua:149265 Serial 4945
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Gulseren, O.; Peeters, F.M.
Title Mo2C as a high capacity anode material: a first-principles study Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 16 Pages 6029-6035
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The adsorption and diffusion of Li, Na, K and Ca atoms on a Mo2C monolayer are systematically investigated by using first principles methods. We found that the considered metal atoms are strongly bound to the Mo2C monolayer. However, the adsorption energies of these alkali and earth alkali elements decrease as the coverage increases due to the enhanced repulsion between the metal ions. We predict a significant charge transfer from the ad-atoms to the Mo2C monolayer, which indicates clearly the cationic state of the metal atoms. The metallic character of both pristine and doped Mo2C ensures a good electronic conduction that is essential for an optimal anode material. Low migration energy barriers are predicted as small as 43 meV for Li, 19 meV for Na and 15 meV for K, which result in the very fast diffusion of these atoms on Mo2C. For Mo2C, we found a storage capacity larger than 400 mA h g(-1) by the inclusion of multilayer adsorption. Mo2C expands slightly upon deposition of Li and Na even at high concentrations, which ensures the good cyclic stability of the atomic layer. The calculated average voltage of 0.68 V for Li and 0.30 V for Na ions makes Mo2C attractive for low charging voltage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000374790700033 Publication Date 2016-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 202 Open Access
Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C. S. acknowledges the support from Turkish Academy of Sciences (TUBA-GEBIP). C. S acknowledges the support from Anadolu University (Grant No. 1407F335). We acknowledge the support from TUBITAK, The Scientific and Technological Research Council of Turkey (Grant No. 115F024). ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:144763 Serial 4669
Permanent link to this record
 

 
Author Erfurt, D.; Koida, T.; Heinemann, M.D.; Li, C.; Bertram, T.; Nishinaga, J.; Szyszka, B.; Shibata, H.; Klenk, R.; Schlatmann, R.
Title Impact of rough substrates on hydrogen-doped indium oxides for the application in CIGS devices Type A1 Journal article
Year 2020 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C
Volume 206 Issue Pages 110300
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Indium oxide based transparent conductive oxides (TCOs) are promising contact layers in solar cells due to their outstanding electrical and optical properties. However, when applied in Cu(In,Ga)Se-2 or Si-hetero-junction solar cells the specific roughness of the material beneath can affect the growth and the properties of the TCO. We investigated the electrical properties of hydrogen doped and hydrogen-tungsten co-doped indium oxides grown on rough Cu(In,Ga)Se-2 samples as well as on textured and planar glass. At sharp ridges and V-shaped valleys crack-shaped voids form inside the indium oxide films, which limit the effective electron mobility of the In2O3:H and In2O3:H,W thin films. This was found for films deposited by magnetron sputtering and reactive plasma deposition at several deposition parameters, before as well as after annealing and solid phase crystallization. This suggests universal behavior that will have a wide impact on solar cell devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519653800038 Publication Date 2019-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.9 Times cited 5 Open Access OpenAccess
Notes (up) ; This work was supported by the German Federal Ministry for Economic Affairs and Energy under contract number 0325762G (TCO4CIGS). The authors thank M. Hartig, K. Mayer-Stillrich, I. Dorbandt, B. Bunn, M. Kirsch for technical support. C. Li is grateful for financial support from Max Planck Society, Germany and technical support from the MPI FKF StEM group members. ; Approved Most recent IF: 6.9; 2020 IF: 4.784
Call Number UA @ admin @ c:irua:168668 Serial 6544
Permanent link to this record
 

 
Author Van Dael, M.; Lizin, S.; Swinnen, G.; Van Passel, S.
Title Young people's acceptance of bioenergy and the influence of attitude strength on information provision Type A1 Journal article
Year 2017 Publication Renewable Energy Abbreviated Journal Renew Energ
Volume 107 Issue Pages 417-430
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This study investigated the effects of using a standardized PowerPoint lecture to provide young people with nuanced information about bioenergy. The studys aim was to understand the relationship between knowledge and participants perception of bioenergy, and the relationship of the latter to participants attitude strength and intention to use and learn about bioenergy. Data were collected from 715 participants using a survey instrument that contained mainly Likert-scale questions. Data were then processed using partial least squares structural equation modelling. Results show that providing such information increases knowledge about bioenergy, but does relatively little to create a more positive perception of bioenergy. In turn, having a more positive view about bioenergy would lead to a higher intention to use bioenergy. Attitude strength was found to mediate the previous relationship and decreases the strength of the relationship between perception and intention to use. Results also show that the lecture weakly contributed to building attitude strength, rendering opinion change less likely in the future. We conclude that listening to a lecture on bioenergy slightly improves peoples perception of bioenergy, makes it more likely that people maintain such a disposition, and translates into a slightly higher intention to use bioenergy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000396946900036 Publication Date 2017-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-1481 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 4.357 Times cited 10 Open Access
Notes (up) ; This work was supported by the Research Foundation Flanders (FWO; grant number 12G5415N). The authors gratefully acknowledge Sara Leroi-Werelds (Hasselt University) for her valuable comments. ; Approved Most recent IF: 4.357
Call Number UA @ admin @ c:irua:140683 Serial 6280
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Ata, I.; Duche, D.; Gaceur, M.; Koganezawa, T.; Yoshimoto, N.; Simon, J.-J.; Escoubas, L.; Videlot-Ackermann, C.; Margeat, O.; Bals, S.; Bauerle, P.; Ackermann, J.
Title Time evolution studies of dithieno[3,2-b:2 ',3 '-d] pyrrole-based A-D-A oligothiophene bulk heterojunctions during solvent vapor annealing towards optimization of photocurrent generation Type A1 Journal article
Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 5 Issue 5 Pages 1005-1013
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Solvent vapor annealing (SVA) is one of the main techniques to improve the morphology of bulk heterojunction solar cells using oligomeric donors. In this report, we study time evolution of nanoscale morphological changes in bulk heterojunctions based on a well-studied dithienopyrrole-based A-D-A oligothiophene (dithieno[3,2-b: 2',3'-d] pyrrole named here 1) blended with [6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) to increase photocurrent density by combining scanning transmission electron microscopy and low-energy-loss spectroscopy. Our results show that SVA transforms the morphology of 1 : PC71BM blends by a three-stage mechanism: highly intermixed phases evolve into nanostructured bilayers that correspond to an optimal blend morphology. Additional SVA leads to completely phaseseparated micrometer-sized domains. Optical spacers were used to increase light absorption inside optimized 1 : PC71BM blends leading to solar cells of 7.74% efficiency but a moderate photocurrent density of 12.3 mA cm (-2). Quantum efficiency analyses reveal that photocurrent density is mainly limited by losses inside the donor phase. Indeed, optimized 1 : PC71BM blends consist of large donor-enriched domains not optimal for exciton to photocurrent conversion. Shorter SVA times lead to smaller domains; however they are embedded in large mixed phases suggesting that introduction of stronger molecular packing may help us to better balance phase separation and domain size enabling more efficient bulk heterojunction solar cells.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000394430800018 Publication Date 2016-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 19 Open Access Not_Open_Access
Notes (up) ; We acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (Grant number: F1110019V/201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, Grant number: 287594). The synchrotron radiation experiments were performed at BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2016A1568). We further acknowledge financial support via ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:142602UA @ admin @ c:irua:142602 Serial 4695
Permanent link to this record
 

 
Author Debroye, E.; Yuan, H.; Bladt, E.; Baekelant, W.; Van der Auweraer, M.; Hofkens, J.; Bals, S.; Roeffaers, M.B.J.
Title Facile morphology-controlled synthesis of organolead iodide perovskite nanocrystals using binary capping agents Type A1 Journal article
Year 2017 Publication ChemNanoMat : chemistry of nanomaterials for energy, biology and more Abbreviated Journal Chemnanomat
Volume 3 Issue 3 Pages 223-227
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Controlling the morphology of organolead halide perovskite crystals is crucial to a fundamental understanding of the materials and to tune their properties for device applications. Here, we report a facile solution-based method for morphology-controlled synthesis of rod-like and plate-like organolead halide perovskite nanocrystals using binary capping agents. The morphology control is likely due to an interplay between surface binding kinetics of the two capping agents at different crystal facets. By high-resolution scanning transmission electron microscopy, we show that the obtained nanocrystals are monocrystalline. Moreover, long photoluminescence decay times of the nanocrystals indicate long charge diffusion lengths and low trap/defect densities. Our results pave the way for large-scale solution synthesis of organolead halide perovskite nanocrystals with controlled morphology for future device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399604300003 Publication Date 2017-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-692x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.937 Times cited 19 Open Access OpenAccess
Notes (up) ; We acknowledge financial support from the Research Foundation-Flanders (FWO, grant G.0197.11, G.0962.13, G0B39.15, postdoctoral fellowship to E. D. and H. Y.), KU Leuven Research Fund (C14/15/053), the Flemish government through long term structural funding Methusalem (CASAS2, Meth/15/04), the Hercules foundation (HER/11/14), the Belgian Federal Science Policy Office (IAP-PH05), the EC through the Marie Curie ITN project iSwitch (GA-642196) and the ERC project LIGHT (GA307523). S. B. acknowledges financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS). E. B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen). ; ecas_Sara Approved Most recent IF: 2.937
Call Number UA @ lucian @ c:irua:143678UA @ admin @ c:irua:143678 Serial 4656
Permanent link to this record
 

 
Author Perez, A.J.; Jacquet, Q.; Batuk, D.; Iadecola, A.; Saubanere, M.; Rousse, G.; Larcher, D.; Vezin, H.; Doublet, M.-L.; Tarascon, J.-M.
Title Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4 Type A1 Journal article
Year 2017 Publication Nature energy Abbreviated Journal Nat Energy
Volume 2 Issue 12 Pages 954-962
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The Li-rich rocksalt oxides Li2MO3 (M = 3d/4d/5d transition metal) are promising positive-electrode materials for Li-ion batteries, displaying capacities exceeding 300 mAh g(-1) thanks to the participation of the oxygen non-bonding O(2p) orbitals in the redox process. Understanding the oxygen redox limitations and the role of the O/M ratio is therefore crucial for the rational design of materials with improved electrochemical performances. Here we push oxygen redox to its limits with the discovery of a Li3IrO4 compound (O/M = 4) that can reversibly take up and release 3.5 electrons per Ir and possesses the highest capacity ever reported for any positive insertion electrode. By quantitatively monitoring the oxidation process, we demonstrate the material's instability against O-2 release on removal of all Li. Our results show that the O/M parameter delineates the boundary between the material's maximum capacity and its stability, hence providing valuable insights for further development of high-capacity materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430218300001 Publication Date 2017-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2058-7546 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 55 Open Access Not_Open_Access
Notes (up) ; We thank P. Pearce for providing the beta-Li<INF>2</INF>IrO<INF>3</INF> and L. Lemarquis for helping in the DEMS experiment. We are particularly grateful to S. Belin, V. Briois and L. Stievano for helpful discussions on XAS analysis and synchrotron SOLEIL (France) for providing beamtime at the ROCK beamline (financed by the French National Research Agency (ANR) as part of the 'Investissements d'Avenir' programme, reference: ANR-10-EQPX-45). A.J.P and A. I. acknowledge the GdR C(RS) 2 for the workshop organized on a chemometric approach for XAS data analysis. V. Nassif is acknowledged for her help during neutron diffraction experiments performed at Institut Laue Langevin on D1B. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the US Department of Energy under contract No. DE-AC02-06CH11357 and is gratefully acknowledged. This work has been performed with the support of the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116 ARPEMA. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:150926 Serial 4962
Permanent link to this record
 

 
Author Van Dael, M.; Van Passel, S.; Pelkmans, L.; Guisson, R.; Reumermann, P.; Luzardo, N.M.; Witters, N.; Broeze, J.
Title A techno-economic evaluation of a biomass energy conversion park Type A1 Journal article
Year 2013 Publication Applied Energy Abbreviated Journal Appl Energ
Volume 104 Issue Pages 611-622
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy Conversion Park (ECP) is introduced. A biomass ECP can be defined as a synergetic, multi-dimensional biomass conversion site with a highly integrated set of conversion technologies in which a multitude of regionally available biomass (residue) sources are converted into energy and materials. A techno-economic assessment is performed on a case study in the Netherlands to illustrate the concept and to comparatively assess the highly integrated system with two mono-dimensional models. The three evaluated models consist of (1) digestion of the organic fraction of municipal solid waste, (2) co-digestion of manure and co-substrates, and (3) integration. From a socio-economic point of view it can be concluded that it is economically and energetically more interesting to invest in the integrated model than in two separate models. The integration is economically feasible and environmental benefits can be realized. For example, the integrated model allows the implementation of a co-digester. Unmanaged manure would otherwise represent a constant pollution risk. However, from an investor's standpoint one should firstly invest in the municipal solid waste digester since the net present value (NPV) of this mono-dimensional model is higher than that of the multi-dimensional model. A sensitivity analysis is performed to identify the most influencing parameters. Our results are of interest for companies involved in the conversion of biomass. The conclusions are useful for policy makers when deciding on policy instruments concerning manure processing or biogas production. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316152700062 Publication Date 2012-12-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-2619 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.182 Times cited 45 Open Access
Notes (up) ; We would like to thank the editor and the anonymous referees for their helpful suggestions and insightful comments that have significantly improved the paper. Furthermore, the authors gratefully acknowledge the financial support from INTERREG and the province of Limburg (Belgium). Also, we would like to thank all remaining partners of the ECP project (Eloi Schreurs, Dries Maes, Kristian Coppoolse, Han ten Berge, Bert Annevelink, Nathalie Devriendt, Erwin Cornelissen, Hannes Pieper, Pieter Vollaard, Jan Venselaar, and Hessel Abbink Spaink) for their support and contributions. Finally, we would like to express our gratitude towards the organization of the eighth International Conference on Renewable Resources and Biorefineries in Toulouse (France) for giving us the opportunity to present and thereby fine-tune our work. ; Approved Most recent IF: 7.182; 2013 IF: 5.261
Call Number UA @ admin @ c:irua:127552 Serial 6145
Permanent link to this record
 

 
Author Moretti, M.; Njakou Djomo, S.; Azadi, H.; May, K.; De Vos, K.; Van Passel, S.; Witters, N.
Title A systematic review of environmental and economic impacts of smart grids Type A1 Journal article
Year 2017 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 68 Issue 2 Pages 888-898
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Smart grids (SGs) have a central role in the development of the global power sector. Cost-benefit analyses and environmental impact assessments are used to support policy on the deployment of SG systems and technologies. However, the conflicting and widely varying estimates of costs, benefits, greenhouse gas (GHG) emission reduction, and energy savings in literature leave policy makers struggling with how to advise regarding SG deployment. Identifying the causes for the wide variation of individual estimates in the literature is crucial if evaluations are to be used in decision-making. This paper (i) summarizes and compares the methodologies used for economic and environmental evaluation of SGs (ii) identifies the sources of variation in estimates across studies, and (iii) point to gap in research on economic and environmental analyses of SG systems. Seventeen studies (nine articles and eight reports published between 2000 and 2015) addressing the economic costs versus benefits, energy efficiency, and GHG emissions of SGs were systematically searched, located, selected, and reviewed. Their methods and data were subsequently extracted and analysed. The results show that no standardized method currently exists for assessing the economic and environmental impacts of SG systems. The costs varied between 0.03 and 1143 M/yr, while the benefits ranged from 0.04 to 804 M/yr, suggesting that SG systems do not result in cost savings The primary energy savings ranged from 0.03 to 0.95 MJ/kWh, whereas the GHG emission reduction ranged from 10 to 180 gCO2/kWh, depending on the country grid mix and the system boundary of the SG system considered. The findings demonstrate that although SG systems are energy efficient and reduce GHG emissions, investments in SG systems may not yield any benefits. Standardizing some methodologies and assumptions such as discount rates, time horizon and scrutinizing some key input data will result in more consistent estimates of costs and benefits, GHG emission reduction, and energy savings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000391899400006 Publication Date 2016-03-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 27 Open Access
Notes (up) ; We would like to thank the editor and the anonymous referees for their helpful suggestions and insightful comments that have significantly improved the paper. This research paper has been implemented within the GREAT (Growing Renewable Energy Applications and Technologies) project funded by the European INTERREG IVB North-Western Europe Programme. Nele Witters was financed by FWO (Research Foundation Flanders). ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:139036 Serial 6260
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Madjet, M.E.; El-Mellouhi, F.; Peeters, F.M.
Title Effect of crystal structure on the electronic transport properties of the organometallic perovskite CH3NH3PbI3 Type A1 Journal article
Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal Sol Energ Mat Sol C
Volume 148 Issue 148 Pages 60-66
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of the crystal lattice structure of organometallic perovskite CH3NH3PbI3 on its electronic transport properties. Both dispersive interactions and spin-orbit coupling are taken into account in describing structural and electronic properties of the system. We consider two different phases of the material, namely the orthorhombic and cubic lattice structures, which are energetically stable at low (< 160 K) and high (> 330 K) temperatures, respectively. The sizable geometrical differences between the two structures in term of lattice parameters, PbI6 octahedral tilts, rotation and deformations, have considerable impact on the transport properties of the material. For example, at zero bias and for all considered electron energies, the cubic phase has a larger transmission than the orthorhombic one, although both show similar electronic densities of states. Depending on the applied voltage, the current in the cubic system can be several orders of magnitude larger as compared to the one obtained for the orthorhombic sample. We attribute this enhancement in the transmission to the presence of extended states in the cubic phase due to the symmetrically shaped and ordered PbI6 octaherdra. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Elsevier science bv Place of Publication Amsterdam Editor
Language Wos 000371944500011 Publication Date 2015-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 16 Open Access
Notes (up) ; ; Approved Most recent IF: 4.784
Call Number UA @ lucian @ c:irua:133151 Serial 4163
Permanent link to this record
 

 
Author Berdiyorov, G.R.; El-Mellouhi, F.; Madjet, M.E.; Alharbi, F.H.; Peeters, F.M.; Kais, S.
Title Effect of halide-mixing on the electronic transport properties of organometallic perovskites Type A1 Journal article
Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal Sol Energ Mat Sol C
Volume 148 Issue 148 Pages 2-10
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of iodide/chloride and iodide/bromide mixing on the electronic transport in lead based organometallic perovskite CH3NH3PbI3, which is known to be an effective tool to tune the electronic and optical properties of such materials. We found that depending on the level and position of the halide mixing, the electronic transport can be increased by more than a factor of 4 for a given voltage biasing. The largest current is observed for small concentration of bromide substitutions located at the equatorial sites. However, full halide substitution has a negative effect on the transport properties of this material: the current drops by an order of magnitude for both CH3NH3PbCl3 and CH3NH3PbBr3 samples. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Elsevier science bv Place of Publication Amsterdam Editor
Language Wos 000371944500002 Publication Date 2015-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 23 Open Access
Notes (up) ; ; Approved Most recent IF: 4.784
Call Number UA @ lucian @ c:irua:133150 Serial 4165
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Neek-Amal, M.; Hussein, I.A.; Madjet, M.E.; Peeters, F.M.
Title Large CO2 uptake on a monolayer of CaO Type A1 Journal article
Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 5 Issue 5 Pages 2110-2114
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Density functional theory calculations are used to study gas adsorption properties of a recently synthesized CaO monolayer, which is found to be thermodynamically stable in its buckled form. Due to its topology and strong interaction with the CO2 molecules, this material possesses a remarkably high CO2 uptake capacity (similar to 0.4 g CO2 per g adsorbent). The CaO + CO2 system shows excellent thermal stability (up to 1000 K). Moreover, the material is highly selective towards CO2 against other major greenhouse gases such as CH4 and N2O. These advantages make this material a very promising candidate for CO2 capture and storage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000395074300035 Publication Date 2016-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 2 Open Access
Notes (up) ; ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:142034 Serial 4556
Permanent link to this record
 

 
Author Milis, K.; Peremans, H.; Springael, J.; Van Passel, S.
Title Win-win possibilities through capacity tariffs and battery storage in microgrids Type A1 Journal article
Year 2019 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 113 Issue 113 Pages 109238
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This paper investigates the impact of capacity tariff design on microgrids. While the possible benefits for utilities of capacity tariffs are well researched, comparatively little work has been done investigating the effects of capacity pricing on prosumers. Through simulating a grid connected microgrid and solving the day-ahead dispatch problem for a calendar year, we show that a well-designed capacity tariff will not only smooth out demand profiles, but could also lead to less erratic charge/discharge cycles in a real-time pricing scenario, lessening battery degradation. These results show that a properly designed capacity tariff has the potential to be beneficial for both the utilities as well as the battery-owning prosumer. Furthermore, we propose a new, heuristic approach to solve the day-ahead economic dispatch problem, which we prove to be effective and efficient. Additionally, we demonstrate that our novel approach does not impose mathematical restrictions such as continuous differentiability of the objective function. We show that the proposed capacity tariff achieves the stated aim of promoting battery storage uptake and that our novel method allows for compression and shorter run times.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000483422600019 Publication Date 2019-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.05 Times cited 1 Open Access
Notes (up) ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:160566 Serial 6279
Permanent link to this record
 

 
Author Milis, K.; Peremans, H.; Van Passel, S.
Title Steering the adoption of battery storage through electricity tariff design Type A1 Journal article
Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 98 Issue 98 Pages 125-139
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract The economic viability of electricity storage using batteries, under different tariff structures and system configurations, is investigated. The economic outcomes of the different combinations of tariff design and system configuration are evaluated. Based on a discussion of the relevant literature, the following tariff designs are used in the study: (i) fixed energy prices, (ii) real-time energy pricing, (iii) fixed rate capacity tariffs, and (iv) capacity dependent capacity tariffs. Next, the different simulated system configurations are outlined: (i) no battery storage, (ii) battery storage only, and (iii) battery storage and decentralized renewable energy production with PV. Our study provides insights for policy makers, showing that capacity block pricing only incentivises storage as part of an (existing) PV installation, while the combination of real time energy pricing and capacity block pricing promotes a wider adoption of battery storage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000450559100010 Publication Date 2018-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 7 Open Access
Notes (up) ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:153327 Serial 6252
Permanent link to this record
 

 
Author Rafiaani, P.; Kuppens, T.; Van Dael, M.; Azadi, H.; Lebailly, P.; Van Passel, S.
Title Social sustainability assessments in the biobased economy : towards a systemic approach Type A1 Journal article
Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 82 Issue 2 Pages 1839-1853
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract The majority of impact assessments for the biobased economy are primarily focused on the environmental and (techno-)economic aspects, while social aspects are rarely considered. This study proposes a modified systemic approach for a social sustainability impact assessment of the biobased economy, based on a review on the common methodologies for assessing social impacts. Accordingly, the proposed approach follows the four general iterative steps of social life cycle analysis (SLCA) as it considers all life cycle phases of the biobased economy. The systemic approach considers the potential social impacts on local communities, workers, and consumers as the main three groups of the stakeholders. The review showed that the most common social indicators for inventory analysis within the biobased economy include health and safety, food security, income, employment, land- and worker-related concerns, energy security, profitability, and gender issues. Multi-criteria decision analysis (MCDA) was also highlighted as the broadly utilized methodology for aggregating the results of impact assessments within the biobased economy. Taking a life cycle perspective, this study provides a holistic view of the full sustainability of research, design, and innovation in the biobased economy by suggesting the integration of the social aspects with techno-economic and an environmental life cycle assessment. Our proposed systemic approach makes possible to integrate the social impacts that are highly valued by the affected stakeholders into the existing sustainability models that focus only on environmental and techno-economic aspects. We discuss the steps of the proposed systemic approach in order to identify the challenges of applying them within the biobased economy. These challenges refer mainly to the definition of the functional unit and system boundaries, the selection and the analysis of social indicators (inventory analysis), the aggregation of the inventory to impact categories, and the uncertainties associated with the social sustainability evaluation. The result of this review and the proposed systemic approach serve as a foundation for industry and policy makers to gain a better insight into the importance of social sustainability impacts assessment within the biobased economy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000423371300014 Publication Date 2017-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 28 Open Access
Notes (up) ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:149031 Serial 6250
Permanent link to this record
 

 
Author Thomassen, G.; Van Dael, M.; Lemmens, B.; Van Passel, S.
Title A review of the sustainability of algal-based biorefineries : towards an integrated assessment framework Type A1 Journal article
Year 2017 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 68 Issue 2 Pages 876-887
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Algal-based bioenergy products have faced multiple economic and environmental problems. To counter these problems, algal-based biorefineries have been proposed as a promising solution. Multiple environmental and economic assessments have analyzed this concept. However, a wide variation in results was reported. This study performs a review to evaluate the methodological reasons behind this variation. Based on this review, four main challenges for a sustainability assessment were identified: 1) the use of a clear framework; 2) the adaptation of the methodology to all stages of technological maturity; 3) the use of harmonized assumptions; 4) the integration of the technological process. A generic methodology, based on the integration of a techno-economic assessment methodology and a streamlined life cycle assessment was proposed. This environmental techno-economic assessment can be performed following an iterative approach during each stage of technology development. In this way, crucial technological parameters can be directly identified and evaluated during the maturation of the technology. The use of this assessment methodology can therefore act as guidance to decrease the time-to-market for innovative and sustainable technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000391899400005 Publication Date 2016-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 23 Open Access
Notes (up) ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:139038 Serial 6245
Permanent link to this record
 

 
Author Van Schoubroeck, S.; Van Dael, M.; Van Passel, S.; Malina, R.
Title A review of sustainability indicators for biobased chemicals Type A1 Journal article
Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 94 Issue 94 Pages 115-126
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Companies dealing with chemical products have to cope with large amounts of waste and environmental risk due to the use and production of toxic substances. Against this background, increasing attention is being paid to green chemistry and the translation of this concept into biobased chemicals. Given the multitude of economic, environmental and societal impacts that the production and use of biobased chemicals have on sustainability, assessment approaches need to be developed that allow for measurement and comparison of these impacts. To evaluate sustainability in the context of policy and decision-making, indicators are generally accepted means. However, sustainability indicators currently predominantly exist for low-value applications in the bioeconomy, like bioenergy and biofuels. In this paper, a review of the state-of-the-art sustainability indicators for biobased chemicals is conducted and a gap analysis is performed to identify indicator development needs. Based on the analysis, a clear hierarchy within the concept of sustainability is found where the environmental aspect dominates over economic and social indicators. All one-dimensional indicator-sets account for environmental impacts (50%), whereas two-dimensional sets complement the environmental issues with economic indicators (34%). Moreover, even the sets encompassing all three sustainability dimensions (16%) do not account for the dynamics and interlinkages between the environment, economy and society. Using results from the literature review, an indicator list is presented that captures all indicators currently used within sustainability assessment of biobased chemicals. Finally, a framework is proposed for future indicator selection using a stakeholder survey to obtain a prioritized list of sustainability indicators for biobased chemicals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000446310000008 Publication Date 2018-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 17 Open Access
Notes (up) ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:154140 Serial 6244
Permanent link to this record
 

 
Author Afsharzade, N.; Papzan, A.; Ashjaee, M.; Delangizan, S.; Van Passel, S.; Azadi, H.
Title Renewable energy development in rural areas of Iran Type A1 Journal article
Year 2016 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 65 Issue Pages 743-755
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Iran's energy system is extremely dependent on fossil fuels which, in turn, have led to problems such as fossil fuels depletion, social, economic and environmental damage and territorial imbalance. The country should therefore design a sustainable energy system based on clean energy as well as renewable energy. Accordingly, and given that Iran's rural areas suffer from the unsustainable energy system, it is necessary to integrate renewable energy into comprehensive development programs in general, and into rural development programs, specifically. This review paper answers the following questions: Why is renewable energy important for Iran at national and rural levels? How is renewable energy related to sustainable rural development? and What are the challenges in the promotion of renewable energy technologies in Iran? The paper concludes that although renewable energy has potential for development in Iran's rural areas due to environmental, social and economic advantages, it could face some infrastructural, managerial, socio-cultural and economic challenges. Accordingly, aggressive and innovative policy making is required to meet these challenges. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383293800053 Publication Date 2016-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 41 Open Access
Notes (up) ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:137105 Serial 6243
Permanent link to this record
 

 
Author Witters, N.; Mendelsohn, R.; Van Passel, S.; Van Slycken, S.; Weyens, N.; Schreurs, E.; Meers, E.; Tack, F.; Vanheusden, B.; Vangronsveld, J.
Title Phytoremediation, a sustainable remediation technology? 2 : economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production Type A1 Journal article
Year 2012 Publication Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg
Volume 39 Issue Pages 470-477
Keywords A1 Journal article; Economics; Engineering Management (ENM)
Abstract Phytoremediation could be a sustainable remediation alternative for conventional remediation technologies. However, its implementation on a commercial scale remains disappointing. To emphasize its sustainability, this paper examines whether and how the potential economic benefit of CO2 abatement for different crops used for phytoremediation or sustainable land management purposes could promote phytotechnologies. Our analysis is based on a case study in the Campine region, where agricultural soils are contaminated with mainly cadmium. We use Life Cycle Analysis to show for the most relevant crops (willow (Salix spp), energy maize (Zea mays), and rapeseed (Brassica napus)), that phytoremediation, used for renewable energy production, could abate CO2. Converting this in economic numbers through the Marginal Abatement Cost of CO2 ( 20 ton−1) we can integrate this in the economic analysis to compare phytoremediation crops among each other, and phytoremediation with conventional technologies. The external benefit of CO2 abatement when using phytoremediation crops for land management ranges between 55 and 501 per hectare. The purpose of these calculations is not to calculate a subsidy for phytoremediation. There is no reason why one would prefer phytoremediation crops for renewable energy production over normal biomass. Moreover, subsidies for renewable energy already exist. Therefore, we should not integrate these numbers in the economic analysis again. However, these numbers could contribute to making explicit the competitive advantage of phytoremediation compared to conventional remediation technologies, but also add to a more sustainably funded decision on which crop should be grown on contaminated land.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000302829900054 Publication Date 2011-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.219 Times cited 38 Open Access
Notes (up) ; ; Approved Most recent IF: 3.219; 2012 IF: 2.975
Call Number UA @ admin @ c:irua:129863 Serial 6236
Permanent link to this record
 

 
Author Milis, K.; Peremans, H.; Van Passel, S.
Title The impact of policy on microgrid economics : a review Type A1 Journal article
Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 81 Issue 2 Pages 3111-3119
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This paper investigates the impact of government policy on the optimal design of microgrid systems from an economic cost minimisation perspective, and provides both an overview of the current state of the art of the field, as well as highlighting possible avenues of future research. Integer programming, to select microgrid components and to economically dispatch these components, is the optimisation method of choice in the literature. Using this methodology, a broad range of policy topics is investigated: impact of carbon taxation, economic incentives and mandatory emissions reduction or mandatory minimum percentage participation of renewables in local generation. However, the impact of alternative tariff systems, such as capacity tariffs are still unexplored. Additionally, the investigated possible benefits of microgrids are confined to emissions reduction and a possible decrease in total energy procurement costs. Possible benefits such as increased security of supply, increased power quality or energy independence are not investigated yet. Under the expected policy measures the optimal design of a microgrid will be based on a CHP-unit to provide both heat and electricity, owning to the lower capital costs associated with CHP-units when compared to those associated with renewable technologies. This means that current economic analyses indicate that the adoption of renewable energy sources within microgrids is not economically rational.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000417078200117 Publication Date 2017-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited 11 Open Access
Notes (up) ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:145397 Serial 6213
Permanent link to this record
 

 
Author Jorli, M.; Van Passel, S.; Saghdel, H.S.
Title External costs from fossil electricity generation : a review of the applied impact pathway approach Type A1 Journal article
Year 2018 Publication Energy & Environment Abbreviated Journal Energ Environ-Uk
Volume 29 Issue 5 Pages 635-648
Keywords A1 Journal article; Engineering Management (ENM)
Abstract This paper reviews and compares 11 studies that have estimated external costs of fossil electricity generation by benefits transfer. These studies include 13 countries and most of these countries are developing countries. The impact pathway approach is applied to estimate the environmental impact arising from fossil fuel-fired power plant's air emission and the related damages on human health. The estimated damages are used to value the monetary external costs from fossil fuel electricity generation. The estimated external costs in the 13 countries vary from 0.51 to 213.5 USD (2005) per MWh due to differences in fossil fuel quality, location, technology, and efficiency of power plants and additionally differences in assumptions, monetization values, and impact estimations. Accounting for these externalities can indicate the actual costs of fossil energy. The results can be applied by policy makers to take measures to avoid additional costs and to apply newer and cleaner energy sources. The described methods in the selected studies for estimating the external costs with respect to incomplete local data can be applied as a useful example for other developing countries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440685300001 Publication Date 2018-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0958-305x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.302 Times cited 3 Open Access
Notes (up) ; ; Approved Most recent IF: 0.302
Call Number UA @ admin @ c:irua:153136 Serial 6201
Permanent link to this record
 

 
Author Maes, D.; Van Passel, S.
Title Effective bioeconomy policies for the uptake of innovative technologies under resource constraints Type A1 Journal article
Year 2019 Publication Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg
Volume 120 Issue 120 Pages 91-106
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract The bioeconomy is a shared vision for a future European industry entirely based on organic matter. Authorities support this technological development with subsidies and policies stimulating R&D. One major limitation for the bioeconomy is that R&D and industrial growth require the continuous availability of biomass as a primary resource. This resource dependence is already present during the formative years of new biobased innovations and influences the pilot and demonstration phase of the development. Traditionally, it is assumed that public support for pilot and demonstration initiatives may overcome this hurdle. In this paper, we investigate how this resource constraint limits the effectiveness of bioeconomy policies. The future development of the biobased sector is simulated including the inherent dependence of industrial activity on biomass. We simulate the future growth and technological diversity of an emerging biotechnological sector: the sector of manure transformation in Belgium. The paper reports the evolutions for three policy scenarios. The model explicitly accounts for endogenous innovation and knowledge transfer mechanisms. The results show that policies may have an important impact on the sector structure in the long run, but the sector growth remains ultimately constrained by the availability of inputs. So bioeconomy policies to promote innovation will be less effective, unless mechanisms are included to alleviate the resource constraint.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454887700011 Publication Date 2018-11-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.219 Times cited 3 Open Access
Notes (up) ; ; Approved Most recent IF: 3.219
Call Number UA @ admin @ c:irua:156757 Serial 6191
Permanent link to this record
 

 
Author De Schepper, E.; Van Passel, S.; Manca, J.; Thewys, T.
Title Combining photovoltaics and sound barriers : a feasibility study Type A1 Journal article
Year 2012 Publication Renewable Energy Abbreviated Journal Renew Energ
Volume 46 Issue Pages 297-303
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract In the light of global warming, renewables such as solar photovoltaics (PV) are important to decrease greenhouse gas emissions. An important issue regarding implementation of solar panels on large scale, is the limited available area. Therefore, it can be interesting to combine PV with alternative applications, as a ways of not requiring “additional” space. One example is a photovoltaic noise barrier (PVNB), where a noise barrier located along a highway or railway is used as substructure for PV modules. Even though a PVNB is not a novel concept, the absence of economic assessments in literature can be a barrier to their wider implementation. In this paper, a feasibility study of a PVNB in Belgium is conducted, using a cost benefit analysis including a Monte Carlo sensitivity analysis. Besides purely economic aspects, also ecological benefits are monetized. The sensitivity analysis indicates that the ecological benefit of noise reduction, which is valuated using a noise sensitivity depreciation index applied to real estate prices, is of major importance in determining the net present value of the case study. On the contrary, the impact of reducing CO2 emissions seems to be negligible when expressed in monetary terms. The results suggest that the PVNB as a whole and also its separate components -.e. the PV array and the noise barrier can be profitable projects, when ecological benefits are included. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305169400036 Publication Date 2012-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-1481 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.357 Times cited 12 Open Access
Notes (up) ; ; Approved Most recent IF: 4.357; 2012 IF: 2.989
Call Number UA @ admin @ c:irua:127555 Serial 6170
Permanent link to this record
 

 
Author Srivastava, A.; Van Passel, S.; Laes, E.
Title Assessing the success of electricity demand response programs : a meta-analysis Type A1 Journal article
Year 2018 Publication Energy Research and Social Science Abbreviated Journal
Volume 40 Issue 40 Pages 110-117
Keywords A1 Journal article; Economics; Engineering Management (ENM)
Abstract This paper conducts a meta-analysis of 32 electricity demand response programs in the residential sector to understand whether their success is dependent on specific characteristics. The paper analyses several regression models using various combinations of variables that capture the designs of the programs and the socio-economic conditions in which the programs are implemented. The analysis reveals that demand response programs are more likely to succeed in highly urbanized areas, in areas where economic growth rates are high, and in areas where the renewable energy policy is favorable. These findings provide useful guidance in determining where and how to implement future demand response programs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430737800014 Publication Date 2017-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-6296 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor Times cited 18 Open Access
Notes (up) ; ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:149027 Serial 6154
Permanent link to this record
 

 
Author Compernolle, T.; Witters, N.; Van Passel, S.; Thewys, T.
Title Analyzing a self-managed CHP system for greenhouse cultivation as a profitable way to reduce CO2-emissions Type A1 Journal article
Year 2011 Publication Energy Abbreviated Journal Energy
Volume 36 Issue 4 Pages 1940-1947
Keywords A1 Journal article; Engineering sciences. Technology
Abstract To counter global warming, a transition to a low-carbon economy is needed. The greenhouse sector can contribute by installing Combined Heat and Power (CHP) systems, known for their excellent energy efficiency. Due to the recent European liberalization of the energy market, glass horticulturists have the opportunity to sell excess electricity to the market and by tailored policy and support measures, regional governments can fill the lack of technical and economic knowledge, causing initial resistance. This research investigates the economic and environmental opportunities using two detailed cases applying a self managed cogeneration system. The Net Present Value is calculated to investigate the economic feasibility. The Primary Energy Saving, the CO2 Emission Reduction indicator and an Emission Balance are applied to quantify the environmental impact. The results demonstrate that a self-managed CHP system is economic viable and that CO2 emissions are reduced. (C) 2010 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000289605900014 Publication Date 2010-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-5442 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.52 Times cited 19 Open Access
Notes (up) ; ; Approved Most recent IF: 4.52; 2011 IF: 3.487
Call Number UA @ admin @ c:irua:127561 Serial 6152
Permanent link to this record
 

 
Author Callini, E.; Aguey-Zinsou, K.F.; Ahuja, R.; Ares, J.R.; Bals, S.; Biliškov, N.; Chakraborty, S.; Charalambopoulou, G.; Chaudhary, A.L.; Cuevas, F.; Dam, B.; de Jongh, P.; Dornheim, M.; Filinchuk, Y.; Grbović Novaković, J.; Hirscher, M.; Jensen, T.R.; Jensen, P.B.; Novaković, N.; Lai, Q.; Leardini, F.; Gattia, D.M.; Pasquini, L.; Steriotis, T.; Turner, S.; Vegge, T.; Züttel, A.; Montone, A.
Title Nanostructured materials for solid-state hydrogen storage : a review of the achievement of COST Action MP1103 Type A1 Journal article
Year 2016 Publication International journal of hydrogen energy T2 – E-MRS Fall Meeting / Symposium C on Hydrogen Storage in Solids -, Materials, Systems and Aplication Trends, SEP 15-18, 2015, Warsaw, POLAND Abbreviated Journal Int J Hydrogen Energ
Volume 41 Issue 41 Pages 14404-14428
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated network capable to define new and unexplored ways for Solid State Hydrogen Storage by innovative and interdisciplinary research within the European Research Area. An important number of new compounds have been synthesized: metal hydrides, complex hydrides, metal halide ammines and amidoboranes. Tuning the structure from bulk to thin film, nanoparticles and nanoconfined composites improved the hydrogen sorption properties and opened the perspective to new technological applications. Direct imaging of the hydrogenation reactions and in situ measurements under operando conditions have been carried out in these studies. Computational screening methods allowed the prediction of suitable compounds for hydrogen storage and the modeling of the hydrogen sorption reactions on mono-, bi-, and three-dimensional systems. This manuscript presents a review of the main achievements of this Action. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Pergamon-elsevier science ltd Place of Publication Oxford Editor
Language Wos 000381950800051 Publication Date 2016-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 89 Open Access Not_Open_Access
Notes (up) All the authors greatly thank the COST Action MP1103 for financial support. Approved Most recent IF: 3.582
Call Number UA @ lucian @ c:irua:135723 Serial 4307
Permanent link to this record
 

 
Author Zhao, H.; Hu, Z.; Liu, J.; Li, Y.; Wu, M.; Van Tendeloo, G.; Su, B.-L.
Title Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO 2 -Au-CdS photonic crystals Type A1 Journal article
Year 2018 Publication Nano energy Abbreviated Journal Nano Energy
Volume 47 Issue Pages 266-274
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The slow photon effect, a structural effect of photonic crystal photocatalyst, is very efficient in the enhancement of photocatalytic reactions. However, slow photons in powdered photonic crystal photocatalyst have rarely been discussed because they are usually randomly oriented when the photocatalytic reaction happens in solution under constant stirring. In this work, for the first time we design a gradient ternary TiO2-Au-CdS photonic crystal based on three-dimensionally ordered macroporous (3DOM) TiO2 as skeleton, Au as electron transfer medium and CdS as active material for photocatalytic H2 production under visible-light. As a result, this gradient ternary photocatalyst is favorable to simultaneously enhance light absorption, extend the light responsive region and reduce the recombination rate of the charge carriers. In particular, we found that slow photons at blue-edge exhibit much higher photocatalytic activity than that at red-edge. The photonic crystal photocatalyst with a macropore size of 250 nm exhibits the highest visible-light H2 production rate of 3.50 mmolh⁻¹g⁻¹ due to the slow photon energy at the blue-edge to significantly enhance the incident photons utilization. This work verifies that slow photons at the blue-edge can largely enhance light harvesting and sheds a light on designing the powdered photonic crystal photocatalyst to promote the photocatalytic H2 production via slow photon effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430057000027 Publication Date 2018-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.343 Times cited 33 Open Access OpenAccess
Notes (up) B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is financially supported the National KeyR&D Program of China (2016YFA0202602), National Natural Science Foundation of China (U1663225, 51502225), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), Hubei Provincial Natural Science Foundation (2015CFB516), International Science &Technology Cooperation Program of China (2015DFE52870) and the Fundamental Research Funds for the Central Universities (WUT: 2016III029). Approved Most recent IF: 12.343
Call Number EMAT @ lucian @c:irua:150721 Serial 4924
Permanent link to this record
 

 
Author Biswas, A.N.; Winter, L.R.; Loenders, B.; Xie, Z.; Bogaerts, A.; Chen, J.G.
Title Oxygenate Production from Plasma-Activated Reaction of CO2and Ethane Type A1 Journal article
Year 2021 Publication Acs Energy Letters Abbreviated Journal Acs Energy Lett
Volume Issue Pages 236-241
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Upgrading ethane with CO2 as a soft oxidant represents a desirable means of obtaining oxygenated hydrocarbons. This reaction is not thermodynamically feasible under mild conditions and has not been previously achieved as a one-step process. Nonthermal plasma was implemented as an alternative means of supplying energy to overcome activation barriers, leading to the production of alcohols, aldehydes, and acids as well as C1−C5+ hydrocarbons under ambient pressure, with a maximum total oxygenate selectivity of 12%. A plasma chemical kinetic computational model was developed and found to be in good agreement with the experimental trends. Results from this study illustrate the potential to use plasma for the direct synthesis of value-added alcohols, acids, and aldehydes from ethane and CO2 under mild conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000732435700001 Publication Date 2021-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes (up) Basic Energy Sciences, DE-SC0012704 ; Fonds Wetenschappelijk Onderzoek, S001619N ; H2020 European Research Council, 810182 ; National Science Foundation, DGE 16-44869 ; This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Catalysis Science Program (grant no. DE-SC0012704). L.R.W. acknowledges the U.S. National Science Foundation Graduate Research Fellowship Program grant number DGE 16-44869. B.L. and A.B. acknowledge support from the FWO-SBO project PLASMA240 Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:184812 Serial 6897
Permanent link to this record
 

 
Author Yang, C.; Batuk, M.; Jacquet, Q.; Rousse, G.; Yin, W.; Zhang, L.; Hadermann, J.; Abakumov, A.M.; Cibin, G.; Chadwick, A.; Tarascon, J.-M.; Grimaud, A.
Title Revealing pH-Dependent Activities and Surface Instabilities for Ni-Based Electrocatalysts during the Oxygen Evolution Reaction Type A1 Journal article
Year 2018 Publication ACS energy letters Abbreviated Journal Acs Energy Lett
Volume Issue Pages 2884-2890
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Multiple electrochemical processes are involved at the catalyst/ electrolyte interface during the oxygen evolution reaction (OER). With the purpose of elucidating the complexity of surface dynamics upon OER, we systematically studied two Ni-based crystalline oxides (LaNiO3−δ and La2Li0.5Ni0.5O4) and compared them with the state-of-the-art Ni−Fe (oxy)- hydroxide amorphous catalyst. Electrochemical measurements such as rotating ring disk electrode (RRDE) and electrochemical quartz microbalance microscopy (EQCM) coupled with a series of physical characterizations including transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) were conducted to unravel the exact pH effect on both the OER activity and the catalyst stability. We demonstrate that for Ni-based crystalline catalysts the rate for surface degradation depends on the pH and is greater than the rate for surface reconstruction. This behavior is unlike that for the amorphous Ni oxyhydroxide catalyst, which is found to be more stable and pH-independent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453805100005 Publication Date 2018-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access: Available from 06.11.2019
Notes (up) C.Y., J.-M.T., and A.G. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC GrantProject 670116-ARPEMA. A.G. acknowledges financial support from the ANR MIDWAY (Project ID ANR-17-CE05- 0008). We acknowledge Diamond Light Source for time awarded to the Energy Materials BAG on Beamline B18, under Proposal sp12559. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:155046 Serial 5067
Permanent link to this record
 

 
Author Pasquini, L.; Sacchi, M.; Brighi, M.; Boelsma, C.; Bals, S.; Perkisas, T.; Dam, B.
Title Hydride destabilization in core-shell nanoparticles Type A1 Journal article
Year 2014 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
Volume 39 Issue 5 Pages 2115-2123
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We present a model that describes the effect of elastic constraint on the thermodynamics of hydrogen absorption and desorption in biphasic core-shell nanoparticles, where the core is a hydride forming metal. In particular, the change of the hydride formation enthalpy and of the equilibrium pressure for the metal/hydride transformation are described as a function of nanoparticles radius, shell thickness, and elastic properties of both core and shell. To test the model, the hydrogen sorption isotherms of Mg-MgO core-shell nanoparticles, synthesized by inert gas condensation, were measured by means of optical hydrogenography. The model's predictions are in good agreement with the experimentally determined plateau pressure of hydrogen absorption. The features that a core-shell systems should exhibit in view of practical hydrogen storage applications are discussed with reference to the model and the experimental results. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000331344800022 Publication Date 2014-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 32 Open Access Not_Open_Access
Notes (up) COST Action MP1103 Approved Most recent IF: 3.582; 2014 IF: 3.313
Call Number UA @ lucian @ c:irua:115785 Serial 1528
Permanent link to this record